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Background: Parkinson’s disease (PD) is a neurodegenerative disease with a broad

spectrum of motor and non-motor symptoms. The great heterogeneity of clinical

symptoms, biomarkers, and neuroimaging and lack of reliable progressionmarkers

present a significant challenge in predicting disease progression and prognoses.

Methods: We propose a new approach to disease progression analysis based on

themapper algorithm, a tool from topological data analysis. In this paper, we apply

this method to the data from the Parkinson’s Progression Markers Initiative (PPMI).

We then construct a Markov chain on the mapper output graphs.

Results: The resulting progression model yields a quantitative comparison of

patients’ disease progression under di�erent usage of medications. We also obtain

an algorithm to predict patients’ UPDRS III scores.

Conclusions: By using mapper algorithm and routinely gathered clinical

assessments, we developed a new dynamic models to predict the following year’s

motor progression in the early stage of PD. The use of thismodel can predictmotor

evaluations at the individual level, assisting clinicians to adjust intervention strategy

for each patient and identifying at-risk patients for future disease-modifying

therapy clinical trials.

KEYWORDS

progression analysis, Parkinson’s disease, mapper algorithm, Markov chain, prediction

model

1. Introduction

Parkinson’s disease is a neurodegenerative disease with a broad spectrum of

motor symptoms including bradykinesia, rigidity, resting tremor, and postural and gait

impairments (Selikhova et al., 2009). In the clinical course of PD, both linear (Gottipati

et al., 2017; Holden et al., 2018) and non-linear progression (Vu et al., 2012; Reinoso et

al., 2015) have been reported in the advancement of motor and non-motor symptoms. The

substantial heterogeneity in the presentation of clinical phenotypes, genetics, pathology, and

disease progression (Foltynie et al., 2002; Selikhova et al., 2009; Ma et al., 2015) and lack of

reliable progression markers of neurodegeneration present a major challenge for prediction

of progression and accurate prognoses, hampering advances in PD trials, and the clinical

routine determining therapeutic efficacy. In an era of increasing focus on individualized

management and disease-modifying therapies, there is a need to develop useful tools to

predict each patient’s motor progression with high accuracy.
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The current literature on PD progression consists largely of

associative analyses and a few prognostic models. The prognostic

models include logistic regression and Bayesian classification

models to predict cognitive impairment (Schrag et al., 2017;

Hogue et al., 2018; Gramotnev et al., 2019), machine-learning,

random survival forests to predict time to initiation of symptomatic

treatment (Simuni et al., 2016) and disease progression (Latourelle

et al., 2017; Severson et al., 2021). Besides, partial least squares

path modeling (PLS-PM), combined with MRI biomarkers, were

used to predict progression subtypes and cognitive impairment in

prodromal PD (Pyatigorskaya et al., 2021; Rahayel et al., 2021).

Based on the Parkinson’s Progression Markers Initiative (PPMI)

database, we previously built five regression models to predict

PD motor progression represented by the coming year’s Unified

Parkinson’s Disease Rating Scale (MDS-UPDRS) Part III score,

finding adjusted R2 values of three different categories of regression

model, linear, Bayesian, and ensemble, all reached 0.75 (Ma et al.,

2020).

In this study, we propose a new approach to disease progression

analysis based on topological data analysis (TDA), or the mapper

algorithm to be precise. The mapper algorithm was introduced

in Singh et al. (2007) by Singh-Memoli-Carlsson as a way of

capturing topological/geometric informations of a point cloud

dataset possibly in a high dimensional Euclidean space. Roughly

speaking, it may be viewed as an algorithm to compute a given

dataset’s geometric “shape" by certain combinatorial object which,

in the simplest form, may be a graph or a polyhedron. In the

case of analyzing patients’ data, the method has been successfully

implemented in a variety of circumstances (see for example Nicolau

et al., 2011; Li et al., 2015; Rossi-deVries et al., 2018; Dagliati et al.,

2020).

It is always difficult to predict PD because of great

heterogeneity, including subtypes, markers, and various scales.

Only by combining clinical presentation and mathematical

methods, selecting appropriate parameters and applying

appropriate methods can the accuracy of prediction model

be improved. Based on PPMI data and our previous predicting

models, we aim to improve our multiple dynamic prediction

model via mapper algorithm in this study. Similarly, general

information and classical clinical scales, which are routinely and

easily performed in clinical activities, were used to predict motor

progression, displayed in the form of the MDS–UPDRS Part III

score. These inexpensive and easily readily available clinical data

can facilitate widespread implementation of this cost-efficient

predictive model in real world applications.

