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Introduction: Episodic memory (EM) exhibits an age-related decline, with overall 
increased impairment after the age of 65. The application of transcranial direct current 
stimulation (tDCS) to ameliorate cognitive decline in ageing has been extensively 
investigated, but its efficacy has been reported with mixed results. In this study, we 
aimed to assess whether age contributes to interindividual variability in tDCS efficacy.

Methods: Thirty-eight healthy adults between 50 and 81 years old received anodal 
tDCS over the left prefrontal cortex during images encoding and then performed an 
EM recognition task while event-related potentials (ERPs) were recorded.

Results: Our results showed an opposite pattern of effect between middle-aged  
(50–64 years) and older (65–81 years) adults. Specifically, performance in the 
recognition task after tDCS was enhanced in older adults and was worsened in 
middle-aged adults. Moreover, ERPs acquired during the recognition task showed 
that two EM components related to familiarity and post-retrieval monitoring, i.e., Early 
Frontal and Late Frontal Old-New effects, respectively, were significantly reduced in 
middle-aged adults after anodal tDCS.

Discussion: These results support an age-dependent effect of prefrontal tDCS 
on EM processes and its underlying electrophysiological substrate, with opposing 
modulatory trajectories along the aging lifespan.
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1. Introduction

Aging is accompanied by a progressive decline in brain structure, physiology, and function, with 
increased risks of developing various neurological and cognitive disorders, e.g., dementia and 
Alzheimer’s disease (Blinkouskaya et al., 2021). Cognitive functioning has relevant practical and direct 
impacts on older individuals since it plays a crucial role in their quality of life. Therefore, studies into 
whether there are strategies to counteract cognitive decline in aging are of utmost importance.

Among cognitive domains, episodic memory (EM) exhibits the largest degree of age-related 
impairment, with an augmented decline usually observed after the age of 65 (Rönnlund et al., 2005; 
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Guillaume et al., 2009; Vestergren and Nilsson, 2011). EM is a part of 
the explicit long-term memory that stores information about personal 
life, such as temporally dated episodes or events (Tulving, 1984). 
Therefore, it enables a person to remember directly experienced events, 
making it possible to be consciously aware of a well-contextualized past 
experience (Tulving, 1993).

Anodal transcranial direct current stimulation (atDCS) has attracted 
substantial attention in recent years as a tool to improve memory 
performance, as well as other cognitive functions (see Goldthorpe et al., 
2020; Sandrini et al., 2020; Huo et al., 2021; Indahlastari et al., 2021; 
Sanches et al., 2021; Siegert et al., 2021, for recent reviews). In fact, there 
is evidence in young participants demonstrating that its application can 
modulate ERPs elicited in an EM task (Lu et al., 2015). tDCS consists of 
the application of a weak electrical current (typically 1–3 mA) through 
two or more electrodes placed over the scalp that reach the cortex and 
modulate neuronal transmembrane potentials (Purpura and McMurtry, 
1965; Nitsche and Paulus, 2000). Despite the simplistic view that atDCS 
increases neuronal excitability and enhances behavioral performance 
(whereas cathodal tDCS decreases neuronal excitability and worsens 
behavior), the scientific literature clearly demonstrates that tDCS does 
not always lead to such linear neuropsychological and behavioral 
outcomes (Fertonani and Miniussi, 2017).

The results regarding the cognitive effects of tDCS in aging are 
mixed, as the administration of atDCS has not consistently resulted in 
the enhancement of cognitive functions in older individuals. Some tDCS 
studies have reported memory improvement in healthy older adults 
when stimulating the prefrontal cortex (Manenti et  al., 2013, 2017; 
Sandrini et al., 2014, 2016, 2019; Medvedeva et al., 2019; Huo et al., 
2020) or the left temporoparietal cortex (Antonenko et al., 2019). On the 
other hand, other studies applying tDCS over the prefrontal cortex 
reported no effects or even a worsening in aging (Leach et al., 2016, 
2019; Peter et al., 2019; Habich et al., 2020a,b). Therefore, it is clear that 
brain responsiveness to tDCS shows high inter-individual variability.

Several studies have identified age as a key modulating factor of 
neural and behavioral effects of tDCS (e.g., Antonenko et al., 2016, 2018; 
Fiori et al., 2017; Martin et al., 2017). Considering the evidence for 
age-related structural and functional reorganization, tDCS may operate, 
at different ages, upon different neural processes (Antonenko et al., 
2019). Importantly, these studies suggest that results obtained in an age 
group may not be  transferable to another age group. However, the 
current literature does not allow us to understand the role of age as a 
moderating factor of the interindividual variability of tDCS effects 
within the aged population itself. First, the available literature considered 
the older population in a wide range of ages covering over 30 years with 
little or no investigation of the large inter-individual variability within 
this range [e.g., in Antonenko et al. (2019) authors included participants 
from 50 to 80 years; in Fiori et  al. (2017) and Leach et  al. (2019) 
60–80 years; in Leach et al. (2016) 60–90 years]. Second, the studies on 
age-mediated effects of tDCS have focused exclusively on the 
comparison of older (usually in a range from 50 years and older) with 
younger (aged 18–35) adults. Brain responsiveness to tDCS among older 
individuals may even vary more than among younger individuals due 
to considerable age-related inter-individual differences in cognitive 
decline and brain structure alterations in this population (Craik et al., 
1994; Mungas et al., 2010; Reuter-Lorenz and Park, 2014; Antonenko 
et  al., 2019). Additionally, susceptibility to plasticity-inducing 
mechanisms is affected in the older adults (Brosnan et  al., 2018; 
Antonenko et al., 2019), and consequently, the brain response to tDCS 
may be altered. Hence, the heterogeneity of findings on the effects of 

