
Frontiers in Aging Neuroscience 01 frontiersin.org

TYPE Review
PUBLISHED 13 February 2023
DOI 10.3389/fnagi.2023.1076657

Machine learning within the 
Parkinson’s progression markers 
initiative: Review of the current 
state of affairs
Raphael T. Gerraty 1, Allison Provost 1, Lin Li 2, Erin Wagner 2, 
Magali Haas 1 and Lee Lancashire 1*
1 Cohen Veterans Bioscience, New York, NY, United States, 2 PharmaLex, Frederick, MD, United States

The Parkinson’s Progression Markers Initiative (PPMI) has collected more than a 
decade’s worth of longitudinal and multi-modal data from patients, healthy controls, 
and at-risk individuals, including imaging, clinical, cognitive, and ‘omics’ biospecimens. 
Such a rich dataset presents unprecedented opportunities for biomarker discovery, 
patient subtyping, and prognostic prediction, but it also poses challenges that may 
require the development of novel methodological approaches to solve. In this review, 
we provide an overview of the application of machine learning methods to analyzing 
data from the PPMI cohort. We find that there is significant variability in the types of 
data, models, and validation procedures used across studies, and that much of what 
makes the PPMI data set unique (multi-modal and longitudinal observations) remains 
underutilized in most machine learning studies. We review each of these dimensions 
in detail and provide recommendations for future machine learning work using data 
from the PPMI cohort.
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Introduction

As part of the drive toward precision medicine, there has been an increased focus on the 
discovery of biological markers and quantitative techniques to serve as diagnostic and prognostic 
tools for individual patients, and for monitoring the progression or remission of disease. High-
dimensional imaging data, as well as genetics, protein, and other ‘omics’ assays capable of querying 
genotypes, transcriptomes and interactomes at low cost have opened the possibility of carrying out 
de novo discovery across a vast array of biological variables. These approaches have already begun 
to generate promising candidate biomarkers for a variety of neurological diseases (Nalls et al., 2014; 
Sanders et al., 2015; Chang et al., 2017; Wray et al., 2018; Nievergelt et al., 2019), shifting the current 
paradigm away from candidate studies that have proved to be unreliable and irreproducible for 
reasons ranging from poor study design to a lack of reporting (Landis et al., 2012; Baker, 2016; 
McShane, 2017; Scherer, 2017; Sun et al., 2019; Ren et al., 2020) toward profiling whole systems, 
which will provide a broader perspective for disease understanding.

The increased use of multi-modal and high-dimensional data is readily apparent in recent 
Parkinson’s Disease (PD) research. PD is the second most common neurodegenerative disorder, 
reaching up to 4% prevalence by age 80 (Pringsheim et al., 2014). While the proximal mechanisms 
of PD are well understood to be damage to midbrain dopaminergic neurons, and the underlying 
genetic causes have been discovered in some cases, most PD diagnoses are idiopathic, and little is 
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known about variation in patient trajectories. One prominent example 
of research aimed at better understanding PD is the landmark 
Parkinson’s Progression Markers Initiative (PPMI; Marek et al., 2011, 
2018), which since its inception in 2010, has collected longitudinal data 
across several patient cohorts and data modalities, including

 • clinical measures
 • brain imaging
 • gene expression levels, protein abundance, and genomic 

variant status
 • sensors and wearable devices data

with the aim of identifying biomarkers to support the development 
of new interventions for PD. This initiative represents an extremely rich 
and well-annotated dataset for studying the progression of multiple 
biological variables alongside clinical measures of disease severity.

Broader investigation of whole ‘omic’ domains creates its own set of 
challenges, however. Classical statistical methods for parameter 
estimation, classification, clustering, and controlling for false positives 
may perform poorly or be computationally or analytically intractable in 
these settings, in which observations are often high dimensional and 
correlated, and meaningful associations are sparse. These problems are 
compounded by the increasing realization that to understand complex 
phenotypes, multiple high-dimensional data modalities will need to 
be integrated.

With increasing volumes of data being collected, machine learning 
(ML) techniques offer up a potential solution to the above challenges 
and are beginning to have an impact on research and healthcare. Here, 
elements of clinical diagnosis and prognosis are being automated with 
increasing levels of complexity and accuracy. These techniques may lead 
to the discovery of novel biomarkers, shedding light on the determinants 
of disease severity for complex neurological diseases such as PD that 
affect multiple biological systems and whose etiology is not fully 
understood. While we focus on machine learning in this review, we note 
that this approach is not always preferrable to classical statistical 
methods. In cases with a small number of variables and reasonable, well-
defined null hypotheses, a significance testing framework may make 
sense. Furthermore, as we note below, the line between classical statistics 
and machine learning is often a blurry one. We also note that machine 
learning algorithms are not a panacea, and that complex problems will 
generally require good theory and good data to solve. Some 
measurements may not completely capture the underlying construct 
they are designed to. To accurately and meaningfully predict psychosis 
symptoms, for example, a scale which accurately tracks those symptoms 
is an obvious requirement.

The extensive collection and analysis of longitudinal data has 
highlighted the heterogenous nature of PD in general, and of disease 
progression in particular, where people with PD exhibit varying courses 
of the disease over time (i.e., individuals with PD can be differentiated 
along numerous axes, symptom patterns etc.; Marquand et al., 2016; 
Feczko et al., 2019). Akin to the “curse of dimensionality” in machine 
learning that describes the exponential need for more data as the 
dimensionality of the feature space grows (Bellman, 1956), this “curse 
of heterogeneity” presents multiple challenges to the field with respect 
to the increased sample size required to power discovery efforts that 
define homogeneous subgroups within a heterogeneous population who 
share a common clinical diagnosis. Developing tools to disentangle this 
heterogeneity, and to therefore subtype patients in clinically meaningful 
ways, will be useful for trial design and clinical care, an area with high 

rates of failure (Arrowsmith and Miller, 2013; Harrison, 2016) partly due 
to a lack of insight into the underlying pathology of these disorders of 
the brain (Krystal and State, 2014).