2. Materials and methods

2.1. Feature selection and data
pre-processing

The data were obtained from the PPMI database. The PPMI

is an international, multicenter, prospective study designed to

discover, and validate biomarkers of disease progression in newly

diagnosed PD participants (National Clinical Trials identifier

NCT01141023). Each PPMI recruitment site received approval

from an institutional review board or ethics committee on human

experimentation before study initiation. Written informed consent

for research was obtained from all individuals participating in

the study. The PPMI database was accessed on December 16,

2022, to obtain data from 943, 379, 324, 256, 268 visits for five

consecutive years. For up-to-date information on the study, please

visit www.ppmi-info.org.

Since the mapper algorithm is a way of computing the “shape"

of a given data set in R
N , if the dimension N is too large while the

data set is relatively small, the shape would only be a collection

of sparse points. Thus, our first step uses a topological method to

reduce the number of features introduced in Kraft (2016). The idea

behind this feature selection method is that we could eliminate a

feature if it does not cause a big change in the underlying topology

(calculated using persistent homology) of the data sets. We refer to

the article (Kraft, 2016) for more details.

In our case, for the feature selection, we first consider the

following listed 29 features mostly used inMa et al. (2020).We have

added a feature “symptom” which is given by the sum symptom1,

symptom2, symptom3, and symptom4, with

• Symptom1: Initial symptom (at diagnosis)—Resting Tremor

• Symptom2: Initial symptom (at diagnosis)—Rigidity

• Symptom3: Initial symptom (at diagnosis)—Bradykinesia

• Symptom4: Initial symptom (at diagnosis)—Postural

Instability

All these variables are binary such that it is 0 if No symptom or

unknown; 1 if Symptom present at diagnosis.

In general, the features we consider are inexpensive and easily

readily available clinical data. Each of the coordinates is normalized

to [0, 1]. In the coordinate given by the UPDRS III score, we also

performed a clamping at 0.7.1 These features are listed as follows:

updrs3, age, NP1APAT, scopa, YEAR, NP1FATG, moca,

symptom, NP1ANXS, gds, PD_MED_USE, symptom2, NP1HALL,

ageonset, NP1COG, NP1DPRS, rem, ess, symptom1, DOMSIDE,

“PATNO,” gen, symptom4, fampd_new, NP1DDS, duration, td_ pig,

quip, symptom3.

In the above we have ordered the features according to their

Pearson’s correlation coefficients with the UPDRS III score. An

important point to note is that, excluding the UPDRS III score

itself, the maximal of these Pearson’s correlation coefficients is 0.27,

which shows that their correlation with the UPDRS III score is

in general highly non-linear. This is an ideal context to use our

topological data analysis (TDA) method as it is a tool developped

to handle non-linear correlations.

Then, we use the persistent homology to reduce the number

of features (Kraft, 2016). In our case, Figure 1 illustrates the

persistent homology, when passing from the first eight features to

seven features, has a big difference. This tells us we should stop

eliminating features. The remaining 8 selected features are listed

as in Table 1.

From the PPMI data, we select these features for each patient’s

data to form a point cloud SPPMI ⊂ R
8, of size |SPPMI| = 2, 389,

consisting of 481 distinguished patients.

1 The reason for clamping is that very rarely we have patients with UPDRS

III score > 0.7 after normalization.
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FIGURE 1

The barcodes and rips diagrams both illustrate the persistent homology (Lum et al., 2013) of a given dataset. The two pictures compare the persistent

homology in the case of seven features with the case of eight features. Observe that the right hand side has considerably more persistence (in both

black and red markings) compared with the left hand side.

TABLE 1 List of selected features.

Features Meaning

Age Age of patient when data is collected

updrs3 UPDRS III score (OFF)

np1apat APATHY

np1fatg FATIGUE

np1anxs ANXIOUS MOOD

Moca Montreal cognitive assessment (MOCA) score

Scopa Scales for outcomes in Parkinson’s disease (SCOPA)-AUT

total score

Symptom Symptom1+ Symptom2+ Symptom3+ Symptom4

2.2. The mapper algorithm

The mapper algorithm introduced by Singh-Memoli-

Carlsson (Singh et al., 2007) is a method to analyze high

dimensional data based on ideas from topology—a branch of

mathematics to study complex shapes of geometric objects.