tDCS on memory in aging further highlights the complexity of the 
underlying mechanisms (Antonenko et  al., 2019) and requires 
monitoring for age-related inter-individual differences.

In this scenario, middle-aged adults are of major interest, as it may 
be the stage when the first changes in brain activity occur even in the 
absence of behavioral decline (Guillaume et al., 2009). To the best of our 
knowledge, only one study compared, in a posteriori analysis, middle-
aged (<63 years) and older (>63 years) adults, pointing to a larger 
reduction in GABA concentrations after tDCS over the sensorimotor 
region in middle-aged adults. However, no behavioral data that can 
distinguish group performance were collected (Antonenko et al., 2017).

In sum, the understanding of tDCS effects on the aged brain is still 
inadequate (Antonenko et al., 2019), although older individuals may 
be among the primary targets of interventions. Therefore, more studies 
comparing middle-aged with older adults would help to clarify how 
tDCS effects on EM may change depending on the subject age.

The mechanisms involved in EM have been extensively studied 
using the event-related potentials (ERPs) technique, identifying three 
main components: (1) the Early Frontal effect (EF), a positive component 
that usually appears at ~300–500 ms and is maximal at frontal locations, 
thought to reflect familiarity-based recognition processes (Curran, 2000; 
Rugg and Curran, 2007); (2) the Parietal Effect (P), a subsequent positive 
component that appears in the ~400–800 ms interval at left parietal 
regions and is thought to index recollection-based recognition processes 
(Rugg and Curran, 2007); and (3) the Late Frontal effect (LF), a later 
positive ERP component that has been associated with post-retrieval 
monitoring and evaluation processes, and is likely linked to executive 
function of the prefrontal cortex (Friedman and Johnson, 2000; Rugg, 
2004; Hayama et al., 2008). To our knowledge, no studies have evaluated 
how tDCS modulates ERP components associated with EM in a healthy 
aged population.

In the present study, we aimed to delineate the trajectories of atDCS 
effects applied over the left dorsolateral prefrontal cortex (DLPFC) 
during the encoding phase of an EM task in different aging stages. Two 
groups of adults were compared: middle-aged (age ranging from 50 to 
64 years) vs. older (65 to 81 years) adults. Behavioral and ERP measures 
were collected in the recognition phase, yielding neural evidence about 
how tDCS affects the different processes involved in EM retrieval. 
We expected to find different neural and behavioral effects between age 
groups. Elucidating the behavioral and neural effects induced by tDCS 
along the healthy aging continuum may help the development of 
effective tDCS protocols specifically tailored to the aging brain, and to 
age-related neurodegeneration.

2. Materials and methods

2.1. Participants

Nineteen middle-aged (10 females; age: mean = 57.11 years; SD = 0.95; 
min-max: 50–64) and 19 older (11 females; age: mean = 71.63 years, 
SD = 1.02; min–max: 65–81) healthy volunteers took part in the 
experiment. All participants were right-handed, had normal or corrected-
to-normal vision and had no history of psychiatric or neurological 
disorders. Before being enrolled in the experiment, subjects visited the 
laboratory for a preliminary testing session to complete a comprehensive 
neuropsychological assessment (refer to Table 1 for the whole list of the 
administered tests) to confirm the absence of any cognitive deficits. A 
pathological score on one or more neuropsychological tests was considered 
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an exclusion criterion. The demographic, clinical, and neuropsychological 
results of the two groups of participants are reported in Table 1. Participants 
gave written informed consent prior to their participation in the study. All 
the procedures conformed to the Declaration of Helsinki for research 
involving human subjects and were approved by the Ethics Committee of 
the IRCCS Centro San Giovanni di Dio Fatebenefratelli (Brescia, Italy).

2.2. Experimental procedure

The present study adopted a single-blind within-subjects sham-
controlled experimental design, in which participants underwent two 

experimental sessions, at the same time of the day, on two different 
days separated by at least 1 week. This was done to reduce variability 
in the subject’s physiological state during the day and to ensure a full 
wash-out of the effects from one session to the other. In each session, 
participants performed an EM task consisting of two phases: an 
encoding phase and a retrieval phase of an Old/New recognition task. 
Either atDCS or sham tDCS in counterbalanced order was applied 
over the left DLPFC only during the encoding phase. 
Electroencephalographic (EEG) data were collected during the 
recognition phase. Participants were blinded to the stimulation they 
received. Figure 1A illustrates the experimental design.