In this review, we highlight the application of machine learning to 
the study of PD, focusing our attention on studies using the PPMI data 
set. In particular, we will consider an approach to be an example of 
machine learning if it has an overt focus on developing or testing 
algorithms for prediction of diagnosis, symptoms, or progression in 
unseen data; or for the automated compression of high dimensional 
patient data into lower dimensional factors or clusters. While there are 
analogs of each of these areas in classical statistical approaches, they 
represent the main focus of most machine learning research, in contrast 
to the common statistical goals of null hypothesis testing and parameter 
estimation. Our aims in this review are to provide a qualitative summary 
of the research that has been done using machine learning within the 
PPMI cohort, as well as a reference for researchers interested in 
continuing the exploration of the cohort to predict diagnosis, symptoms, 
disease subtypes, risk factors, and patient trajectories in PD.

Machine learning techniques are usually divided into supervised 
and unsupervised categories. Supervised models are focused on the 
problem of prediction: they learn a function mapping between some 
input variables and a target output of interest, such as diagnosis or scores 
on a symptoms scale. Unsupervised models are focused on compression: 
they learn to reduce input data so that it has fewer dimensions, based on 
similarities or redundancies within the input data itself. Unsupervised 
learning can be  further divided into clustering or latent variable 
algorithms, depending on whether the data are reduced to categories 
containing similar sets of observations (often called “subtypes”) or to a 
set of continuous scores which reflect combinations of the original 
measurements. Other categories of machine learning, such as semi-
supervised learning or reinforcement learning, are currently rare in 
Parkinson’s research and thus outside the scope of this review.

PPMI machine learning studies

Based on a review of publications collected on the PPMI website1 as 
of July 5th 2022, combined with a PubMed search for keywords “PPMI,” 
“Parkinson’s Disease,” “Machine Learning” on the same day a total of 277 
unique publications available in English were screened. Figure 1 shows 
a flow chart describing the selection and filtering of papers, in 
accordance with PRISMA 2020 guidelines (Page et al., 2021). Briefly, 
we excluded 1 commentary, 1 observational case study, 1 dissertation, 4 
non-Parkinson’s papers, and 6 reviews from further analysis. Of the 263 
remaining papers we were able to retrieve, 149 did not meet our criteria 
for machine learning, because they did not focus on either prediction 
(supervised learning) or compression (unsupervised learning), leaving 
a total of 114 machine learning PPMI papers. This large reduction is due 
in part to the common use of the term prediction in studies where 
authors perform classical null hypothesis testing, asking essentially 
whether a particular association or difference is stronger than one would 
expect due to chance, given a set of assumptions about how the data 
were generated. This diverges from the intuitive definition of prediction, 
which involves at a minimum generating (and ideally validating) 
estimates of some aspect of yet unseen data, which is the criteria 

1 https://www.ppmi-info.org/publications-presentations/publications/
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we use here. A further 4 studies involved prediction without any model 
development or fitting, leaving a total of 110 papers which we consider 
machine learning using PPMI data. The machine learning studies 
we reviewed varied along several dimensions, three of which we focus 
on here: (1) the types of supervised or unsupervised models used, (2) 
the data modalities included as inputs and outputs of the models, and 
(3) the methods used for model validation. Broadly, most studies used 
supervised classification or regression methods for characterizing PD 
and relating different biomarkers and clinical measures to diagnosis, 
symptoms, and disease progression.

Studies explored a wide range of input data types, including clinical 
data, imaging, cerebrospinal fluid (CSF) and blood protein levels, as well 
as DNA and RNA data, to predict disease characteristics or identify 
latent dimensions or categories, but most used only clinical measures 
and a small subset of the available neuroimaging data. Studies also 
varied widely in whether and how they validated their models and 
performance estimates, an essential step toward making findings 
reproducible, generalizable, and ultimately relevant to the clinic. We will 
explore each of these dimensions below, summarizing previous research 
and making suggestions for improving future work.

Types of models

Of the 110 machine learning studies we reviewed, almost 90% (97 
studies) reported results of supervised models, while only 19 studies 
used unsupervised methods. Of the papers reporting supervised 
methods, 55 attempted to predict Parkinson’s diagnosis, representing a 
majority not only of supervised papers, but of all machine learning 

papers we  reviewed. While early diagnosis of PD, especially in 
prodromal individuals exhibiting sub-threshold motor symptoms, 
olfactory deficits, or Rapid Eye Movement (REM) sleep disorder, is an 
important goal, there are numerous well-validated clinical tools for 
diagnosing PD at the stage in which patients are enrolled into the PPMI 
study. Machine learning algorithms focused on diagnosis will have little 
to say about the major goals of PPMI: to understand variability in 
patient symptoms, and especially variability in the trajectory of 
symptoms over time.

Significantly fewer machine learning papers made use of the 
longitudinal structure of PPMI data, with 26 reports predicting future 
symptoms from some baseline (which we call “progression prediction”). 
Because understanding the biological variables associated with 
heterogeneity in patient trajectories is a core goal of the PPMI project, 
we summarize these progression prediction papers in Table 1. These 
studies illustrate many of the characteristics of (and issues with) the 
broader group of papers we  reviewed here, which are discussed in 
detail below.