Roughly speaking, the mapper algorithm consists of several

steps as illustrated in Figure 2.

(A) A point cloud data S ⊂ R
N whose topological/geometric

properties we would like to study.

(B) A choice of d filter functions on S.

f = (f1, . . . , fd) : S → R
d.

(C) Choose a covering of the image of f by boxes:

Im(f ) ⊂
⋃

α

Bα

with each Bα a box in R
d. Put the data S into overlapping bins

by taking Sα : = f−1(Bα).

(D) Cluster each bin Sα and create a simplicial complex

recording the intersection pattern between the clusters. Often

a truncated version is used as mapper’s output: the result yields

a graph whose vertices correspond to the clusters, and an edge

is created whenever two clusters have non-empty intersection.

2.3. Construction of Markov chains

We shall apply the mapper algorithm to the point cloud SPPMI

from the previous subsection. Recall that SPPMI ⊂ R
8 is the sample

space of patients’ data extracted from the raw PPMI data. Using

the mapper algorithm, assume that we have obtained m clusters

C1, . . . ,Cm so that SPPMI = C1 ∪ · · · ∪ Cm. Note that these clusters

can possibly intersect with each other.

Let P ⊂ SPPMI × SPPMI be a subset. We proceed to use P to

obtain a Markov chain on the set of clusters C1, . . . ,Cm. For a pair

of data (x, y) ∈ P, if x ∈ Ci and y ∈ Cj, we consider it as an

arrow from the cluster Ci to Cj. This yields a multi-graph (possibly

withmultiple edges between vertices) whose vertices are the clusters

C1, . . . ,Cm. Then we use informations of this multi-graph to obtain

a Markov matrix. More precisely, for each pair of indices (i, j) with
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FIGURE 2

Illustration of the mapper algorithm in the case of a point cloud S in

R
2, and with the filter function given by the horizontal projection.

The outcome of this algorithm is the bottom graph. (A) Original

point cloud, (B) Coloring by filter value, (C) Binning by filter value,

and (D) Clustering and network construction.

1 ≤ i, j ≤ m, we define

MP
ij : =

{

|{(x,y)∈P|x∈Ci ,y∈Cj}|

|{(x,y)∈P|x∈Ci}|
if {(x, y) ∈ P | x ∈ Ci} 6= ∅

δij if {(x, y) ∈ P | x ∈ Ci} = ∅
(1)

2.3.1. Computing expected growth
For each 1 ≤ j ≤ m, denote by

Ej : =
1

|Cj|
·
∑

y∈Cj

updrs3(y)

the expected value of the UPDRS III score of the cluster Cj.

The expected growth of a patient’s UPDRS III of a fixed PD

medication type i is computed as follows.

(1) Fix the medication type index 0 ≤ i ≤ 7. Consider the

distribution of patients with medication type i in each cluster,

i.e., for each 1 ≤ j ≤ m denote by

dj : = |{x ∈ Cj | The data x is from a patient with PD

{medication typei. }|

(2) Form the initial probability vector that a type i patient

belongs to each cluster:

w : =
1

∑m
j=1 dj

(d1, . . . , dm).

(3) The expected growth in 1 year of such a patient is then

computed by

1 : =

m
∑

j=1

wj · 1j

where 1j =
∑m

l=1 M
Pi
jl
(El − Ej) is the expected growth of the

UPDRS III score for a patient in the cluster Cj.

2.4. Prediction models

As a second application, we use the Markov chains obtained in

the previous paragraph to build a prediction model for a patient’s

UPDRS III score in the next year. This is done in several steps:

(a) Given a patient’s current year data x ∈ R
8, we first produce

an initial probability vector

v = (v1, v2, . . . , vm)

where recall that m is the number of clusters in the mapper

output. See Equation (2) for the definition of v. In other words,

vj is the probability of x lie inside the j-th cluster Cj.

(b) Then compute the action of the Markov chain on the vector

v to obtain

v†
: = v ·MP = (v†

1 , . . . , v
†
m)

(c) The predicted UPDRS III score is then equal to

p(x) : =

m
∑

j=1

v†
j · Ej

where as before Ej : =
1

|Cj|
·
∑

y∈Cj
updrs3(y) is the expected

value of the UPDRS III score of the cluster Cj.