2.3. Episodic memory task

The encoding phase and the subsequent recognition phase were 
separated by a delay of 15 min. During the encoding phase, 120 black-
and-white images of common objects, food and animals selected from 
the Bank of Standardized Stimuli (BOSS; Brodeur et al., 2010) were 
presented in random order. Participants were instructed to memorize 
the images, as they would be asked to subsequently recognize them. 
Stimuli were presented in trials with the following structure: (1) 400 ms 
image presentation; (2) blank screen for 600 ms; (3) first semantic 
encoding for 2,000 ms; (4) second semantic encoding for 2,000 ms; and 
finally, (5) inter-trial-interval (ITI) of 7,500 ms. The semantic encoding 
of the task was controlled by asking participants to categorize images. 
For this purpose, participants were requested to make two subsequent 
choices after each image presentation by pressing two different keyboard 
buttons with their left or right index finger (spatially congruent to the 
side of the screen where the chosen word appeared). Hence, they should 
first indicate the category of the image (object, animal, food) and then 
whether the image represented a natural or an artificial item (they were 
instructed to consider those items that cannot exist without human 
intervention as artificial, while in the opposite case, they should 
be considered natural). Indicating whether food images represented a 
natural or an artificial item might have required a more careful choice 
as compared to object and animal images (which have a tendency to 
be almost exclusively artificial and natural, respectively) and may have 
potentially led to a better encoding. Nevertheless, the three image 
categories were equally represented in the two experimental sessions 
(i.e., sham, atDCS) thus not affecting the comparison of the results 
between sham and atDCS conditions.

During the recognition phase, the 120 images displayed during the 
encoding phase (old images) were presented randomly intermixed 
with 120 new images. Participants were instructed to indicate whether 
the image was “old” (i.e., already seen in the encoding phase) or “new” 
(i.e., not seen in the encoding phase) by pressing two different 
keyboard buttons with their left or right index finger (spatially 
congruent to the side of the screen where the chosen response 
appeared, i.e., already seen/not seen). Each image remained on the 
screen for 2,000 ms or until the subject’s response (whichever 
happened first), which was followed by a 1,000 ms delay. The encoding 
and retrieval trial procedures are depicted in Figures 1B,C, respectively. 
Two sets containing different images (Figures 1A,B; with the three 
image categories equally represented in the two sets) were used for the 
two sessions (sham, anodal). The order of set presentation was 
counterbalanced across participants and across sessions.

Behavioral data were collected during the recognition phase. The 
percentage of Old pictures correctly classified as old (Hit rate), and the 

TABLE 1 Mean values and standard deviations (in parentheses) of the 
demographical, clinical and neuropsychological measures of the two 
groups of participants.

Middle-aged 
adults (50–

64 years-old)

Older adults 
(65–85 years-

old)

Value of p

Demographic and clinical characteristics

Gender (males/

females)

9/10 8/11 0.744

Age (years) 57.11 (4.16) 71.63 (4.44) 0.000

Education (years) 13.05 (2.93) 9.47 (3.27) 0.001

Stimulation order 

(anodal/sham)

10/9 8/11 0.516

MMSE 28.61 (1.93) 27.89 (1.75) 0.254

GDS 4.89 (5.75) 5.65 (3.67) 0.648

Neuropsychological assessment

  Memory

RAVLT recall, 

immediate

46.65 (7.81) 50.44 (7.35) 0.144

RAVLT recall, 

delayed

10.40 (2.31) 11.39 (3.14) 0.284

Episodic memory 15.42 (3.16) 16.26 (3.86) 0.476

ROCF recall 18.97 (4.76) 19.74 (6.54) 0.690

Digit span forward 5.70 (0.92) 5.72 (0.81) 0.950

Spatial span 5.23 (0.73) 5.26 (0.64) 0.905

  Praxia

ROCF copy 34.16 (1.10) 34.02 (2.74) 0.852

Attentive and executive functions

TMT A 24.16 (7.78) 26.18 (19.46) 0.679

TMT B 73.79 (35.01) 51.47 (55.63) 0.154

Language

Verbal fluency, 

phonemic

40.68 (8.69) 40.59 (10.91) 0.977

Verbal fluency, 

semantic

48.94 (7.92) 46.93 (6.90) 0.453

Abstract reasoning

RCPM 33.11 (1.88) 33.59 (4.21) 0.654

p-values obtained from the t-test or Chi-squared test used to compare both age groups are 
reported (bold value of ps indicate significant differences between groups). MMSE, Mini Mental 
State Examination; GDS, Geriatric Depressive Scale; RAVLT, Rey Auditory Verbal Learning 
Test; ROCF, Rey–Osterrieth Complex Figure; TMT, Trail Making Test; RCPM, Raven Colored 
Progressive Matrices.
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percentage of New pictures correctly classified as new (Correct 
Rejections rate, CR rate) were analyzed.