Thirteen additional studies focused on predicting symptoms 
measured at the same time as the predictive features, while five 
studies focused on predicting either neuroimaging results or 
medication state rather than symptoms or diagnosis (Simuni et al., 
2016; Freeze et al., 2018; Valmarska et al., 2018; Shu et al., 2020; Lim 
et  al., 2021). One study reported predictive accuracy for both 
diagnosis and symptom levels (Soltaninejad et al., 2019). The most 
popular supervised models were linear regression (often with a 
L1-norm regularization penalty on coefficients to promote sparsity, 
called LASSO (Tibshirani, 1996)), support vector machines (SVM) 
(Cortes and Vapnik, 1995), and random forests (RFs; Breiman, 2001) 

FIGURE 1

PRISMA (Page et al., 2021) flow chart illustrating the process of searching for, screening, and assessing machine learning PPMI papers.
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TABLE 1 Machine learning papers predicting symptom progression using the Parkinson’s Progression Markers Initiative data set.

Study Input data Outcome 
measures

Modeling 
approach

Validation 
method

Summary

C D R B I

 1. Adams et al. 

(2021)

✓ ✓ UPDRS III at year 4 CNN Ten-fold CV Trained a CNN to predict motor 

symptoms at year 4 from baseline raw 

DAT images and year 0 and 1 UPDRS 

III.

 2. Chahine et al. 

(Chahine et al., 

2021)

✓ ✓ Diagnosis of 

α-synucleinopathy 

(aSN)

Cox hazard regression None Tests DAT SBR at baseline for predicting 

future diagnosis of PD, Lewy Body 

Dementia, or Multiple System Atrophy. 

Reports sensitivity and specificity but no 

validation.

 3. Chen et al. (2021) ✓ ✓ ✓ ✓ MCI diagnosis in 

patients with REM 

disorder

LASSO, Cox hazard 

regression

Validation set Predicted time to MCI from baseline 

genetic, CSF, DAT, and clinical features.

 4. Combs et al. 

(2021)

✓ Cognition 

(neuropsychological 

tests) at year 1

Stepwise regression Validation set Prediction of cognitive performance 

from baseline clinical and cognitive 

scores in both controls and patients.

 5. D’Cruz et al. 

(2021)

✓ ✓ FoG at year 2 Vertex-based shape 

analysis stepwise 

logistic regression

None (statistical tests 

of a subset of features 

in PPMI data set)

Note: Model was fit to internal cohort. 

Baseline clinical and MRI features used 

to predict FoG. Variables selected based 

on significance and stepwise regression. 

AUC reported but not validated. 

Statistical tests of MRI features 

performed on PPMI data.

 6. Faghri et al. 

(2018)

✓ UPDRS progression 

sub-type

Nonnegative Matrix 

Factorization, Gaussian 

Mixture Models, 

Random forests

Five-fold CV Test set 

External validation set

Combined unsupervised and supervised 

methods to divide patients into 

progression sub-types and predict sub-

type score from baseline clinical 

measures

 7. Gramotnev et al. 

(2019)

✓ ✓ ✓ ✓ Rate of MoCA 

change

Logistic regression with 

variable selection based 

on relative importance

Monte Carlo (after 

selecting significant 

features*)

Used baseline clinical, genetic, DAT, and 

CSF to predict rate of cognitive decline. 

Variables selected based on performance 

before validation*.

 8. Gu et al. (2020) ✓ ✓ ✓ Geriatric 

Depression Scale at 

year 2

XGBoost, Stepwise 

logistic regression

Ten-fold CV for 

hyperparameter 

tuning Validation set

Compared methods for predicting 

depression severity at year 2 from 

clinical, CSF, and DAT measures.

 9. Hayete et al. 

(2017)

✓ ✓ ✓ Rate of change in 

UPDRS II + III and 

MoCA

Dynamic Bayesian 

graphical model

None (Statistical tests 

of a subset of features 

in PPMI data set)

Note: Model was fit to LAB-PD data. 

PPMI was used for limited external 

validation. Predicted motor and 

cognitive progression mainly at years 5-7 

of follow-up. Direct predictive validation 

was not performed, but a subset of 

findings was tested statistically in PPMI.

 10. Jackson et al. 

(2021)

✓ ✓ Change in UPDRS 

III at year 1

Ridge regression External validation set 

(PPMI)

Predicted motor decline at 1 year from 

baseline clinical and DAT factors. Note: 

trained on placebo arm of clinical trial, 

tested on PPMI

 11. Kim et al. (2019) ✓ ✓ ✓ Freezing of Gait 

(FoG from UPDRS) 

at year 4

Cox hazard regression None Predicted future freezing of gait, from 

baseline clinical measures, CSF, and 

DAT. Reports AUC but no validation.

 12. Kim and Jeon 

(2021)

✓ ✓ FoG (UPDRS) up to 

year 8

NA (ROC analysis of 

NFL)

None Predicted gait freezing using serum NFL. 

Reports AUC but no validation.

(Continued)
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TABLE 1 (Continued)

Study Input data Outcome 
measures

Modeling 
approach

Validation 
method

Summary

C D R B I

 13. Latourelle et al. 

(2017)

✓ ✓ ✓ ✓ Rates of motor and 

daily living 

symptoms 

(combined UPDRS 

II and III totals, 

rates estimated from 

linear mixed-effects 

models)

Reverse engineering 

and forward simulation 

(REFS) model 

ensemble

Five-fold CV  

External validation set  

(LABS-PD)

Large-scale prediction of symptom 

progression using model ensemble 

trained on >17,000 SNPs, clinical 

variables, and DAT and CSF features. 

