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Introduction: The relationship between music and Alzheimer’s disease (AD) has 
been approached by different disciplines, but most of our outstanding comes from 
neuroscience.

Methods: First, we systematically reviewed the state-of-the-art of neuroscience and 
cognitive sciences research on music and AD (>100 studies), and the progress made 
on the therapeutic impact of music stimuli in memory. Next, we meta-analyzed 
transcriptomic and epigenomic data of AD patients to search for commonalities 
with genes and pathways previously connected to music in genome association, 
epigenetic, and gene expression studies.

Results: Our findings indicate that >93% of the neuroscience/ cognitive sciences studies 
indicate at least one beneficial effect of music on patients with neurodegenerative 
diseases, being improvements on memory and cognition the most frequent outcomes; 
other common benefits were on social behavior, mood and emotion, anxiety and 
agitation, quality of life, and depression. Out of the 334 music-related genes, 127 (38%) 
were found to be linked to epigenome/transcriptome analysis in AD (vs. healthy controls); 
some of them (SNCA, SLC6A4, ASCC2, FTH1, PLAUR and ARHGAP26) have been reported 
to be associated e.g. with musical aptitude and music effect on the transcriptome. Other 
music-related genes (GMPR, SELENBP1 and ADIPOR1) associated to neuropsychiatric, 
neurodegenerative diseases and music performance, emerged as hub genes in consensus 
co-expression modules detected between AD and music estimulated transcriptomes. 
In addition, we found connections between music, AD and dopamine related genes, 
with SCNA being the most remarkable – a gene previously associated with learning and 
memory, and neurodegenerative disorders (e.g., Parkinson’s disease and AD).

Discussion: The present study indicate that the vast majority of neuroscientific 
studies unambiguously show that music has a beneficial effect on health, being the 
most common benefits relevant to Alzheimer’s disease. These findings illuminate a 
new roadmap for genetic research in neurosciences, and musical interventions in AD 
and other neurodegenerative conditions.

TYPE Systematic Review
PUBLISHED 03 February 2023
DOI 10.3389/fnagi.2023.1063536

OPEN ACCESS

EDITED BY

Nilton Custodio,  
Peruvian Institute of Neurosciences (IPN),  
Peru

REVIEWED BY

Sung Ung Kang,  
School of Medicine,  
Johns Hopkins University,  
United States
Rupesh Chikara,  
University of Texas at Arlington,  
United States

*CORRESPONDENCE

Antonio Salas  
 antonio.salas@usc.es

†These authors have contributed equally to this 
work

SPECIALTY SECTION

This article was submitted to  
Alzheimer’s Disease and Related Dementias,  
a section of the journal  
Frontiers in Aging Neuroscience

RECEIVED 07 October 2022
ACCEPTED 11 January 2023
PUBLISHED 03 February 2023

CITATION

Navarro L, Gómez-Carballa A, Pischedda S, 
Montoto-Louzao J, Viz-Lasheras S, 
Camino-Mera A, Hinault T, 
Martinón-Torres F and Salas A (2023) 
Sensogenomics of music and Alzheimer’s 
disease: An interdisciplinary view from 
neuroscience, transcriptomics, and 
epigenomics.
Front. Aging Neurosci. 15:1063536.
doi: 10.3389/fnagi.2023.1063536

COPYRIGHT

© 2023 Navarro, Gómez-Carballa, Pischedda, 
Montoto-Louzao, Viz-Lasheras, Camino-Mera, 
Hinault, Martinón-Torres and Salas. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2023.1063536%EF%BB%BF&domain=pdf&date_stamp=2023-02-03
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1063536/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1063536/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1063536/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1063536/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1063536/full
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2023.1063536
mailto:antonio.salas@usc.es
https://doi.org/10.3389/fnagi.2023.1063536
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Navarro et al. 10.3389/fnagi.2023.1063536

Frontiers in Aging Neuroscience 02 frontiersin.org

KEYWORDS

Alzheimer’s disease, music stimuli, RNAseq, genes, dopamine, transcriptome, epigenome

1. Introduction

Over 55 million people live with dementia (Gauthier et al., 2021). 
Alzheimer’s disease (AD) is a well-known and the most common form 
of dementia, in which “brain cells and nerves are blocked by abnormal 
proteins, resulting in the disruption of the transmitters which carry 
messages in the brain, particularly those responsible for storing 
memories” (Gauthier et al., 2021). The large number of people affected 
worldwide, and the complexity of this neurodegenerative disease, 
constitute a significant challenge for science in general, and specifically 
for every discipline seeking to further understand this illness.

The relationship between music and AD has been approached from 
different perspectives in neuroscience and cognitive sciences, often 
aiming at understanding the mechanisms underlying human memory, 
e.g., (Groussard et al., 2019). Neuroscience has identified three main 
lines connecting music and AD. First, the identification of certain types 
of musical memory preserved in AD patients is one of the most 
promising areas for clinical research (Cuddy et al., 2015; Jacobsen et al., 
2015). Second, musical training can induce brain structural changes, 
thereby engaging brain plasticity (Fauvel et al., 2013; Groussard et al., 
2014). Third, a growing number of studies in psychophysiology have 
highlighted how music can positively modulate biological markers (e.g., 
Mockel et al., 1994; Kreutz et al., 2004; Etzel et al., 2006; Carpentier and 
Potter, 2007; Fancourt et al., 2014; Zatorre, 2015; Gauthier et al., 2021). 
Music has also been considered a powerful tool in rehabilitation 
programs (Sarkamo, 2018), but the biological mechanism underlying 
the therapeutical effects of music remains unclear.

Memory loss is the key symptom of AD. Its formation and 
maintenance have been strongly associated with epigenetic 
modifications, and DNA methylation induces dynamic and stable 
changes in the adult central nervous system (CNS) (Zovkic et al., 2013). 
The field of neuroepigenetics has recently emerged (Sweatt, 2013) with 
the aim to interrogate the specific role of epigenetic mechanisms in the 
regulation of the CNS in terms of acquired behaviors, neurological 
disorders, neural plasticity, etc. However, the relationship between 
epigenetics and music remains to be  understood. According to the 
“environmental epigenetics” hypothesis (Brigati et al., 2011), it seems 
plausible that music could acts as an epigenetic modulator, able to 
regulate gene expression, with possible effects in brain plasticity. Thus, 
music might shape the brain by modifying the epigenome, and lead to 
sustained alterations in its structure (Brigati et al., 2011).