2.4. Transcranial direct current stimulation 
parameters

Anodal tDCS was delivered by a battery-driven stimulator 
(BrainStim, EMS, Bologna, Italy) through a pair of rubber electrodes for 
16 min, starting approximately 1 min before the beginning of the 
encoding phase and lasting for its entire duration. The intensity of the 
stimulation was 1.5 mA. The anode ring electrode (5 cm diameter, area 
14.72 cm2 current density 0.1 mA/cm2) was placed below the EEG cap 
surrounding the F3 electrode (International 10–20 EEG System), and 
Ten20 conductive paste (Weaver and Company, Aurora, CO, 
United States) was used to obtain a perfect adherence to the head. The 
cathode/return electrode (5 cm × 9.5 cm, area 47.5 cm2, current density 
0.03 mA/cm2) was located on the right shoulder by elastic bands. 
Impedance levels were below 5 kΩ. In the sham condition, the 
parameters were the same with the exception that the current was 
turned off 20 s after the stimulation began and turned on again during 
the final 20 s of the task. Safety procedures were adopted based on 
non-invasive brain stimulation approaches (Antal et  al., 2017). 
Immediately after the end of each experimental session, participants 
completed a standardized questionnaire assessing the sensations 

induced by tDCS (Fertonani et al., 2015; Antal et al., 2017). Participants 
were required to evaluate the intensity of several sensations (i.e., itching/
irritation, pain, burning, heat, iron taste, fatigue) through a 5-point scale 
(0 = none; 1 = mild; 2 = moderate; 3 = considerable; 4 = strong). 
Furthermore, at the end of the last experimental session (i.e., at the end 
of their participation in the whole protocol), participants were asked to 
guess whether they received real or “placebo” (i.e., sham) stimulation in 
each of the two sessions. For this, they were required to select one 
response (“Real stimulation,” “Sham,” or “I do not know”) for each 
experimental session.

2.5. EEG recording and processing

The EEG was recorded via 60 sintered Ag/AgCl electrodes placed 
in an elastic cap (EasyCap, GmbH, Herrsching, Germany) according 
to the International 10–10 System. All electrodes were referenced 
online to the right mastoid, and the FPz electrode served as the ground. 
The horizontal electrooculogram (EOG) was recorded via two 
electrodes placed at the outer canthi of both eyes, whereas the vertical 
EOG was recorded via two electrodes placed supra-and infraorbitally 
to the right eye. The EEG recorded with a 16-bit DC amplifier 
(BrainAmp Brain Products GmbH, Herrsching, Germany) was 
continuously digitized at a rate of 5,000 Hz (online bandpass filter 
0.01–1,000 Hz), and the electrode impedance was maintained below 

A

B C

FIGURE 1

Experimental procedures. (A) Anodal or sham tDCS was administered during the encoding phase of the episodic memory (EM) task. After a delay of 15 min, 
participants performed the recognition phase of the EM task during which EEG data were collected. (B) Trial procedure of the encoding phase of the EM 
task. In each trial, an image to be remembered is presented followed by two different semantic choices. The original task was performed in Italian. (C) Trial 
procedure of the recognition phase of the EM task. Participants are required to decide whether each image was old (already seen in the encoding phase) or 
new (not seen). The original task was performed in Italian.
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10 kΩ. Only the signal recorded during the recognition phase of the 
task was considered for the present study. In the offline processing of 
the signal, the continuous EEG and EOG signals were downsampled to 
500 Hz, and the EEG was rereferenced to the left mastoid electrode. 
Then, a digital bandpass filter was applied (0.1–40 Hz; 12 dB/octave 
slope), and ocular artifacts were corrected by running independent 
component analysis and visually selecting artifactual components 
(Infomax algorithm, implemented in Brain Vision Analyzer; Lee 
et al., 1999).

With the aim of evaluating the ERP components of interest, the EEG 
was segmented into stimulus-locked epochs of 2,200 ms (200 
pre-stimulus). The epochs including Hits (Old images recognized as old, 
i.e., “Old” condition) and Correct Rejections (New images recognized 
as new, i.e., “New” condition) were evaluated. All epochs were corrected 
to the mean voltage of the first 200 ms of each epoch (pre-stimulus 
baseline), and segments exceeding ±100 μV were automatically rejected. 
The epochs were then averaged separately for the Old and New 
conditions, and a minimum of 41 artifact-free epochs were averaged for 
each condition. Finally, to obtain the Old-New difference waveforms, 
the averaged epochs related to the “new” trials were subtracted from the 
averaged epochs related to the “old” trials (Friedman, 2013). All the 
offline processing of the signal was performed using Brain Vision 
Analyzer 2.2.