The first step (a) needs more explanation, and is realized as

follows. Fix a positive integer µ > 0, and a positive real number

σ > 0. We find the first µ nearest point a1, . . . aµ ∈ SPPMI to the

given point x. Then use the equation

c ·

µ
∑

k=1

e
−

||x−ak ||
2

σ2 = 1

to determine a constant c. For each 1 ≤ k ≤ µ, the point ak may

belong to several clusters. Denote its multiplicity by

lk : = |{1 ≤ i ≤ m | ak ∈ Ci}|

At this point, it is tempted to set the initial probability vector by

formula

vi =
∑

1≤k≤µ, ak∈Ci

1

lk
· c · e

−
||x−ak ||

2

σ2 .
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FIGURE 3

The pictures are out-puts of the mapper algorithm with parameters given by n1 = 20, n2 = 40, p = 0.05 and n1 = 20, n2 = 40, p = 0.3, respectively.

However, observe that already in the definition of MP (see

Equation 1), it is possible that a cluster Ci is not the source of any

arrows, i.e.,

{(x, y) ∈ P | x ∈ Ci} = ∅.

In this case, it is not possible to use such type of clusters to
make predictions for the next year’s data. Thus, we set the initial
probability at such a cluster by zero, and rescale the resulting
vector by a constant to obtain the desired initial probability vector.
Explicitly, we set the initial probability vector v = (v1, v2, . . . , vm)
by

vi : =















const ·
∑

1≤k≤µ, ak∈Ci

1

lk
· c · e

−
||x−ak ||

2

σ2 if {(x, y) ∈ P | x ∈ Ci} 6= ∅

0 if {(x, y) ∈ P | x ∈ Ci} = ∅

(2)

In this paper, we shall fix the parameters to be µ = 14 and

σ = 0.0378.

3. Results

3.1. Mapper outputs

We apply the Kepler mapper program 1.4.1 (van Veen et al.,

2019a,b) to the point cloud set SPPMI with a 2-dimensional filter

function

f = (age, updrs3) : S → R
2

given by two coordinate projections in the direction of “age" and

“updrs3." The output graph is shown in Figure 3.

As expected by the formation of the mapper algorithm,

larger percentage of overlaps naturally leads to more non-empty

intersections between clusters, and hence the graph on the right

appears to have more edges than the left one.

In the two dimensional mapper algorithm, there are three

parameters to choose:

• n1: Number of intervals in the “updrs3" direction.

• n2: Number of intervals in the “age" direction.

• p: Percentage of overlaps in both direction.

There exists no general method to determine appropriate

parameters in the mapper algorithm. In the next section, we shall

use the mapper output to construct a prediction model for the

UPDRS III scores of patients. We then use the precision value of

the resulting prediction model to evaluate and thus optimize the

parameters.

3.2. Markov chains

From the PPMI data, there are eight different types of

patients according to their usage of PD medications, as shown

in Table 2.

Denote by Pi ⊂ SPPMI×SPPMI, 0 ≤ i ≤ 7 the subset consisting

of pairings (x, y) such that the data x and y are two consecutive

years’ data from the same patient (i.e., a progression by 1 year), and

that the patient’s usage of PD medication is of type i in the above

table. For i = 0 and i = 1 we have depicted the corresponding

two Markov chains in Figure 4 (with mapper parameters set to be

n1 = 20, n2 = 40, p = 0.05).
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3.3. PD medication type analysis

As a first application of the Markov chains MPi obtained

from the previous paragraph. We use it to compute the expected

growth of a patient’s UPDRS III score according to the patient’s PD

medication type. The computed results are shown in Table 3.

The expected growth of PD patients with a particular type

of medication certainly may depend on the particular choice of

medication to begin with. Thus, it makes sense to perform an

un-biased comparison with what happens if the medication type

i 6= 0 group of patients were not given any medication. To do this,

consider the following probability distribution (p1, . . . , pm) on the

set of clusters defined by

pj : =
type i patients in Cj

all type i patients
.

We can calculate the expected growth viewed as un-medicated

patients under same distribution using the Markov chainM
P0
jk
:

1′
i : =

∑

j

∑

k

pjM
P0
jk
(Ek − Ej)

TABLE 2 List of medication types.