A few studies have also been carried out recently to explain the effect 
of musical stimuli on the transcriptomes, connecting music with 
memory and neurodegeneration. Kanduri et al. (2015b) analyzed the 
effects of gene expression after listening to classical music, and reported 
a few genes that could be relevant to research on AD. For instance, they 
detected upregulated genes related to learning, memory, cognitive 
performance, neuroprotection, neurogenesis and synaptic 
neurotransmission, and also a few downregulated genes responsible for 
neurodegeneration (e.g., neuronal apoptosis). The study by Nair et al. 
(2020) identified upregulation of six miRNAs related to 
neurodegeneration, dopamine metabolism, neuronal activity, 
modulators of neuronal plasticity, CNS myelination and cognitive 

functions, such as long-term potentiation and memory. Interestingly, 
among the best miRNA candidates, these authors found the miR-132, a 
miRNA that is known to regulate the TAU protein, which has been 
connected to AD prevention (Lantero-Rodriguez et al., 2021). The study 
carried out by Kanduri et al. (2015a) on professional musicians detected 
several over-expressed genes, some of them related to dopaminergic 
transmission and neurocognitive functions, such as learning and 
memory. A few years later, Nair et al. (2019) analyzed gene expression 
of miRNAs after music performance; among other findings, they 
reported two up-regulated miRNAs that target FOXP2 and constitute a 
miRNA-FOXP2 gene regulatory network, in which some of the 
molecules were important long-term potentiation (LTP) and dopamine 
signaling members. These authors also reported up-regulated miRNA 
related to memory formation, motor neuron functions and neural 
plasticity. Finally, the connection between music and dopamine has also 
been explored from different perspectives, including cognitive sciences 
and neurosciences (Wise, 2004; Menon and Levitin, 2005; Salimpoor 
et al., 2013; Strange et al., 2014; Zatorre, 2015; Ji et al., 2016; Lewis et al., 
2019), and transcriptomics (Emanuele et al., 2010; Järvelä, 2018).

Recent population-based genetic association studies have also been 
carried out to explore the connections between music and memory, and 
a few candidate genes were identified. Järvelä (2018) highlights a few 
genes connecting music with memory in animals, e.g., PCDHA1-9 gene 
related to memory in mice (Hertel et al., 2012; Lin et al., 2012), GRIN2B 
related to brain plasticity (Pfenning et al., 2014), or EGR1 related to 
reward-related synaptic plasticity (Avey et al., 2008; Drnevich et al., 
2012). Some genes have also been found to be statistically associated 
with musical memory in humans. For instance, molecular genetic 
studies in human behavior have highlighted the role of AVPR1 and 
OXTR in connection with musical abilities such as musical memory 
(Israel et al., 2008). AVPR1A has also been associated with musicality 
(Mariath et  al., 2017), musical memory (Granot et  al., 2007, 2013), 
memory and learning (Fink et al., 2007). Other genes of interest would 
be: SLC6A4 [associated to musical memory (Granot et al., 2007, 2013)], 
KCTD8 (Metz et al., 2011), and PCDHA1-9 (Ukkola-Vuoti et al., 2013).

Navarro et  al. (2021) have recently reviewed the genetic 
background of several musical phenotypes and conditions. This 
study highlighted the interest of analyzing the impact of music 
stimuli on gene expression, as part of a new discipline called 
‘sensogenomics’ (https://sensogenomics.com). Sensogenomics 
represents a call for more intense research on genomics, on the basis 
of emerging and convergent evidence that points to a real genetic 
impact of music as a positive reward stimulus in AD patients.

Against this background, the aim of the present study is twofold: 
first, systematically review previous research investigating music as 
a stimulus for AD patients, focusing on the advances made in 
neurosciences and cognitive sciences as the area that has contributed 
more profusely to this field and focusing on the impact of music on 
health. Secondly, in line with our previous conceptualization of 
sensogenomics (Navarro et al., 2021), and to overcome the scarcity 
of studies on music and AD, here we develop a novel ‘omic’ approach 
aimed at disentangling commonalities between (i)  genes that 
are  altered in AD patients (inferred from transcriptomic and 
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epigenomic studies available in the public domain), and (ii) genes 
that have been shown to be associated with different conditions 
related to music. Although causal relationships for this commonality 
cannot be  ascertained with the available data, these links might 
illuminate new frontiers for neurological research and musical 
interventions in AD and other neurodegenerative conditions.

2. Methodology

2.1. Literature search

The systematic review of articles related to music and AD was 
carried out according to the Preferred Reporting Items for Systematic 
Reviews and Meta-analyses (PRISMA) guidelines. Indexed searches 
were performed in PubMed using the following query “music” AND 
“Alzheimer,” in title and abstract. The search yielded 323 papers; 217 
were excluded after close inspection following the sequential criteria 
indicated in the PRISMA scheme (Figure 1; Supplementary Table S1); 
the reasons for exclusions included: duplicated articles, reviews and 
meta-analysis, articles not focused on AD or music and articles written 
in a non-English language, among others. We also disregarded a few 
articles dealing with neuroanatomical studies or music abilities of AD, 
because the focus of the present review was placed on the benefits and 
therapeutic effects of music (Figure 2). Of the 107 articles dealing with 
the therapeutical effect of music, a subset of them were related to music 
and memory (n = 47), an outcome particularly relevant to AD.

Moreover, a total of 13 additional relevant articles were added to the 
list by scrutinizing references list of the selected articles and reviews 
(Figure 1).

Because our findings on the ‘omic’ side include a connection between 
gene expression and dopamine, we also carried out a PubMed search for 
the query “music” AND “dopamine*” to investigate the state-of-the-art 
in this terrain. This search returned 63 papers, of which only 12 of them 
were retained after close inspection for relevance (see Supplementary Text 
to check the most relevant information regarding this search).

2.2. Music-related genes

A total of 334 genes (Supplementary Table S2; 
Supplementary Figures S1, S2) were selected as candidates to 
be associated with musical traits. In a first approach, genes from the two 
main reviews on the matter were selected: Järvelä (2018) proposes a 
selection of top candidate genes for musical aptitude and music 
performance, while Navarro et  al. (2021) carried out an exhaustive 
search in the literature related to music (mainly genetic association 
studies), and included genes that might be related to the impact of music 
on gene expression. This list was completed by revisiting the original 
papers studying the effect of music listening and music performance on 
gene expression (Kanduri et al., 2015a,b; Nair et al., 2019, 2020); and 
also other studies that, from wider perspectives, also aimed at connecting 
genes and musical traits. These include: (i) genes that fall in the top 20 
regions identified by Liu et al. (2016) under an FST scrutiny method of 

FIGURE 1

The systematical review adhered to PRISMA guidelines and following the flow diagram described in the scheme.
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the genome to find signatures of positive selection associated with 
musical aptitude; (ii) the top genes from Oikkonen’s study (Oikkonen 
et  al., 2016) where convergent evidence for the molecular basis of 
musical traits was obtained through integration of gene-level data from 
105 published studies; and (iii) genes related to the terms “music” or 
“musical” with relevant publications using geneshots;1 the query 
“music*” was performed under “GENERIF” (manually collected gene-
term association). From the results of those queries, and after careful 
manual checking, only those with relevant publications were retained 
(for instance those related to human studies, candidate genes, etc.)