The mean amplitude (in μV) of the Early Frontal (EF; in the 
400–700 ms interval at the F3, Fz, and F4 electrodes), Parietal (P; in the 
450–800 ms interval at P3, Pz, and P4) and Late Frontal (LF; in the 
800–1,600 ms interval at F3, Fz, and F4) Old-New effects were evaluated 
in the Old-New difference waveforms (Gutchess et al., 2007; Nessler 
et al., 2007; Guillaume et al., 2009; Wolk et al., 2009; Friedman, 2013). 
Since previous ERP studies indicated that Old-New EM effects occur 
later in aging and as done in previous studies (see, for example, 
Guillaume et al., 2009 for EF), later and longer intervals than those used 
in studies on younger samples were used to capture these effects for 
both groups.

2.6. Statistical analysis

To investigate baseline differences between the middle-aged and 
older adults, demographic factors and cognitive function assessments 
were analyzed by independent sample t-test and Chi-squared test for 
continuous variables and dichotomous variables, respectively (see 
Table 1).

To investigate the effect of tDCS on recognition performance in the 
two age groups, two separate repeated measures ANCOVAs were 
conducted on the Hit and CR rates with “Session” (anodal, sham) as a 
within-subjects factor, “Group” (middle-aged, older adults) as a 
between-subjects factor and education as a covariate. To investigate the 
effect of tDCS on the neural correlates of EM, mean amplitude values of 
the ERP Old-New effect components (EF, P, LF) were submitted to 
separated repeated measures ANCOVAs with “Session” (anodal, sham) 
and “Electrode” (F3, Fz, F4 for EF and LF; P3, Pz, P4 for P) as within-
subjects factors, “Group” (middle-aged, older adults) as a between-
subjects factor and education as a covariate. p-values ≤0.05 were 
considered significant. Post hoc comparisons were performed with 
Bonferroni correction for multiple comparisons. Partial eta squared 
values (ηp

2) are reported as estimates of effect size (Richardson, 2011), 
while critical F and 1-β scores are reported as power measures for each 
significant ANCOVA effect.

Data related to the sensations induced by tDCS were analyzed with 
a non-parametric Wilcoxon test to compare the different session 
(anodal, sham) in the two groups of participants (middle-aged, older 
adults). Statistical analyses were performed with IBM SPSS Statistics, 
and statistical power and analyses were estimated using GPower 3.1 
(Faul et al., 2009).

3. Results

The only two significant differences among cognitive and 
demographical variables of the two groups were age (p < 0.001) and years 
of education (p < 0.01), with middle-aged adults being younger and 
showing a higher degree of education (Table 1).

Participants were unable to discriminate between the two tDCS 
conditions (anodal, sham). Over 36 participants, 25 responded they 
received “Real stimulation” in both sessions, 3 responded that they 
received “Sham” stimulation in both sessions, 7 selected “I do not know.” 
Only one participant was able to correctly deduct the stimulation 
received in both sessions.

Separated analysis performed on data collected in middle-aged 
and older adults showed no differences between anodal and sham 
tDCS on irritation, burning, heat, iron taste and fatigue sensations 
(middle-aged all p > 0.26; older adults all p > 0.18). Therefore, atDCS 
was indistinguishable from the sham tDCS condition in all the 
sensations; hence, the blinding between the two stimulation 
conditions reduced experimental biases on participants’ expectations 
(see Supplementary material for the data).

3.1. Behavioral results

ANCOVA results on the Hit rates showed a significant 
Group × Session interaction [F(1,35) = 7.51, p = 0.01, ηp

2 = 0.177, 
critical F  = 4.12, 1−β = 0.79]. Post hoc comparisons revealed that 
middle-aged subjects showed a detrimental effect on recognition 
performance after receiving anodal tDCS, with significantly lower Hit 
rate values (mean = 84.9, SD = 10.1) than after sham tDCS (p = 0.043; 
mean = 87.3, SD = 9.7). In contrast, recognition performance in the 
older adults was ameliorated after anodal tDCS, with a significantly 
higher hit rate (p = 0.048; mean = 83.6, SD = 13.4) than after sham 
tDCS (mean = 81.1, SD = 14.2) (Figure 2A). No significant differences 
emerged when comparing recognition performance (Hit rate) 
between the two age groups (p > 0.10). No significant main effect or 
interaction emerged when considering CR rates as the dependent 
variable (Figure 2B).

3.2. Electrophysiological results

Figure 3 depicts grand-averaged ERP waveforms during the 
recognition task for Hit responses after anodal and sham tDCS in 
the middle-aged and older adult groups. Mean amplitude values of 
EF, P, and LF old/new EM effect components are reported in 
Table 2.

3.2.1. Early frontal old-new effect
ANCOVA results on EF mean amplitude revealed significant 

main effects of “Session” [F(1,35) = 4.20, p = 0.048, ηp
2 = 0.107, critical 
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F  = 4.12, 1−β = 0.55] and “Electrode” [F(2,70) = 4.99, p = 0.023, 
ηp

2 = 0.125, critical F = 4.12, 1−β = 0.62], together with a significant 
“Group × Session × Electrode” interaction [F(2,70) = 3.57, p = 0.033, 
ηp

2 = 0.093, critical F = 4.12, 1-β = 0.48]. When considering the covariate 
(i.e., education), the “Session” factor was found to be non-significant 
(p = 0.46). Post hoc comparisons for the “Electrode” main effect revealed 
that EF amplitude was significantly greater in the right hemisphere (F4; 
mean = 1.59, SEM = 0.18) than in both the midline (Fz; mean = 1.16, 
SEM = 0.19) and left hemisphere (F3; mean = 0.36, SEM = 0.20) (all 
p < 0.001).