Type index Medication

0 Unmedicated

1 Levodopa

2 Dopamine agonist

3 Other

4 Levodopa+ other

5 Levodopa+ dopamine agonist

6 Dopamine agonist+ other

7 Levodopa+ dopamine agonist+ other

The difference between 1′
i and the actual expected growth 1i

would measure the benefit of the i-th type medication to reduce

the growth of patients’ UPDRS III scores. Calculations demonstrate

solid medication effects in the cases of type 4, 5, and 6, as

shown in Table 4. Observe that patients in medication type 5

and 6 have relatively small expected growth of UPDRS score in

Table 3. The un-biased analysis gives at least a partial explanation

for this: for these two groups of patients medication effects are

rather significant.

TABLE 3 Expected growth of UPDRS III score associated with di�erent

medication types.

PD medication type index Expected growth of UPDRS
III score

0 2.17

1 2.24

2 2.51

3 3.37

4 2.19

5 0.30

6 0.88

7 1.85

TABLE 4 Un-biased medication e�ects in medication type 4, 5, and 6.

Medication type i 1i 1′
i 1′

i − 1i

4 2.19 2.50 0.31

5 0.30 1.30 1

6 0.88 2.29 1.41

FIGURE 4

The two figures illustrate two Markov chains associated with medication type 0 and 1, respectively. Its nodes are derived from the outputs of the

mapper algorithm.
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TABLE 5 Statistics of the TDA method.

Medication R2 score MAE MSE Max error Hit in percentage %

0 0.67 –0.0121 0.00597 0.216 62.6

1 0.726 –0.00807 0.00607 0.222 82.7

2 0.966 –0.00542 0.000396 0.0127 97.0

3 0.872 –0.000186 0.0015 0.14 88.4

4 0.642 –0.0142 0.00691 0.247 77.6

5 0.749 –0.012 0.00515 0.217 87.7

6 0.499 –0.0023 0.00698 0.274 78.6

7 0.953 0.000792 0.00073 0.0663 94.3

TABLE 6 Comparison between statistics of the TDA method with classical regression methods.

R2 score MAE MSE Max error Hit in percentage %

TDA 0.726 –0.00807 0.00607 0.222 82.7

Linear regression 0.607 0.0632 0.00704 0.384 55.7

Ridge regression 0.642 0.0693 0.00794 0.315 46.8

Bayesian regression 0.689 0.0635 0.0069 0.283 55.5

Random forest 0.733 0.0372 0.00593 0.562 78.6

Gradient boosting 0.783 0.0364 0.00481 0.311 79.2

3.4. Statistics of the prediction models

To test the validity of our predictionmodel described above, for

each PD medication type index 0 ≤ i ≤ 7, we perform a statistical

study of its accuracy as follows.

(1) First take out a point (x0, y0) ∈ Pi ⊂ SPPMI × SPPMI, run the

prediction model with S − {x0} to obtain the predicted next

year’s UPDRS III score p(x0).

(2) Do step (1) for all points (x0, y0) in Pi. Then perform a

statistical study between the predicted score p(x0) with the

actual next year’s score y0.

Table 5 shows the statistics of our prediction models in each

PD medication type. The R2 score, MAE, MSE and Max Error

are well-known statistical measures. We explain the last column

“hit percentage." In the evaluation of UPDRS III score (a total

of 132 points), medical experiences usually permits a variation of

±5 points. In our data set SPPMI, the difference between maximal

score and the minimal score is 80. Since we have normalized this

score to [0, 1], a variation of±5 absolute points would corresponds

to ±0.0625 after normalization. The “hit-in percentage” is the

percentage of the prediction score p(x0) “hit-in” the interval [y0 −

0.0625, y0 + 0.0625] since we regard such a prediction as being a

successful one.

3.5. Comparison with classical regression
methods

The statistics shown above should be compared with an earlier

prediction model (Ma et al., 2020). In loc. cit. the authors used

classical methods such as Linear Regression, Bayesian Regression,

and so on. For example, in the case of P1, the comparison of

statistics of our TDA method with classical methods is shown in

Table 6.

This shows that the mapper algorithm combined with Markov

chain construction is more efficient than the more classical

regression methods in the study of progression analysis of

Parkinson’s disease.