2.3. Epigenomic datasets and data analyses

The association between aberrant epigenetic modifications leading 
to dysregulation of gene expression and AD progression has been 
thoroughly investigated (Fenoglio et al., 2018; Stoccoro and Coppede, 
2018; Nikolac Perkovic et al., 2021). We analyzed the panel of candidate 
genes related to music in connection to epigenomics in AD. We used the 
datasets from Nabais et al. (2021) (Gene Expression Omnibus [GEO]: 
GSE153712), which contain epigenetic data generated for the Illumina 
Infinium Human MethylationEPIC Beadchip (Illumina Inc., San Diego, 
CA) on 161 AD patients (91 females and 70 males), and 471 healthy 
individuals (272 females and 199 males).

1 https://doi.org/10.1093/nar/gkz393

First, the methylation values associated with each of the probes on 
the MethylationEPIC microarray were converted to Beta values, by 
calculating the ratio of methylated probe intensity over total intensity 
(methylated and unmethylated) for each probe. Samples and probes’ 
quality control was performed with the package minfi, which provides 
a quality control report on the basis of intrinsic control probes present 
in the array, in addition to allowing to remove probes and samples 
according to their signal intensity. Subsequently, to reduce the risk of 
measurement biases, raw Intensity Data files (*.idat) were filtered using 
RnBeads package. As usual, cross-reactive probes, probes located within 
three base pairs of common SNPs, probes with missing values or no 
variability in methylation, and those located on sex chromosomes, were 
removed. In the preprocessing step, RnBeads was also used to estimate 
sample donors’ sex based on their DNA methylation status – an 
important step to identify possible discrepancies between documented 
gender and biological sex. Background adjustment of the methylated 
and unmethylated intensities was performed using the Dasen method 
(Pidsley et al., 2013), while normalization of Beta values was carried out 
using the BMIQ normalization method (Teschendorff et al., 2013). To 
identify differentially methylated positions (DMPs), we used the limma 
package (Ritchie et al., 2015), which performs a linear model, adjusted 
for sex, to compare DNA methylation patterns between patients with 
AD and healthy controls. DMRcate package (Peters et al., 2015) was used 
to identify significantly differentially or variable methylated regions 
(DMRs). methylGSA package (Ren and Kuan, 2019) was employed to 
carry out the gene set testing and pathways analysis of genes associated 
with DMPs. This method faces the biggest challenge in performing gene 
set analysis, that is, assigning differentially methylated features to genes, 
and adjusting for the number of CpGs instead of gene length. For 

FIGURE 2

Summary of the beneficial effects of music in AD as reported in a total of 107 articles (see Figure 1). The inset figure indicates the number of articles that 
report some benefit vs. those with negative findings for the benefits; while the main figure describes with more detail the different benefits reported. The 
graphic was carried out considering the total amount of articles (blue), and only those based on the analysis of a minimum of patients (>15).
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significant DMRs, we  performed gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analysis, applying the functions enrichGO and enrichKEGG of the 
ClusterProfiler package (Wu et al., 2021).

P-values were corrected for multiple testing using the false discovery 
rate (FDR) method. Only DMPs with an FDR-adjusted p-value <0.05 
were considered. DMRs were considered if having a minimum of three 
CpGs sites inside, and an FDR-adjusted p-value <0.05. The same 
thresholds were used also for gene-set and pathways analysis.

All the statistical analyses were carried out using R software (v.4.1.2).

2.4. Transcriptomic datasets and data 
analyses

We downloaded gene expression data from four independent 
microarray datasets located at the GEO database. Overall, these datasets 
include 972 blood samples from AD patients and healthy controls (HC): 
GSE140829 (n = 453; cases = 204, controls = 249), GSE63061 (n = 273; 
cases = 139, controls = 134), GSE63060 (n  = 246; cases = 142, 
controls = 104) and GSE97760 (n  = 19; cases = 9, controls = 10). The 
GSE97760 study was finally excluded from the meta-analysis due to: (i) 
the low number of samples available, and (ii) the fact that it was the only 
dataset coming from a different array platform (Agilent), reducing the 
number of common genes with the other datasets (all of them from 
Illumina Beadchip arrays v.3 and v.4).

For raw data processing, we first performed a normal-exponential 
background correction following a quantile normalization (after a Log2-
transformation) of the raw data using limma package (Ritchie 
et al., 2015).

After data normalization, expression data captured by multiple 
probes belonging to the same gene were averaged. Because of the 
difference in background measurements for each dataset we  used 
Combat CONormalization Using conTrols (COCONUT) (Sweeney 
et al., 2016) to correct for batch effects between experiments, and to 
make the data comparable. COCONUT is an unbiased co-normalization 
method that assumes that all HC across studies come from the same 
statistical distribution, estimating first correction factors from each 
dataset’s HC samples, and then applying them to the AD samples in each 
dataset. This procedure removes technical differences while still 
retaining within-dataset differences between HC and AD groups. To 
correct for internal batches in the GSE140829 dataset, we  used the 
function Removebatcheffect from the limma package before COCONUT 
co-normalization.

Differential expression (DE) analysis between AD samples and HC 
was carried out with limma and using gender as covariate to correct the 
model. Volcano plots of differentially expressed genes (DEGs) were built 
with EnhancedVolcano (Blighe et al., 2020) and Upsetplots from DEGs, 
and music and dopamine related genes were generated with the 
ComplexUpset R package (Lex et al., 2014). We used the R package 
Enrichmentbrowser (Geistlinger et al., 2016) to collect genes involved in 
dopamine-related biological processes from GO database and searching 
for terms including “dopamine” (Supplementary Table S3). Over-
representation analysis from music-related genes through GO biological 
processes was conducted using the Clusterprofiler (Wu et al., 2021) R 
package. We applied the Benjamini-Hochberg procedure for multiple 
test correction and thresholds were set to 0.05. Fold enrichment was 
calculated as the quotient from gene ratio (number of genes of interest 
which are annotated to the gene-set/total number of genes of interest) 

and background ratio (size of the gene-set/size of all the unique genes 
annotated in the reference database).