Post hoc comparisons to disentangle the significant 
“Group × Session × Electrode” interaction revealed that middle-aged 
participants showed a significant reduction in left hemisphere EF 
amplitude after anodal (F3: mean = −0.54, SEM = 0.42) compared to 

sham (F3: mean = 0.67, SEM = 0.36) (p = 0.020) tDCS. Additionally, after 
anodal tDCS, middle-aged participants displayed a significantly smaller 
(p = 0.024) left frontal (F3) EF amplitude (F3: mean = −0.54, SEM = 0.42) 
than older adults (F3: mean = 0.94, SEM = 0.42).

No difference emerged when comparing the two groups after sham 
stimulation (p > 0.48).

3.2.2. Parietal old-new effect
ANCOVA results of the P old/new effect mean amplitude did not 

reveal any significant main effect or significant interaction (all p > 0.12).

3.2.3. Late frontal old-new effect
The results of the LF mean amplitude revealed a significant 

“Session × Electrode” interaction [F(2,70) = 4.96, p = 0.01, ηp
2 = 0.124, 

A

B

FIGURE 2

Behavioral results. (A) Boxplots depicting the hit rate obtained during the recognition EM task in middle-aged (left) and older adults (right) after anodal and 
sham tDCS sessions; (B) Boxplots depicting the correct rejection rate obtained during the recognition EM task in middle-aged (left) and older adults (right) 
after anodal and sham tDCS sessions. For each boxplot, the rectangles represent the interquartile range from the 25th percentile (quartile 1, Q1; lower black 
bar) to the 75th percentile (quartile 3, Q3; upper black bar), with the horizontal bar inside representing the 50th percentile (quartile 2, Q2, median), and the 
horizontal bars depicting the largest (upper bar) and smallest (lower bar) values within 1.5 times the interquartile range above the 75th percentile and below 
the 25th percentile, respectively. * indicates a significant difference.
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critical F  = 4.12, 1−β = 0.62] and a significant “Group ×  
Session × Electrode” interaction [F(2,70) = 4.36, p = 0.016, ηp

2 = 0.111, 
critical F = 4.12, 1−β = 0.56]. Post hoc comparisons to disentangle the 
significant “Group × Session × Electrode” interaction revealed that 
middle-aged participants showed a reduction in LF amplitude over the 
left hemisphere after anodal (F3: mean = −0.12, SEM = 0.50) compared 
to sham (F3: mean = 1.55, SEM = 0.64) (p = 0.023) tDCS. Comparing the 
LF effect between the two groups of participants, post hoc analysis 
revealed that older adults after sham (p = 0.046) showed a reduction in 
frontal (F3) LF amplitude (compared to middle-aged) but not after 
anodal tDCS (p = 0.466).

4. Discussion

In the present study, we  investigated the behavioral and neural 
effects of atDCS applied over the left DLPFC during the encoding phase 
of an EM Old-New recognition task in healthy middle-aged and older 
adults. Behavioral results showed that age modulated the effect of atDCS 
during the encoding on EM abilities, with an opposite pattern of results 
in the two age groups: whereas older adults improved their recognition 
performance, middle-aged participants showed a worsening in 
performance. This is the first study to highlight such an age-related 
difference in atDCS outcomes regarding memory tasks.

FIGURE 3

Grand-average ERP waveforms elicited by the old stimuli (hit) in the Anodal (red line) and Sham (black line) sessions for the middle-aged (upper panel) and 
older (lower panel) adults at the F3, Fz, F4, P3, Pz, and P4 electrodes. Vertical lines highlight the time window considered for the different ERP components. 
Black vertical lines with an asterisk indicate statistically significant differences between the anodal and sham conditions. EF, Early Frontal Old-New effect; LF, 
Late Frontal Old-New effect; P, Parietal Old-New effect. * indicates a significant difference.
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TABLE 2 Mean amplitudes and standard deviations (in parentheses) of the Early Frontal (EF), Parietal (P), and Late Frontal (LF) effects, measured in the 
Old-New difference waveforms, in the anodal and sham sessions, for the middle-aged adults and older adults at each electrode position where the effect 
was evaluated (F3, Fz, and F4 for the EF and LF effects, and P3, Pz, and P4 for the P effect).