<4% variance explained by biological 

variables. Tested results on external 

cohort

 14. Ma et al. (2021) ✓ ✓ UPDRS III at 

multiple years

Multiple ML models 

(LASSO, ridge, random 

forests, gradient 

boosting) with 

recursive feature 

elimination

CV within training set 

for variable selection 

validation set

Compared performance of multiple ML 

models in using each year’s clinical and 

CSF measures to predict subsequent 

year’s motor scores

 15. Nguyen et al. 

(2020)

✓ ✓ ✓ UPDRS III total and 

MoCA scores at 

years 1, 2, 3, and 4

Deformation-based 

morphometry, DNN 

autoencoder

Five-fold CV (after 

selecting significant 

regions*)

Predicted motor and cognitive deficits 

from baseline MRI, CSF, and clinical 

scores in patients with REM disorder. 

Variables selected based on performance 

before validation*.

 16. Rahmim et al. 

(2017)

✓ ✓ UPDRS III at year 4 Random forests LOO Year 1 and 2 DAT, MRI, and clinical 

scores were used to predict UPDRS III 

total at year 4

 17. Ren et al. (2021) ✓ Hoehn & Yahr score Multivariate functional 

PCA, Cox hazard 

regression

External validation set 

(LABS-PD)

Combined unsupervised dimensionality 

reduction of clinical and cognitive 

variables with prediction of functional 

outcomes.

 18. Rutten et al. 

(2017)

✓ ✓ 2-year change in 

anxiety (STAI)

Linear mixed-effects 

model with stepwise 

selection procedure

None Stepwise selection of features for linear 

mixed-effects model predicting 2-year 

change in STAI scores from baseline 

clinical scores and DAT features. No 

validation of selected features was 

performed.

 19. Salmanpour 

et al. (2019)

✓ MoCA at year 4 DNNs, LASSO, random 

forest, ridge, others

Monte Carlo Test set Tested future cognitive score from a 

large set of feature selection and 

prediction algorithms. Genetic 

algorithm combined with local linear 

trees performed the best.

 20. Schrag et al. 

(2017)

✓ ✓ ✓ ✓ Cognition (MoCA) 

at 2 years

Logistic regression with 

variables pre-filtered 

based on significance

Monte Carlo Ten-fold 

CV validation set all 

after selecting 

significant features*

Predicted cognitive impairment with 

clinical scores, CSF, APOE status, and 

DAT. Selected variables before 

validation*.

 21. Simuni et al. 

(2016)

✓ ✓ ✓ Time to initiation of 

symptomatic 

treatment

Random survival forest CV Predicted time to initiation of 

symptomatic therapy using random 

survival forests. No biological variables 

increased accuracy of prediction above 

clinical baseline.

 22. Tang et al. (2019) ✓ ✓ UPDRS III at year 4 DNN LOO (after selecting 

significant features*)

Artificial neural network to predict future 

motor symptoms from imaging and 

clinical features. Variables selected based 

on performance before validation*.

(Continued)
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and/or gradient boosting methods (Friedman et  al., 2000; 
Friedman, 2001).

A smaller number of studies used unsupervised learning to generate 
latent variables or clusters to capture patient variability. Of the 19 
studies using unsupervised methods, 11 were concerned with 
sub-typing Parkinson’s patients using clustering models. Eleven used 
latent variable or dimensionality reduction methods with continuous 
latent factors, and 3 used both sub-typing and continuous 
latent variables.

Only 6 papers combined supervised and unsupervised methods. 
This is surprising given the stated focus of much PD research on 
finding subtypes which can predict differential progression across 
groups of Parkinson’s patients. To discover latent sub-groups of 
patients and find predictors of future sub-group membership, it is 
likely that supervised and unsupervised models will need to 
be integrated. Notably, 3 papers combined clustering of patients into 
subtypes with prediction of current or future symptoms. In one 
example, Faghri et al. (2018) used an unsupervised combination of 
Nonnegative Matrix Factorization (NMF) and Gaussian Mixture 
Models (GMMs), respectively, to reduce dimensionality and cluster 
patients into sub-types, and RFs for supervised prediction of 
symptom levels 4 years later. Valmarska et al. (2018) explored the 
impact of baseline motor symptoms on disease progression. They 
used an unsupervised clustering approach to group the patients 
according to the Movement Disorder Society Unified Parkinson’s 
Disease Rating Scale (MDS-UPDRS) part III scores (Movement 
Disorder Society Task Force on Rating Scales for Parkinson’s 
Disease, 2003), and developed a supervised algorithm to determine 
which features predicted changes in cluster assignment over time. 
They identified bradykinesia as the most influential attribute in 

their model. Zhang et  al. (2019) first trained Long Short-Term 
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) networks to 
encode sequences of input clinical observations in order to predict 
a set of target measures, which included clinical and biological 
variables (such as Dopamine Transporter [DAT] scan and CSF 
measurements). Next, they used Dynamic Time Warping (DTW; 
Bellman and Kalaba, 1959) to estimate the similarity between 
sequences of LSTM activations for each pair of patients. Finally, 
Student t-distributed Stochastic Neighbor Embedding (t-SNE; Van 
der Maaten and Hinton, 2008) was used to compress patients into a 
2-dimensional space which preserved DTW distances, and patients 
were divided into three subtypes using k-means clustering in the 
compressed space. The three clusters differed in terms of age, 
baseline and slope of motor and cognitive symptoms, as well as DAT 
scan level decline.