4. Discussion

In this study, we develop a new predictive model for motor

progression in patients with early PD by mapper algorithm, which

we report 62.5% accuracy in the group of un-medicated patients

(Medication type 0); while in other medication types, the accuracy

increased, fluctuating between 77.6 and 97% (Medication type 1–

7). Also, we compared different methods in the analysis of PD

progression and found that mapper algorithm combined with

Markov chain construction is more efficient than the more classical

regression methods. This prediction model is an upgrade of our

previous prediction model, which improves the accuracy and

has better stability. Our findings indicate that the models can

practically predict the MDS-UPDRS Part III score of the coming

year based on the clinically available characteristics obtained in the

current year.

There are a growing number of clinical predictionmodels of the

progression of PD, which vary from the choices of predictive values

according to different objectives. Latourelle et al. developed and

validated a comprehensive multivariable prognostic model based

on the PPMI database (Latourelle et al., 2017). In this model,

they obtained a R2 of 41% in PPMI database and 9% in LABS-

PD database that used for external validation. This reduction of
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R2 could be offset by increasing the sample size. As in Lu et al.

they developed a progression model based on the videos of MDS-

UPDRS tests to estimate the motor severity of PD, in which they

obtained a classification accuracy of 72% and F1-score of 0.51 (Lu

et al., 2021).

Eight variables were enrolled in this model, including age,

MDS-UPDRS III, NP1 apathy score, NP1 fatigue score, NP1 anxiety

score, MOCA, SCOPA-AUT, and initial symptoms. These variables

contain quantification of motor (MDS-UPDRS III) and non-motor

symptoms (apathy, cognitive dysfunction, fatigue and anxiety), all

of which contribute to the progression of PD.

Previous studies have identified that cognitive impairment at

baseline is correlated with faster disease progression and greater

motor impairment (Velseboer et al., 2013; Fereshtehnejad et al.,

2015; Reinoso et al., 2015). Apart from UPDRS values, signs of

cognitive decline, orthostatic hypotension and rapid eye movement

sleep behavior disorder at baseline, could also suggest a much faster

decline in motor symptoms. An increase in L-dopa non-responsive

symptoms, which suggest a diffuse destruction of extra-nigrostriatal

pathways in parallel with the nigrostriatal pathway (Velseboer et al.,

2013) may in part explain the situation.

Overall, PD is a neurodegeneration disease and all the patients

suffer from progressive aggravation. The expected growth of

motor score varies greatly due to different medication types.

The rate of progress of patients with no medication is 2.17 per

year, which is representative of PD’s natural course. Anti-PD

drugs can improve patients’ motor symptoms, while the expected

growth of UPDRS III score in patients taking medicine is lower

than type 1. We also found the expected growth of UPDRS

III score in groups 5 (levodopa + dopamine agonist) and 6

(dopamine agonist + other) is lower than other types, indicating

that dopamine agonists might improve motor dysfunction better

or exist potential disease-modifying effect. However, given the

complexity of drugs regulation and interactions with patients,

further interpretation should be given cautiously. In addition,

according to the type of medication used by the patients, the

accuracy of prediction model in the patients taking the anti-

PD medication was improved compared to patients with no

medication, ranging from 77.6 to 97%. The reason is that in

the type 0 case, patients’ UPDRS III score could experience a

“jumping" phenomenon, thus making our continuous topological

method not as effective as in the case of other medication types.

In fact, identifying features of this jumping phenomenon is itself

an interesting question which we plan to further investigate in a

future work.

There are also some limitations in this study. First, the

variability and subjectiveness of measures of the motor and non-

motor scores within the PPMI dataset may exist. Second, due to

limited PD patients, only uniform predictions across subtypes were

made without consideration of PD subtypes. Third, we just predict

the MDS-UPDRS Part III total score in the predict model, and

no subdivision prediction was made for a single item or symptom

category score (such as limb rigidity, central axis slowing, tremor,

gait, etc.). Finally, our analysis was based on the early stage of PD.

As a result, this model cannot be apply to patients with advanced

PD for motor prediction.

In this study, by using mapper algorithm, we apply relatively

fewer parameters to achieve better results than the previousmodels,

provide accuracy in the range of 62.5 − 97.0% in predicting

motor progression depending on different medication types. The

use of this model can predict motor evaluations at the individual

level, assisting clinicians to adjust intervention strategy for each

patient and identifying at-risk patients for future disease-modifying

therapy clinical trials.
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