Early frontal effect  
(400–700 ms)

Parietal effect (450–800 ms) Late frontal effect  
(800–1,600 ms)

Anodal Sham Anodal Sham Anodal Sham

F3/P3 Middle-aged 

adults

−0.21 (2.27) 0.61 (1.48) −0.12 (1.85) 0.63 (2.28) 0.22 (2.29) 1.50 (3.21)

Older adults 0.61 (0.97) 0.42 (1.41) 0.09 (1.04) 0.18 (1.76) 0.11 (1.86) 0.40 (1.56)

Fz/Pz Middle-aged 

adults

1.02 (1.89) 1.40 (1.53) 0.38 (1.90) 1.22 (2.89) 1.35 (2.05) 1.85 (2.26)

Older adults 1.09 (1.19) 1.12 (1.45) 0.03 (1.45) 0.36 (2.12) 0.81 (1.83) 0.20 (1.38)

F4/P4 Middle-aged 

adults

1.52 (1.52) 1.81 (1.60) 0.72 (1.77) 1.30 (2.33) 1.59 (1.87) 2.04 (2.52)

Older adults 1.51 (1.12) 1.51 (1.43) 0.37 (1.54) 0.60 (1.62) 0.97 (1.75) 0.45 (1.58)

Present results on how tDCS applied during the encoding phase of 
an EM task differently affected the behavioral indexes in the two age 
groups may help to disentangle the specific mechanisms of action of 
tDCS upon EM processes. Indeed, a better/worse recognition 
performance can rely either on a more/less efficient encoding of target 
images (Old stimuli) or on a reduction/increase of interference of 
distractor stimuli (New stimuli) during the recognition phase. The 
present results showed that Hits (Old stimuli correctly judged as old) 
were enhanced by 2.50% and reduced by 2.41% after atDCS (compared 
to sham) in older and middle-aged adults, respectively. In contrast, CR 
(New stimuli correctly judged as new) were not affected by 
atDCS. Thus, we hypothesize that prefrontal atDCS affected recognition 
memory performance by strengthening (or decreasing) the memory 
traces of old to-be-remembered images (those presented during the 
delivery of tDCS) rather than by acting upon the response to distractor 
stimuli (New items) that have not been presented during the encoding 
phase. These findings appear consistent with an “online,” within-
session effect of atDCS, rather than an “offline” post-tDCS session 
improvement (Sandrini et al., 2019), emphasizing that task component 
and age, not only tDCS, are relevant elements in determining the 
final effect.

Electrophysiological results showed that the behavioral deterioration 
observed in the group of middle-aged adults was mirrored with a 
modulation of specific EM neural correlates. Middle-aged adults showed 
a significant reduction in the left hemisphere EF and LF components 
after atDCS but not after sham tDCS. In contrast, the behavioral 
improvement observed in the group of older adults was not associated 
with any statistically significant modification of the electrophysiological 
components. To date, no study has investigated the effects of tDCS on 
these ERP signatures of EM in older adults.

It is widely held that recognition memory is supported by two 
functionally distinct processes, namely, familiarity and recollection 
(Friedman, 2013). The present ERP results showed that the first EM 
component affected by atDCS in the group of middle-aged adults was 
the EF effect, which represents a putative mechanism indexing 
familiarity-based recognition processes (Curran, 2000; Rugg and 
Curran, 2007). Through the reduction in EF amplitude in middle-aged 
adults, atDCS might have interfered with mnemonic processes relying 
on familiarity (i.e., fast and relatively automatic processes based on 
feeling that an event is old or new in the absence of confirmatory 

contextual information; Daselaar et al., 2006), causing a reduction in 
recognition efficiency in this age group.

Together with familiarity process modulation, the ERP results 
showed that atDCS also induced a reduction in the LF effect amplitude 
in middle-aged adults only in the stimulated left DLPFC. This later 
positive component is usually associated with post-decisional 
monitoring aspects of mnemonic processes more linked to executive 
functioning (Friedman and Johnson, 2000; Rugg, 2004; Hayama et al., 
2008). However, atDCS over the left DLPFC did not induce any 
modulation of the recollection-based mnemonic processes, which are 
indexed by the parietal EM.

To our knowledge, there is only one other study that analyzed the 
effects of atDCS on ERP components elicited in an EM task (Lu et al., 
2015). This study found modulations produced by atDCS in healthy 
young participants in the N400 and P600 ERP components, observable 
in the direct traces in a verbal EM task. The amplitude of N400 was 
enhanced in frontal regions and decreased in parietal regions after 
atDCS, while P600 amplitude was enhanced in parietal locations. 
However, the author do not discuss the functional significance of these 
modulations, nor the possible modulations over the old-new effects.

Interestingly, significant ERP amplitude reductions were restricted 
to the stimulated region (i.e., left prefrontal cortex) in the present results. 
The spatial specificity of this effect also aligns well with the hypothesized 
mechanism of action of atDCS on the behavioral measures (see above). 
In fact, there is evidence indicating that tDCS modulates neuro-
metabolite levels at the site of stimulation and that this translates into 
alterations in behavioral outcomes (Chhabra et al., 2021). Notably, the 
“online” obtained effect on encoding processes is in accordance with the 
HERA (Hemispheric Encoding Retrieval Asymmetry) model, which 
postulates that the left DLPFC is crucially involved in the encoding of 
memory contents, whereas the right DLPFC is crucial for retrieval 
(Tulving et al., 1994; Nyberg et al., 1996; Habib et al., 2003; Manenti 
et al., 2012).