Integrating supervised and unsupervised models should be  an 
increasing focus of future work in order to ensure that we  define 
subtypes or other latent variables that are potentially useful. To this end, 
research should combine the unsupervised discovery of latent factors or 
subtypes that explain heterogeneity in patient characteristics with 
supervised learning to predict latent scores from baseline symptoms 
and/or to predict future symptoms from latent scores.

Modalities

Clinical data
Unsurprisingly, almost all machine learning studies (96/110) made 

use of clinical or cognitive variables, including patients’ diagnosis as well 
as motor, cognitive, psychiatric, and functional/daily-living symptoms. 

TABLE 1 (Continued)

Study Input data Outcome 
measures

Modeling 
approach

Validation 
method

Summary

C D R B I

 23. Tang et al. (2021) ✓ ✓ ✓ Cognitive decline 

(MoCA or 

neuropsychological 

test scores)

LASSO, Cox hazard 

Regression

Validation set (t-tests 

to remove variables 

that differ between 

training and validation 

sets*)

Prediction of cognitive decline using 

baseline clinical, CSF, and MRI features. 

Features were filtered after training 

based on similarity between training and 

test sets*

 24. Tsiouris et al. 

(2017)

✓ ✓ ✓ ✓ Rate of change in 

UPDRS total up to 

year 2

RIPPER (Cohen, 1995) Ten-fold CV Predicted change in UPDRS scores at 

2-and 4-year epochs after selecting from 

over 600 baseline variables, including 

genetic, CSF, clinical and imaging 

features

 25. Tsiouris et al. 

(2020)

✓ ✓ ✓ ✓ Rate of change in 

UPDRS total up to 

year 4

Naïve Bayes, RIPPER Ten-fold CV Extended (Tsiouris et al., 2017) to 4 year 

follow up

 26. Zeighami et al. 

(2019)

✓ ✓ Change in Global 

Composite 

Outcome 

(Fereshtehnejad 

et al., 2015)

Voxel-based 

Morphometry, 

Independent 

Component Analysis

Ten-fold CV (after 

selecting significant 

voxels)

Tested whether baseline MRI-based 

atrophy marker could predict change in 

overall severity. Cross-cohort validation 

prevented data leakage.

Because of the focus of PPMI on variation in symptom trajectories, we summarize here the 26 machine learning papers from our literature search attempting to predict future symptoms. Input 
Data: C, clinical/demographic; D, DNA/genotype; R, RNA; B, biomarker/biospecimen; I, imaging; CV, cross-validation; LOO, leave-one-out; UPDRS, Unified Parkinson’s Disease Rating Scale; 
DNN, deep neural network; CNN, convolutional neural network; MCI, Mild Cognitive Impairment; NFL, Neurofilament light chain; *potential data leakage. In papers containing both null 
hypothesis tests and measures of predictive accuracy, only variables and methods included in predictive tests are considered here.
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These variables were commonly used as model inputs, targets for 
prediction (for supervised models), or both. The most common scale 
used was the UPDRS, which measures patients across all these domains. 
Other clinical variables included measures of dopaminergic therapy 
(Valmarska et al., 2018; Weintraub et al., 2020; Lim et al., 2021; Severson 
et al., 2021) and rapid eye movement (REM) sleep behavior disorder 
(RBD; Prashanth et al., 2014; Tsiouris et al., 2020; Chen et al., 2021). 
Seventeen studies used only clinical and demographic variables. For 
example, the three hybrid clustering-supervised-learning papers 
we  described above used only clinical data as inputs to the 
clustering model.

Leveraging recent advances in deep learning, de Jong et al. (2019) 
presented a new method (VaDER) that combined an LSTM and a 
variational autoencoder (Kingma and Welling, 2013) to model 
multivariate clinical time series data. This method produced clusters 
with clinically divergent disease progression profiles. The identified 
clusters differed in gender, Schwab and England score and symptoms of 
depression. While they did not externally validate or assess the stability 
of these clusters (see Validation and Data Leakage, below), they did test 
for statistical differences between clusters in brain areas including the 
caudate. In the supervised domain, Prashanth et al. (2014) developed a 
SVM model for predicting PD diagnosis from olfactory deficits 
(measured by the University of Pennsylvania Smell Identification Test, 
UPSIT) as well as REM sleep disorder symptoms (measured by the REM 
Sleep Behavior Disorder Screening Questionnaire, RBDSQ), which 
reached a sensitivity of 88% and a specificity of 78% on an unseen 
validation set.

Neuroimaging markers
The next most used modality was neuroimaging, with 79 studies 

using some form of brain imaging data. PPMI neuroimaging includes 
structural and resting-state functional MRI, as well as Diffusion Tensor 
Imaging (DTI) data, and DAT scans. DAT imaging, a SPECT technique 
which measures dopamine transporter binding, was the most common 
neuroimaging modality in the machine learning papers we reviewed, 
specifically measured in the basal ganglia, most often using Striatal 
Binding Ratio (SBR).

DAT imaging has been extensively utilized as an input biomarker 
variable across the studies we evaluated. One study demonstrated that 
the inclusion of DAT features in addition to demographics and clinical 
measures improved prediction of UPDRS scores at 4 years post-baseline 
(Rahmim et al., 2017). It may be that DAT imaging represents a distinct 
domain, or possibly an endophenotype of PD progression. We observed 
that across these studies, DAT scan features were mainly limited to SBR, 
although extraction of novel image features has also been performed 
(Wenzel et al., 2019; Adams et al., 2021; Zhou and Tagare, 2021).