The flow diagram of Figure  3 provides an overview on the 
epigenomic, and transcriptomic data used in the present study, together 
with a schematic representation of the main findings.

2.5. Co-expression networks

The consensus modules from the global co-expression networks 
represent biologically robust co-expressed gene groups. The analysis 
carried out on the AD (vs. HC) and the music transcriptomic data 
reveal commonalities between both datasets, elucidating common 
coordinated genetic processes behind musical stimulation and 
AD. We studied the commonalities in network organization of gene 
expression between the AD dataset and a dataset including whole blood 
gene expression data from individuals before and after 20 min of 
classical music stimulation (GSE48624). For this purpose, we used only 
AD patients from the AD dataset, and samples collected after 
stimulation from the music dataset.

The consensus weighted gene co-expression network was 
constructed using the WGCNA R package (Langfelder and Horvath, 
2008). We used as input normalized expression data (and corrected for 
differences in gender) from common genes (those represented in both 
datasets) that showed the most variant expression values between 
samples (top 75% with the highest variance). Then, independent datasets 
were integrated into a multi-set format suitable for consensus analysis. 
We  followed the signed network procedure, whereby the similarity 
between genes reflects the sign of the correlation of their expression 
profiles. A matrix of correlations between all pairs of selected genes was 
generated from the expression values, and further converted into an 
adjacency matrix with a power function. We chose a soft-thresholding 
power based on the criterion of scale-free topology after testing a set of 
candidate powers. Considering that the model-fitting index of a perfect 
scale-free network is 1, we  selected a soft-thresholding power of 5 
(Supplementary Figure S3A) because it resulted in the maximum model 
fitting index for both datasets (>0.9). Subsequently, the consensus 
topological overlap matrix (TOM) from the adjacency matrices and the 
corresponding dissimilarity (1–TOM) values were computed. 
Considering the different properties of the datasets, we scaled TOMs to 
make them comparable (Supplementary Figure S3B). The consensus 
TOM was calculated with component-wise (‘parallel’) minimum of the 
TOMs for each set. As co-expression module detection parameters, 
we chose a minimum module size of 30, a medium sensitivity for cluster 
splitting, and a 0.2 as dendrogram cut heigh threshold for module 
merging. The resulting consensus modules or groups of co-expressed 
genes were labelled by colors and used to calculate module eigengenes 
(the first principal component of the module). Module membership 
(MM) was calculated as a measure of intramodular connectivity. The 
core genes within the most relevant modules were selected using a 
MM > 0.8.

3. Music as a powerful stimulus in 
Alzheimer’s disease

A recent review by Zhu et  al. (2019) emphasizes the power of 
musical experience to activate the brain and postpone dementia, 
specially in AD. However, while the mechanism underlying the 
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neurological processes remains unknown (see Supplementary Text: 
Neural Correlates of music in AD), numerous neuroscientific and 
psychological studies have tried to explain the function of music in 
different types of memories, and the effects of music in AD patients.

3.1. Music as a therapy in Alzheimer’s disease

There is a growing interest in cognitive sciences to explore the 
beneficial impact of music on AD and other neurodegenerative 
diseases (Arab et al., 2021; Li et al., 2022). Several fields of research 
have aimed at analyzing the effects of music in dementia (case studies, 
randomized clinical trial, quasi-experimental studies…); the number 
of available studies is high although the methodology employed very 
heterogeneous. In addition, there are also many ongoing pilot trials and 
study protocols aiming at evaluating the effectiveness of music in AD 
patients (Guétin et al., 2009; Belleville et al., 2019; Gulliver et al., 2019; 
Flo et al., 2022). Recent reviews (e.g., Leggieri et al., 2019) agree that 
participating in music activities improves behavioral and 
psychological symptoms.

Our systematic review of the relevant literature unequivocally 
demonstrates the beneficial effect of music in AD (Figure 2); there is a 
convergent and vast evidence emerging from the literature indicating an 

overall beneficial effect of music on rehabilitation and improvement of 
AD. Only 7 out of the 107 (6.5%) studies that survive the filters of our 
PRISMA selected criteria did not report a benefit of music in AD. The 
remaining studies (n = 100; 93.5%) all show some benefit of music, being 
the main outcome on the enhancing of memory (Figure  2), which 
represents the main disability of AD.

Memory is a complex cognitive activity, and different types of long-
term memory (explicit and implicit) have been studied in regard to 
dementia (see Section 3.2). A pioneer clinical trial by Arroyo-Anlló et al. 
(2013) demonstrated that familiar music enhances self-consciousness and 
awareness, one of the main concerns in AD. Many other studies have 
highlighted music as a memory enhancer (Simmons-Stern et al., 2010), in 
which patients with AD demonstrated better recognition accuracy thanks 
to music mediation. Särkämö et al. (2014) showed that music listening 
improved remote episodic memory, mood and orientation. Gómez-
Gallego and Gómez-Garcia (2017) demonstrated that music therapy 
improved psychological, social, and cognitive behaviors. Twenty six 
reviewed studies exposed the improvement of cognition after musical 
intervention, [see for example (Ceccato et al., 2012; Innes et al., 2018; Lyu 
et al., 2018)], general cognition and executive function (Doi et al., 2017; 
Innes et al., 2017; Kim et al., 2022), visuospatial processing (Maguire et al., 
2015), language fluency and autobiographical narrations (Thompson et al., 
2005; El Haj et al., 2013; Pongan et al., 2017).

FIGURE 3

Overview on the -omic data used in the present study, and schematic representation of the main results obtained.
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There are many other studies focusing on the beneficial effects of 
music on the psychological or emotional states, specially reducing 
agitation and anxiety in persons with dementia (Svansdottir and 
Snaedal, 2006; Raglio et al., 2008; Cooke et al., 2010; Sung et al., 2012; 
Vink et al., 2013; Cohen-Mansfield, 2014; Narme et al., 2014; Gómez-
Romero et al., 2017; Pedersen et al., 2017; Harrison et al., 2021). As a 
matter of fact, several authors have reported the positive impact of music 
on wellbeing and reduction of depression in persons with dementia 
(Guétin et al., 2009; Janata, 2012; de la Rubia Ortí et al., 2018; Ray and 
Gotell, 2018); while other studies reported the impact of music regarding 
the reduction of pain and the improvement of quality of life (Pongan 
et al., 2017). From a psycho-social perspective, music also enhances 
motivation and reward circuits in AD patients (Simmons-Stern et al., 
2010), and stimulates social behavior. Group music participation 
provides support to caregivers and AD, stimulating meaningful 
interaction between them (Tamplin et al., 2018).