The opposite pattern of tDCS effects in middle-aged and older 
adults may point toward differential functionality of the system, 
highlighting the importance of the interaction of brain stimulation 
with brain activity in defining the behavioral outcome (Miniussi et al., 
2010, 2013). Among the possible explanations put forward in the 
literature to unfold the inter-individual differences in tDCS efficacy, 
the present results may fit with previous studies supporting the 
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hypothesis that tDCS gains are restricted to higher task demands (e.g., 
Li et al., 2015). Accordingly, older adults might experience a higher 
cognitive load than middle-aged adults when performing the same EM 
task and thus might benefit from atDCS-induced effects. However, 
cognitive load was not measured in this study, and no between-group 
difference in recognition performance was observed between groups 
after sham stimulation. Previous studies also suggested graded 
beneficial effects of tDCS from healthy young adults to physiological 
aging and then to pathological aging, with low cognitive performance 
groups benefitting more from the stimulation and with possible 
deleterious outcomes in healthy young adults who do not present a 
need for stimulation (Hsu et  al., 2015). Although this framework 
appears promising for the interpretation of the present results, again, 
we did not observe any differences between middle-aged and older 
adults in cognitive functioning.

Another model that has been proposed refers to the “stochastic 
resonance,” which states that the same amount of stimulation may 
induce different ratios of signal-to-noise increase depending on the 
subject’s activation state (Miniussi et al., 2013; Fertonani and Miniussi, 
2017). Consequently, the distinct neural activation that older adults 
might need to execute the task might have represented the optimal state 
to shape the beneficial behavioral outcome. Furthermore, it has been 
proposed that the leeway for tDCS modulation depends on the 
dissociation of the neural system from a previous optimal state. 
Therefore, whereas middle-aged adults might function close to their 
homoeostatic optimum (with a relatively small margin for tDCS 
improvement), older adults might shift away from it, possibly making 
their brain more amenable to tDCS-induced gains (Habich et  al., 
2020a,b).

However, in the absence of imaging data characterizing the neural 
state of the two groups of participants, it is difficult to draw a broader 
conclusion about the neural basis underlying the opposite tDCS effects.

Although the present results appear promising, some issues need 
to be addressed. First, the limitations of the cross-sectional designs 
need to be  considered when interpreting the present results. A 
longitudinal study assessing the within-subjects progression along the 
aging lifespan is needed to verify how the impact of tDCS on EM 
changes as the aging process advances. Another limitation that needs 
to be addressed regards the lack of a control condition, such a control 
target site and/or different intensities. This type of control conditions 
are important to ensure that changes in memory performance are 
specific to the protocol adopted. However, our study did not aimed at 
investigating the optimal tDCS protocol to induce memory 
improvements but to assess whether the same protocol applied in 
different aging stages induced differential effects. We  want to 
emphasize that it remains to be  clarified whether our results 
generalize to other tDCS electrode configurations and stimulation 
parameters, highlighting the importance and non-triviality of 
replicating and extending our observations while varying 
methodological factors.

In our study, we did not have MRI scans of the participants, thus 
impeding us from controlling for whether different levels of cortical 
atrophy between middle-aged and older adults may have been associated 
with different electric field characteristics.

Our experimental design did not include a baseline assessment 
in the EM task, like in several other paradigms where the main aim 
was to assess tDCS effects on memory in two different groups (e.g., 
Manenti et al., 2013; Brambilla et al., 2015; Fiori et al., 2017; Leach 
et al., 2019). The inclusion of a baseline would have augmented the 

length of experimental sessions, with possible detrimental effects, 
e.g., increasing fatigue level and/or decreasing participants’ 
adherence to the project. Importantly, we did not find differences 
between groups in any of the behavioral and ERP variables in the 
sham condition nor in any of the neuropsychological measures at 
baseline. Moreover, we ensured that experimental conditions were 
exactly the same in both experimental sessions except for the tDCS 
condition. Hence, although group differences at baseline in this 
specific EM task cannot be  completely ruled out, it is likely that 
behavioral and neural differences are due to the application of atDCS.

Here, we provide evidence for an age-dependent effect of atDCS 
over the DLPFC on EM and its underlying electrophysiological 
substrates, indicating different and opposing modulatory patterns along 
the healthy aging continuum. These results contribute to a better 
understanding of the differential age effects of tDCS, giving support to 
the notion that tDCS combined with a task can be used to improve 
cognition only under given conditions. Because of altered neuroplasticity 
and network dynamics with age, a detailed investigation of older adults 
covering a wide age range is of paramount importance. Such an 
investigation would both elucidate the complexity of tDCS effects at the 
neurophysiological level and help develop more individually tailored 
interventional protocols in healthy populations and in age-related 
diseases, such as Alzheimer’s disease and dementia.
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