The information DAT imaging yields regarding dopaminergic tone 
may make it a key component in models of PD. However, it is worth 
noting that DAT level measurements are currently used in the consensus 
diagnosis of PD for PPMI subjects. That is, participants are not classified 
as having PD unless they exhibit a DAT scan deficit, even if they have 
motor abnormalities associated with the disorder. Because of this, 
subjects in the PPMI database labeled PD are guaranteed to have lower 
DAT levels in the basal ganglia than healthy controls or other groups. 
This is an interesting example of circularity in machine learning 
evaluation, which we will discuss in more detail below. We urge caution 
in the use of DAT levels in machine learning models containing PD 
diagnosis as a variable, especially in supervised models designed to 
predict diagnosis.

There were other examples utilizing imaging features from 
structural, functional, or DTI MRI scans (Badea et al., 2017; Peng et al., 
2017; Amoroso et al., 2018; Singh et al., 2018; Won et al., 2019; Chan 
et al., 2022). One study by Uribe et al. used unsupervised hierarchical 
cluster analysis of structural MRI data to produce subtypes of untreated 
PD patients based on cortical atrophy patterns at baseline (Uribe et al., 
2018). Here, two subtypes were identified, both of which were 
characterized by cortical thinning when compared to healthy controls. 
One of the subgroups showed more pronounced cortical atrophy and 
exhibited lower cognition scores. In a supervised learning study, Zhang 
et  al. (2018) used a Graph Neural Network to classify patients vs. 
controls using DTI data.

However, such studies were relatively rare. One potential reason for 
this is that while other sources of data are provided in tabular form and 
require little preprocessing, MRI images require extensive processing 
and feature engineering before they can be  incorporated into most 
machine learning models [convolution neural networks, which can 
work with raw or preprocessed images directly, are a notable exception 
and have been used in some PPMI studies (Yagis et  al., 2021)]. 
Opportunities thus exist to further explore the utility of imaging 
markers. However, caution is warranted, and MRI preprocessing steps 
should be validated and standardized moving forward. Testing different 
DTI preprocessing pipelines on PPMI data, for example, Mishra et al. 
(2019) concluded that results are heavily dependent on the choice of 
preprocessing and analysis.

Genetic and other biomarkers
Relatively few machine learning studies used information from 

DNA (18 studies), RNA (5 studies), or CSF-based biomarker (27 studies) 
measurements. Forty-one studies made use of at least one such 
biomarker, while only 10 used multiple (see Figure 2 and Multi-modal 
markers, below).

Using CSF measures as well as non-motor clinical scores, Leger 
et al. (2020) compared several different supervised machine learning 
techniques to classify participants as PD, healthy controls, or subjects 
without evidence of dopamine deficiency (SWEDD). Gradient 
boosting decision trees (XGBoost, Chen et al., 2015) performed the 
best at distinguishing these classes, with an area-under-the-receiver-
operating-curve (AUC) of 0.92 for PD patients versus healthy 
controls and 0.82 for patients versus SWEDDs. CSF alpha-synuclein 
was an important feature for distinguishing PD patients 
from controls.

Weintraub et al. (2022) built a model predicting impulse control 
disorders in Parkinson’s patients, combining DNA from a genome wide 
association study (GWAS), genes previously implicated in impulse 
control disorders, and clinical variables to separate patients into low and 
high impulse control groups, with moderate accuracy (AUC of 0.72). 
Cope et al. (2021) developed a novel algorithm to generate a knowledge 
graph based on prior literature and known protein co-expression 
patterns, which is used to select DNA features and multiplicative 
interactions between features for use in standard machine learning 
algorithms. This method outperformed standard polygenetic risk scores 
in detecting PD (AUC = 0.85), highlighting potential interactions 
between known genetic risk loci and pathways.

RNA was the most infrequently used modality in the machine 
learning papers we reviewed. In one rare example using blood-based 
RNA sequencing, Pantaleo et al. (2022) used XGBoost models to classify 
subjects as PD patients or healthy controls from baseline gene expression 
data. The approach reached moderate accuracy (AUC of 0.72) and 
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generated a large number of potential genes and expression pathways to 
be validated and explored in future work.

The limited number of papers using DNA, RNA, and CSF protein 
measures highlights the fact that these non-clinical data have been 
under-utilized to date in PPMI machine learning reports. These data 
modalities represent a potentially untapped resource and should be a 
major focus of future work.

Multi-modal markers
One of the most promising aspects of PPMI is the potential to combine 

multiple modalities to gain a broader perspective on biological mechanisms 
of patient heterogeneity. A majority of the studies we reviewed made some 
use of multiple modalities, although many of these used a single biological 
modality to predict clinical diagnosis. Many others combined clinical 
scores with DAT SBR alone. Relatively few studies have taken advantage 
of the breadth of biological data made available as part of PPMI. Of the 41 
studies which made use of either DNA, RNA, or CSF measures, for 
example, no study used all three. In general, few studies (30/110) integrated 
multiple biological modalities (imaging, DNA, RNA, or CSF). Figure 2 
shows the frequency of each biological modality as well as of multimodal 
combinations in the literature we reviewed. As for neuroimaging, most 

multimodal studies with brain imaging used DAT scan measurements in 
the basal ganglia, with fewer using structural or functional MRI or DTI.