Also, some investigations aimed at studying the possibilities and 
limitations of different musical interventions, contrasting listening 
activities vs. more active musical intervention. Sakamoto et al. (2013) 
suggested that musical interactive interventions exhibited stronger 
beneficial emotional effect than music listening in individuals with 
severe dementia. Recent studies corroborate the large effect of music 
active intervention in cognition, behavior, and functional state in AD 
(Gómez-Gallego and Gómez-Garcia, 2017), and some of them based on 
singing or choral showed relevant results in AD patients (Pongan et al., 
2017; Lyu et al., 2018; Pongan et al., 2020; Flo et al., 2022; McDowell 
et al., 2022).

The benefits of individualized music or person-centered music 
interventions in AD is a recurrent finding (Gerdner, 2000; El Haj et al., 
2015; Ihara et al., 2019), being familiar music a powerful tool with AD 
patients. Overall, these studies demonstrate that music has the power to 
enhance the recall of their past personal history more than other 
activities (Lord and Garner, 1993). Clements-Cortes et al. (2016), in the 
context of music therapy, studied the potential of 40 Hz sensory brain 
stimulation in AD and Parkinson’s Disease patients. More than 100 
reviewed studies as well as the most recent reviews (Leggieri et al., 2019; 
Matziorinis and Koelsch, 2022) highlight the beneficial effect of music 
therapy for AD management and the slowdown of neurodegeneration 
(Matziorinis and Koelsch, 2022). In the same line, a recent meta-analysis 
(Lai et al., 2020) proposes music therapy as the best treatment for Mild 
Cognitive Impairment (MCI).

3.2. Music, memory and Alzheimer’s disease

Music constitutes a distinct domain of non-verbal knowledge but 
shares certain cognitive organizational features with other brain 
knowledge systems (Omar et al., 2010). In line with a recent review 
(Baird and Samson, 2015), it should be considered that various forms of 
musical memory exists, and they may be  differentially impaired in 
AD. In a systematic search aimed at analyzing the main findings related 
to different type of memories in studies focused on musical intervention 
in AD patients, we found 34 relevant articles (Figure 1). Main findings 
from this review are summarized in Table 1.

Nine articles studied autobiographical memory, considered to be of 
a mainly episodic nature (related to personal past events), and that is 
generally deteriorated in AD patients. Clinical trials, reports pre-post 
intervention, and case studies, have demonstrated the power of music 
to stimulate autobiographical memory (Irish et al., 2006; El Haj et al., 

2012). Music constitutes a powerful stimulus that retrieves 
autobiographical, involuntary, and spontaneous memories in AD 
patients (Irish et al., 2006; El Haj et al., 2012, 2013, 2015; Fraile et al., 
2019), reinforcing the sense of identity (Platel et  al., 2021). 
Autobiographical memory has been considered an island of preservation 
during the progression of AD (Baird et al., 2018), while other authors 
have shown the power of popular songs (Basaglia-Pappas et al., 2013) or 
favorite songs (Fraile et al., 2019) to improve this kind of memory.

Some studies focused on how familiar music has been relatively 
spared by AD, and the patients’ intact recognition of familiar music 
(Vanstone et al., 2009). Other studies based on unfamiliar music found 
impaired episodic musical memory in AD patients (Quoniam et al., 
2003; Menard and Belleville, 2009; Vanstone et al., 2012). Also, music is 
being used as a mnemonic strategy to enhance verbal episodic memory 
(Simmons-Stern et al., 2012; Moussard et al., 2014; Palisson et al., 2015; 
Ratovohery et al., 2019).

Semantic memory is a long-term memory related to more general 
knowledge and facts (grammar, name of colors, etc). In the context of 
music memory, it has been defined as “the information accessed by 
sense of familiarity for a melodic progression, regardless of timbre or 
starting pitch, and stripped from any contextual information” 
(Groussard et al., 2019); and also, as the ability to distinguish distorted 
melodies. Several studies have shown that musical semantic memory is 
highly preserved in AD (Cuddy and Duffin, 2005; Gagnon et al., 2009; 
Vanstone et al., 2009; Vanstone and Cuddy, 2010; Kerer et al., 2013; 
Cuddy et al., 2015). Kerer et al. (2013) showed that MCI and AD patients 
were impaired in tasks requiring verbal memory for music (recalling 
composers name, titles…) but, they performed better than healthy 
subjects at discriminating musical excerpts or remembering melodic 
lines. Omar et al. (2010) reported that AD patients recognized musical 
emotions and musical instruments but showed impaired recognition of 
compositions and musical symbols.

Many studies agreed in that implicit musical memory is well-
preserved in AD patients (Baird et al., 2017; Deason et al., 2019), 
and specially procedural memory (Jacobsen et al., 2015). According 
to Groussard et al. (2019) “musical procedural memory is the ability 
to perform a previously learned musical motor sequence in a fluid 
manner.” Some pioneering case studies have focused on exploring 
the preservation of musical procedural memory to play an 
instrument (Beatty et al., 1988, 1994, 1997, 1999; Crystal et al., 1989; 
Cowles et al., 2003; Fornazzari et al., 2006). Also, other studies have 
reported the preservation of musical procedural memory in 
advanced AD (Cuddy et al., 2015; Jacobsen et al., 2015). Jacobsen 
et al. (2015) stated that “…[long term] musical [procedural] memory 
is surprisingly robust,” because the two brain regions that 
predetermine long-term memory encoding musical memory (caudal 
anterior cingulate gyrus and ventral supplementary motor area) 
have been preserved in advanced AD patients compared with other 
brain regions.

4. Music and Alzheimer’s disease: 
Insights from transcriptomics and 
epigenomics

4.1. Music-related genes

A total of 334 genes were selected through a thorough scrutiny of 
the literature and datasets (Supplementary Table S2). A narrow selection 
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of 127 candidate genes was highlighted based on transcriptomic/
epigenomic analyses (see below). Six of those were particularly 
prioritized as candidate genes, namely, SNCA, SLC6A4, ASCC2, FTH1, 
PLAUR, and ARHGAP26, because: (i) they were repeatedly found to 
be associated with musical aptitude in previous work and have emerged 
in transcription-based studies, and (ii) they occur consistently in the 
literature on AD.

Among the biological processes in which the 334 music-related 
genes are involved, we  found that learning / memory was the most 
significant pathway (P-adjusted = 3.3E-9). Other important processes 
related to cognition (P-adjusted = 4.4E-9), rhythm (P-adjusted = 2.5E-7) 

and neuron death regulation (P-adjusted = 2.3E-7) were present  
among the top  10 significant pathways (Supplementary Table S4; 
Figure 4A).