In one example of multimodal analysis of symptom progression, 
Tsiouris et al. (2017) developed a supervised algorithm for selecting and 
combining subsets of features based on their discriminative ability, 
which they combined with Naïve Bayes (Domingos and Pazzani, 1997) 
and Repeated Incremental Pruning to Produce Error Reduction 
(RIPPER; Cohen, 1995) classifiers. They trained their feature selection 
algorithm and classifier to predict which category of rapid progression 
(measured as the quantile of the slope of UPDRS I-III total score) 
patients would fall into at 2-and 4-year epochs, using around 600 
baseline features including selected SNPs, CSF-and blood-based 
biomarkers, clinical scores, and DAT and MRI features.

In another study or motor symptom progression, Latourelle 
et  al. (2017) used a Bayesian machine learning based approach 
known as Reverse Engineering and Forward Simulation to form an 
ensemble of supervised models to predict symptom trajectory from 
genetic (53 pre-specified SNPs, PCs as well as a relatively large 
number (>17 K) of SNPs after pruning for linkage disequilibrium) 
and baseline CSF and clinical variables. Results showed baseline 
motor function, sex, age, DNA, and CSF biomarkers to be predictors 
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The use of multiple biological modalities is rare in machine learning studies of Parkinson’s Progression Markers Initiative data. UpSet plot (Lex et al., 2014; 
Conway et al., 2017) showing frequencies of different combinations of imaging, CSF, DNA, and RNA data in the machine learning studies we reviewed. Each 
set of connected dots represents a combination of modalities (bottom). Intersection size is plotted as the number of studies for a particular modality 
combination (top). The set size is plotted as the overall number of studies using each modality (left). Ninety-two papers used at least one biological 
modality, including Dopamine Transport imaging striatal binding ratio scores. Thirty studies (out of 110 total) combined multiple biological modalities.
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distinguishing slow and fast progressors (27% of variance explained 
in PD patients in leave-one-out cross-validation). Notably, the 
contributions of biological variables were relatively small, with all 
SNPs explaining <3% of variance in progression and CSF measures 
explaining <0.5%. They also tested the model ensemble in an 
external non-PPMI cohort (LABS-PD; Ravina et al., 2009), where it 
showed reduced, but significant, performance (9% of progression 
variance explained). Notably, there was no overlap between the 
biological features reported as important in this model and the 
Tsiouris et al. model described above, indicating that there is much 
more work to be done in studying the stability of machine learning 
findings in PPMI.

Multimodal models were also used to predict progression outside of 
the motor domain. In an example focused on cognitive decline, Schrag 
et al. (2017) built a logistic regression model containing features from 
DAT imaging, Montreal Cognitive Assessment (MoCA), UPSIT, and 
CSF Abeta/Tau ratio as predictors of cognitive impairment in PD 2 years 
from baseline. They reported robust performance determined by AUC 
of ~0.8, higher when including biological variables compared to using 
age alone. However, this study seems to have filtered features based on 
their ability to differentiate cognitively impaired subjects before 
performing cross-validation or splitting data into training and test sets 
(see Validation and data leakage, below), which calls the accuracy of 
these performance estimates into question.

Unsupervised learning of multiple modalities can be difficult, in 
part because high-dimensional modalities can dominate contributions 
to latent dimensions or classes. Using an approach known as similarity 
network fusion (SNF), Markello et  al. (2021) were able to combine 
imaging, clinical, and CSF data modalities available in the PPMI cohort. 
They showed that this approach better captures similarities between 
patients across modalities with different dimensions than standard 
approaches of concatenating data across modalities. The fused similarity 
networks can then be decomposed via clustering or continuous latent 
factor algorithms. Interestingly, they tested both approaches in this 
paper, comparing diffusion embedding (continuous axes) with spectral 
clustering (discrete subtypes), two methods for unsupervised learning 
on graphs. They found that a continuous latent space provided the more 
parsimonious fit to the data.

One issue which is often overlooked when using biological 
modalities for prediction is how performance compares to a baseline 
model with only clinical data. In one cautionary example, Simuni et al. 
(2016) looked to identify clinical and biological predictors of time to 
initiation of treatment using RFs. They found that baseline clinical 
measures were most strongly predictive, and that the inclusion of 
biomarker data such as P-tau and DAT uptake did not improve 
predictive performance of the model above this baseline.

For the most part, machine learning papers have so far failed to 
make use of the uniquely multimodal data available from the PPMI 
project. Future work should focus on validating algorithms for 
combining multiple high dimensional modalities and testing whether 
biological data can improve predictions of patient trajectories above 
baseline clinical scores. However, the combination of multiple high 
dimensional sources of data will create problems of its own.

Validation and data leakage

Because machine learning approaches often use powerful 
algorithms with more tunable parameters than observations, 

overfitting is a serious concern, and it is essential that findings 
be  validated by estimating stability and performance on unseen 
data. This is often done with one or more of the following 
techniques: Monte Carlo sampling, in which training and test sets 
are repeatedly randomly sampled; k-fold cross-validation, in which 
observations are divided into k groups, which are then cycled 
through with each group serving as the test set for one round of 
training; or maintaining a separate validation set to test performance 
only after all modeling decisions have been made. In the case of 
PPMI, sometimes other PD studies with overlapping observations 
are used as an external validation set, providing an even more 
meaningful test of model generalizability. In any case, it is essential 
that parameters-including hyperparameters such as which features 
or observations to include, what optimization algorithms to use, or 
even which particular model out of multiple possibilities is 
selected-be chosen only after isolating a test set from the 
fitting process.

Surprisingly, 13 supervised studies of the 97 we reviewed described 
a measure of predictive accuracy but showed no evidence of having a 
validation procedure for evaluating it. There are more subtle issues in 
validating predictive models than simply ignoring validation, however. 
In many cases, validation is performed in such a manner that 
information has been “leaked” from test set observations to the model 
fitting procedure, thus invalidating the validation process (Yagis et al., 
2021). In one common form of data leakage, features are selected based 
on statistical tests (e.g., differentiating PD from healthy controls), 
before splitting the data into training or test sets to train a classifier to 
differentiate PD from healthy controls. This is circular, because the 
variables have already been selected because they distinguish PD from 
healthy controls across both training and test subjects. Twenty more of 
the studies we reviewed (in addition to those with no validation method 
at all) showed evidence of such data leakage.

Overall, the lack of attention paid to model validation and clear 
separation of training and test sets is concerning. In addition to the 33% 
of supervised studies described above, in others it was unclear from 
methods precisely how models were evaluated: at what point in the 
analysis pipeline training and test sets were separated, or even whether 
this occurred at all. Without clear descriptions of this process, papers are 
not reproducible and evaluating their results is challenging.

In unsupervised settings, even less attention is paid to model 
validation. How exactly to validate unsupervised models can be a 
difficult question, since there are no labels or target variables to 
predict. The answer will depend on the exact model being used, and 
detailed treatment is outside the scope of this review. However, 
latent factor models with continuous axes can in general be treated 
like regression models in terms of evaluation and validated the same 
way (e.g., variance explained or mean squared error on held out 
data; Owen and Perry, 2009). In principle, clustering methods can 
be  treated similarly and evaluated on held-out data, since many 
clustering models can be considered special cases of continuous 
dimensionality reduction models (Fu and Perry, 2020). This seems 
to be  rarely done in practice, and of the 19 studies using 
unsupervised machine learning we  reviewed here, 13 failed to 
provide any prediction-based validation of their unsupervised 
learning models. Other studies varied in how they tested stability or 
validity of their models, with only 4 studies explicitly using held-out 
data to evaluate.

As noted above, external validation can provide a more stringent 
test of model generalizability than held-out data. After all, we would 
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like our findings to apply to broader populations of patients than 
those meeting the criteria for enrollment in a specific study. Datasets 
such as PARS (Parkinson’s Associated Risk Study), Penn-Udall 
(Morris K Udall Parkinson’s Disease Research Center of Excellence 
cohort), and 23andMe were used for external validation by a small 
number of studies reviewed here. These datasets should 
be  extensively evaluated to understand the similarities and 
differences with PPMI and their suitability as independent 
replication/validation datasets, while considering known 
confounders such as age, sex, and other demographics (Van Den 
Eeden et  al., 2003; Pringsheim et  al., 2014; Simuni et  al., 2016; 
Hayete et al., 2017; Latourelle et al., 2017; Rutten et al., 2017; Schrag 
et al., 2017); which measurements were collected; and differences in 
preprocessing of biospecimen and imaging data.

Future papers need to present a clear strategy for estimating validity 
and generalizability of findings. Authors should report how evaluation 
procedures were kept separate from model training in a clear and 
reproducible manner. In addition, papers should justify the evaluation 
metrics chosen for a particular study (sensitivity, specificity, AUC, recall, 
etc.) based on the costs and benefits of different types of model errors 
and on any potential issues with specific metrics in a particular setting 
(e.g., severely imbalanced classes).

Discussion

One striking aspect of the machine learning PPMI literature 
we  reviewed here is the lack of overlap between findings across 
studies. This is perhaps unsurprising given how much studies 
differed in their input features, target variables, and modeling 
approaches. Based on our review of this variability, we make the 
following recommendations to improve future PPMI machine 
learning research:

 • One of the major goals of PPMI is to understand why different PD 
patients have different disease trajectories. Machine learning 
studies should place more focus on predicting variability in patient 
symptoms rather than distinguishing PD patients from healthy 
controls, especially variability in future symptom progression from 
baseline measurements.

 • There is increasing interest in sub-typing or phenotyping PD 
patients, but we  need to ensure that our latent categories or 
dimensions are consistent, predictable, and useful. Much more 
work is needed in testing the stability across different unsupervised 
methods (see Alexander et al., 2021 for an example in Alzheimer’s 
research), and for validating proposed sub-types. Algorithms 
should also be developed and validated for combining sub-typing 
or latent factor discovery with supervised learning of 
patient outcomes.

 • Future work should incorporate the multiple biological modalities 
available to PPMI researchers. This is especially true of raw MRI 
and DTI images, DNA, and RNA transcriptomic data, as well as 
multimodal combinations of these domains. Preprocessing 
pipelines for each domain should be validated and standardized 
across studies.

 • For longitudinal studies with biological modalities, 
studies should report the extent to which a model improves 
upon results using only baseline clinical and 
demographic information.

 • More care needs to be taken to validate machine learning results in 
PPMI studies. Supervised and unsupervised methods need to 
be tested on unseen data. Measures of predictive accuracy such as 
AUC should not be reported on training data alone, especially after 
filtering variables for significance or prediction improvement. 
When performing validation, data leakage— often caused by 
preprocessing or variable selection involving both training and test 
data sets— needs to be more scrupulously avoided in future work. 
Finally, these procedures need to be articulated more clearly and in 
a manner that can be reproduced by other researchers. To suggest 
truly generalizable results, findings should eventually be validated 
in data sets external to PPMI.
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