Some dopaminergic terms from GO were also significantly over-
represented in the music-related gene-set, such as GO:0001963 
(dopaminergic synaptic transmission, P-adjusted = 4.2E-5), GO:0042417 
(dopamine metabolic process, P-adjusted = 0.002) or GO:0007212 
(dopamine receptor signaling pathway, P-adjusted = 0.01). Interestingly, 
from the above list of the top six candidate genes, SNCA and SLC6A4 are 
both involved in neuron–neuron synapse mediated by dopamine pathway 
(GO:0032227), as inferred by the protein–protein interaction network 

TABLE 1 Effects of music on different types of memory as recorded in the literature.

ID Findings/Therapeutical effects of music in memory of AD patients Type

40 Music boosts AM and the sense of identity AM

111 Learning a favourite song improves AM recall and other cognitive abilities AM

144 Music evokes AM AM

199 Music enhances AM, specially own-chosen music. AM

234 Popular songs have the ability to reminiscence AM AM

240 Emotional and sad music would be the best to recall autobiographic experiences AM

246 Music evokes AM AM

290 Music boosts AM and reduces anxiety AM

336 Music boosts AM and verbal expression AM

97 Musical mnemonics may help people with AD learn verbal information that relates to their daily life EM

189 Musical association enhances verbal EM EM

237 Music as mnemonics strategy to retention EM

331 Impaired musical memory in AD patients EM

301 Musical recognition of familiar music is preserved + musical AM is preserved EM + SM

329 musical recognition of familiar music is preserved + musical SM is preserved EM + SM

209 Music aids mnemonics (learning sung lyrics aids retention) EM + SM

226 Musical SM is preserved (remembering melodic lines and musical excerpts) SM

213 No significant correlation between key and the attribution of ‘happy’ or ‘sad’ judgements to a musical piece could be found in all groups SM

265 Recognition of musical instruments and emotion, and impaired recognition of compositions and musical symbols SM

274 Musical emotional judgment remains intact in AD SM

330 Semantic memory for melody may be preserved SM

333 Musical semantic memory is preserved SM

201 Semantic mus memory is preserved, music stimulates memory, preservation of musical PM SM + PM

332 Intact mere exposure effect IM + EM

113 IM remains intact: preference for familiar stimuli (mere exposure effect) IM

163 Preservation musical abilities and memory: learn a new song, intact IM function IM

164 Music modulates memory of songs IM

196 AD patients score similarly to controls in the musical imagery tasks IM

269 Preserved musical memory (IM), music can modulate memory functions (strong emotional power) IM

319 Intact mere exposure effect for healthy older adults but not for patients with AD IM

195 Preservation of musical PM PM

334 Preservation of PM to play an instrument PM

335 Preservation of PM to play an instrument PM

210 Music aids mnemonics (retention) to learn motor and gestures MM

The relevant articles were searched following the PRISMA flow diagram of Figure 1. See Supplementary Table S1 for References IDs. AM, autobiographical memory; EM, episodic memory; SM, 
semantic memory; PM, procedural memory; IM, implicit memory; MM, motor memory.
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analysis.2 SNCA gene function is related to the regulation of dopamine 
release and transport, whereas SLC6A4 is implicated in the regulation of 
serotonergic signaling by regulating serotonin reuptake into the presynaptic 
neuron, affecting emotions and stress responses.

4.2. Epigenomic commonalities between AD 
and music-related genes

There are 8,497 DMPs (FDR p-value <0.05) when contrasting AD 
patients vs. controls. 6,432 (75.7%) CpGs appeared as hypomethylated 
and 2,065 (24.3%) as hypermethylated in AD samples.

A total of 5,928 (69.8%) of these 8.4 k CpGs could be annotated to 
genes, resulting in 4,097 unique genes. Of the positions annotated to 
genes, 345 (4%) CpGs are annotated and related to more than one gene. 

2 www.string-db.org

For most of these genes, there are multiple DMPs associated (2.76 ± 1.28) 
gene-set and pathways enrichment analysis with the 8.4 k DMPs points 
to the following pathways depending on the database used: (a) KEGG: 
cytokine-cytokine receptor interaction, JAK/STAT signaling pathway, 
osteoclast differentiation, chemokine signaling pathway; (b) Reactome: 
neutrophil degradation, signaling by interleukins, nucleotide-binding 
domain, leucine rich repeat containing receptor (NLR) signaling 
pathways, platelet activation, signaling and aggregation, and (c) GO: 
leukocyte activation, cell activation, positive regulation of immune 
system process, immune effector process, cell migration, cell motility, 
localization of cell, immune response, locomotion. In addition, 853 
DMRs (FDR p-value <0.05), containing at least three CpGs positions 
inside could be annotated to a total of 976 unique genes (only one DMR 
annotated to more than one gene). Of these regions, 645 (75.6%) 
appeared as hypomethylated in patients with AD, while the remaining 
207 (24.3%) appeared as hypermethylated in cases vs. controls.

A total of 81 genes out of the 334 related to music (24.3%) were also 
found to be differentially methylated in the comparison of AD patients 
vs. HC, either considering genes associated with DMPs or those 
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FIGURE 4

(A) Over-representation analysis of GO (Gene Ontology) terms using music-related candidate genes as input. Only the biological processes category was 
interrogated. (B) Volcano plot showing differentially expressed genes between AD patients and controls from the meta-analysis. (C) Upset plot of 
commonalities between up- and downregulated genes in AD patients, music-related and dopamine-related genes. (D) Differentially expressed genes in AD 
patients included in the music-related gene-set.
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overlapping DMRs. Of these genes, 55 show an hypomethylation pattern 
in patients with AD when compared to HC, and 21 exhibit an opposite 
pattern of methylation; the remaining 5 genes, containing multiple 
CpGs inside, display both hypo- and hypermethylation patterns. The 
hypo and hypermethylation pattern, for most of these genes, resides 
within the gene body, while there are a small number of genes, such as 
SLC6A4 and AVPR1A, where the aberrant methylation is observed 
within the promoter. The pathways analysis performed considering the 
117 CpGs associated with the 81 music-related genes, revealed an 
enrichment for lysosome pathway in KEGG, for biological processes 
involved in nervous system development in GO, and for cadherin and 
Wnt signaling pathways, included in memory formation and synaptic 
plasticity and maintenance, in Panther.

In addition, 15 out of the 337 music-related genes (4.5%) match 
those associated with the DMRs that emerge when comparing AD 
patients and HC; 10 as hypermethylated in patients, and the remaining 
5 as hypomethylated. The mean number of DMPs for these 15 genes 
was 3. The pathways analysis of the genes associated with DMRs reveal 
the significant enrichment of 356 unique GO terms, and 12 KEGG 
pathways. The enriched pathways in both categories include those 
related to T cell signaling pathways, myeloid lymphocyte 
differentiation, leukocyte mediated immunity, chemokine signaling 
pathways, etc.

4.3. Gene expression commonalities 
between Alzheimer’s disease and 
music-related genes

After data normalization and merging, a total of 19,145 genes were 
common when examining the three datasets of AD meta-analyzed in the 
present study. A quality control check of the normalized data through a 
principal component and clustering analysis highlighted 12 outlier 
samples belonging to the dataset GSE63061 that were finally disregarded 
for downstream analysis (GSM1539649, GSM1539651, GSM1539652, 
GSM1539653, GSM1539655, GSM1539644, GSM1539646, GSM1539647, 
GSM1539648, GSM1539650, GSM1539722, GSM4187601).

A total of 1,837 genes were found to be  upregulated and  
1,717 downregulated, all statistically significant in AD patients  
when compared against healthy controls (Figures  4B,C; 
Supplementary Table S5). The expression changes shown by DEGs are 
moderate but never too large [Log2FC ranging from −0.60 and 0.34; 
comparable to those reported in the literature (Wang et al., 2021; He 
et al., 2022)]; probably because the main physiopathological alterations 
in AD patients occur in the brain. The high number of DEGs detected, 
each with subtle gene expression alterations, therefore mirrors the 
pathological condition at systemic level.

304 out of the full list of 334 music-related candidate genes (91%) 
were also present in the AD meta-analysis. Notably, 60 of the 304 (20%) 
were among the DEGs observed when comparing AD patients and 
control samples (34 were upregulated and 26 downregulated; Figure 4D). 
Music-related genes showing the lowest P-adjusted value and higher 
log2FC were downregulated in AD vs. HC.

There is suggestive evidence indicating that dopaminergic pathways 
may play a role in the interplay between AD, memory, and music (see 
above). In our meta-analysis, when comparing transcriptomes from AD 
patients vs. healthy controls, the expression analysis showed a few DEGs 
involved in dopaminergic pathways (13 upregulated and 4 
downregulated in AD vs. HC). In addition, there are dopaminergic 

genes among those in the music gene-set (n = 10), with SNCA (Synuclein 
Alpha) being the gene that best represents the AD-dopamine-music 
connection (Figure 4C; Supplementary Table S3).

4.4. Consensus co-expression analysis 
between Alzheimer’s disease and music 
conditions

To further investigate possible molecular links between AD and 
music-related genes, we generated a consensus co-expression network 
using AD patients and the only transcriptomic dataset related to musical 
stimuli available, aiming at detecting common conserved 
co-expression modules.

After applying a variance gene filtering (see Methodology section), 
14,358 and 15,685 genes were retained in AD and music datasets, 
respectively, from which 11,920 genes were shared between both 
datasets and therefore available for follow-up consensus analysis. A 
total of 84 out of the 303 music-related gene-set in the meta-analysis 
(27.7%) did not pass the variance filtering; therefore, a reduced subset 
of 219 (72.3%) music-related genes was among the 11,920 genes used 
as input.

The consensus co-expression analysis revealed 20 co-expressed gene 
modules of very different sizes (ranging from 61 genes of the ‘darkred’ 
module, to 3,482 of the turquoise module; Figure  5A; 
Supplementary Figure S4A,B). The overall preservation of the eigengene 
networks was moderately high (D = 0.8; Supplementary Figure S4C) and 
the inter-module relationships in the two data sets has similarities. The 
highest eigengene preservation measurement was in the salmon and 
yellow modules (Supplementary Figure S4C).

The module with more music-related genes relative to the size of 
the module was the salmon one (18/195; Figure 5B); interestingly, 
most of them belong to the core of the module (11 genes in music 
dataset and 14 in the AD dataset with MM > 0.8; Figure 5C) suggesting 
a major role within it. Among the top 5 most connected genes within 
the module, we found 3 music-related genes: GMPR (top hub gene in 
both datasets with MM values of 0.95 and 0.93  in AD and music 
datasets respectively), SELENBP1 and ADIPOR1 
(Supplementary Table S6).

5. Discussion

The prospect of slowing down of dementia onset and progression 
using music stimuli may seem utopian. Yet, a growing body of cognitive, 
neuroscience and genetic research is illuminating the possible benefits 
of music on cognition in AD patients. The study of musical 
sensogenomics in AD and other neurodegenerative diseases could help 
connect different fields of research to gain an integrated and interactive 
approach in a near future.

From a neuroscience perspective, music constitutes a powerful 
stimulus, specially for autobiographical memory, and many studies 
have emphasized the beneficial effect of music on the preservation of 
musical semantic memory, with special agreement on the ability to play 
a musical instrument (musical procedural memory). Since 1980, many 
studies have demonstrated the beneficial effect of musical stimuli on 
rehabilitation or improvement of AD patients, for self-consciousness, 
awareness, memory enhancement, cognitive function, or mood, among 
others, becoming a fruitful research field as a non-pharmacological 
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intervention for neurodegenerative diseases. In this review, we specially 
analyze studies from 2000 to 2022, corroborating the impact of music 
in memory and cognition in AD as a powerful stimulus and as 
a therapy.

Many studies have highlighted the benefits of music in AD 
prevention and treatment, but molecular mechanisms underlying 
these observations have not been described (Baird et al., 2017; Innes 
et al., 2018; Moreira et al., 2018). Musical practice, and probably 
also music listening, has beneficial effects on the cognitive function 
and aging, increasing the brain plasticity and providing certain 
degree of neuroprotection (Balbag et al., 2014; Roman-Caballero 
et al., 2018).

We have detected a significant number of genes that have been 
previously reported to be related to music that are differentially 
expressed when comparing AD and HC. Three genes are particularly 
remarkable in the module gene expression analysis, namely, GMPR, 
SELENBP1 and ADIPOR1. It is remarkable that these genes were 
previously related to neuropsychiatric and neurodegenerative diseases 

and, despite the limited number of molecular studies carried in music, 
a role has been reported for these genes in music performance (Kanduri 
et  al., 2015a). The GMPR gene encodes for the human guanosine 
monophosphate reductase 1; it has been reported to show a gradual 
over-expression that increases with AD progression (Liu et al., 2018). 
This gene is involved in purine metabolism and recent data suggest that, 
altering the tight regulation of purine and pyrimidine metabolism may 
cause neuronal dysfunction, facilitating the onset of severe mental 
pathologies (Gottle et al., 2013; Fumagalli et al., 2017). SELENBP1 has 
been found to be related with schizophrenia (Amar et al., 2010; Udawela 
et  al., 2015; Chau et  al., 2018) and was reported as differentially 
expressed in blood and brain samples of schizophrenia patients (Glatt 
et al., 2005). ADIPOR1 encodes for the adiponectin receptor 1; it has 
beneficial effects on brain metabolism via AMP-activated protein kinase 
(AMPK) (Kim et al., 2017; Waragai et al., 2017); this gene was pointed 
out as a protection candidate against neuronal cell death and learning 
memory impairment, and is emerging as a potential therapeutic target 
in AD (Kim et al., 2017; Shah et al., 2017).
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FIGURE 5

(A) Clustering dendrogram of genes and co-expression consensus modules detected, represented by different colors. (B) Scatter plots representing the 
proportion of music-related genes in the module core (Module membership [MM] > 0.8) against the proportion of music-related genes in the module. Size 
of the points is proportional to the number of genes in the core of the module (MM > 0.8). (D) Upset plot showing the proportion of music-related candidate 
genes included in the consensus modules (bottom). Boxplots (top) representing the MM value of the genes from each module from both the AD and music 
dataset, and horizontally separated in those included and not included in the music-related gene-set.
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Dopamine is a neuromodulator of CNS released from the brain; it 
regulates several functions such as motor control, motivation, reward, 
cognitive function, learning, memory processing, and reproductive 
behaviors. Dopaminergic pathways have been recently connected with 
music stimulation processes, probably through reward mechanisms 
(Zatorre, 2015; Peck et  al., 2016; Järvelä, 2018). In addition, the 
potential involvement of these signaling pathways in the onset and 
progression of some neurological disorders such as Parkinson’s (Cheng 
et al., 2010), schizophrenia (Owen et al., 2016), attention deficit and 
hyperactivity (Castellanos and Tannock, 2002; Gizer et al., 2009) and 
addiction (Baik, 2013) has been also pointed out. In line with these 
neuroscientific observations, our gene expression data suggest that 
there are connections between music, AD, and dopamine, represented 
by some common genes participating in these processes. One of the 
most remarkable genes involved in dopaminergic pathways is SCNA; 
a gene that also showed up as downregulated in the differential 
expression analysis of the AD dataset, and which is also included in 
the music-related gene-set (Supplementary Table S2). SNCA is mainly 
expressed in the brain, and it plays a role in the synaptic transmission. 
It has been associated with learning and memory, and 
neurodegenerative disorders such as Parkinson’s disease 
(Polymeropoulos et al., 1997; Kruger et al., 1998; Siddiqui et al., 2016) 
and AD (Hashimoto and Masliah, 1999; Twohig and Nielsen, 2019). 
The Synuclein Alpha encoded by this gene is one of the major 
components of Lewy bodies in PD, and in the amyloid plaques located 
in the brain of AD patients.

Of the 334 genes associated with music, 127 appeared as linked with 
epigenome/transcriptome modules regarding AD. Six of these 
highlighted genes in the ‘omic’ analysis are particularly interesting, 
namely, SNCA, SLC6A4, ASCC2, FTH1, PLAUR, ARHGAP26, because 
they have been previously associated with musical aptitude, music 
effects on transcriptional activity, or AD (Supplementary Table S2). It is 
remarkable that, although many of the studies carried out on 
biomolecular markers and musical conditions are limited in sample size, 
a few genes appear repeatedly in both music related studies and research 
on neurodegenerative disorders.

Several concerns have been raised regarding studies conducted on 
music and memory. Baird and Samson (2015) indicate that “The recent 
findings that musical training delays cognitive decline and promotes 
plasticity in the elderly brain are promising. There is an urgent need for 
further methodologically rigorous investigations of this topic in light of 
our rapidly aging population and the corresponding increasing 
incidence of dementia.” Several studies have also questioned the 
mechanisms involved in the effectiveness of music therapy, but eluded 
genomics (Clements-Cortes and Bartel, 2018). Further authors have 
lamented the scarcity of rigorous scientific investigation of music 
cognition in dementia (Samson et al., 2012; Baird and Samson, 2015). 
In the same vein, Cohen-Mansfield (2014) noted the poor utilization of 
the literature and low ecological validity. Moreover, recent randomized 
control studies have questioned the effect of music in AD patients, e.g., 
(Kwak et al., 2020).

There are several limitations in the present study. On the neuroscientific 
articles systematically reviewed, we  noticed that the methodology 
employed in the literature is highly heterogeneous as well as the 
measurements used to evaluate the beneficial effects of music. The lack of 
a consensus and standardized methodology in these studies limits the 
possibility to meta-analyze the findings. More rigorous clinical trials are 
still needed (Bian et al., 2021), as well as the development of standardized 

research protocols allowing to evaluate the improvements provided by the 
musical stimuli (Yin et al., 2022) in a homogenous way. Despite these 
limitations, a close inspection of the specialized literature unambiguously 
indicate that music has a beneficial impact on health, being memory and 
cognition the most common outcomes. On the ‘omic’ side, the search for 
common gene expression patterns and epigenomics between AD and 
music are also confronted with many limitations, which inevitably limit the 
scope of our study. The most important limitation comes from the very 
scarce number of studies available on gene expression (and none on 
epigenomics) regarding music. To overcome this limitation, we used here 
a novel approach that takes advantage of crossmatching the best collection 
of musical gene candidates (as previously reported in the literature on 
genomics and transcriptomics) with transcriptomic and epigenomics 
publicly available data. This approach has allowed to reveal new features 
that are particularly relevant to AD, as it is the fact that there are many 
genes related to music that are also differentially expressed in AD patients 
(when compared to controls). Understanding the meaning of this overlap 
will require new experimental designs aimed at investigating the effects of 
the musical stimuli on the transcriptomes and epigenomes, in line with the 
aims pursued by musical sensogenomics (Navarro et al., 2021). Exploring 
molecular links between AD and music stimuli could help to illuminate 
new therapeutical targets.

In the present study, neurosciences, cognitive sciences, epigenetics, 
transcriptomics, and genetics were brought together in the search for 
connections between music and memory. Our findings represent a 
molecular proof of concept that establishes a genetic link between music 
and AD; however, further effort is needed to understand this gene 
commonality. As an initial step, the analysis of the transcriptome 
response to music stimuli using controlled experimental designs and 
cohorts are mandatory.
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