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White matter injury, cholesterol
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dysmetabolism interact to produce
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neuropathology: A hypothesis and
review
Frank R. Sharp*, Charles S. DeCarli, Lee-Way Jin and Xinhua Zhan
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CA, United States

We postulate that myelin injury contributes to cholesterol release from myelin

and cholesterol dysmetabolism which contributes to Abeta dysmetabolism, and

combined with genetic and AD risk factors, leads to increased Abeta and amyloid

plaques. Increased Abeta damages myelin to form a vicious injury cycle. Thus,

white matter injury, cholesterol dysmetabolism and Abeta dysmetabolism interact

to produce or worsen AD neuropathology. The amyloid cascade is the leading

hypothesis for the cause of Alzheimer’s disease (AD). The failure of clinical trials based

on this hypothesis has raised other possibilities. Even with a possible new success

(Lecanemab), it is not clear whether this is a cause or a result of the disease. With

the discovery in 1993 that the apolipoprotein E type 4 allele (APOE4) was the major

risk factor for sporadic, late-onset AD (LOAD), there has been increasing interest

in cholesterol in AD since APOE is a major cholesterol transporter. Recent studies

show that cholesterol metabolism is intricately involved with Abeta (Aβ)/amyloid

transport and metabolism, with cholesterol down-regulating the Aβ LRP1 transporter

and upregulating the Aβ RAGE receptor, both of which would increase brain Aβ.

Moreover, manipulating cholesterol transport and metabolism in rodent AD models

can ameliorate pathology and cognitive deficits, or worsen them depending upon

the manipulation. Though white matter (WM) injury has been noted in AD brain since

Alzheimer’s initial observations, recent studies have shown abnormal white matter

in every AD brain. Moreover, there is age-related WM injury in normal individuals

that occurs earlier and is worse with the APOE4 genotype. Moreover, WM injury

precedes formation of plaques and tangles in human Familial Alzheimer’s disease

(FAD) and precedes plaque formation in rodent AD models. Restoring WM in rodent

AD models improves cognition without affecting AD pathology. Thus, we postulate

that the amyloid cascade, cholesterol dysmetabolism and white matter injury interact

to produce and/or worsen AD pathology. We further postulate that the primary

initiating event could be related to any of the three, with age a major factor for WM

injury, diet and APOE4 and other genes a factor for cholesterol dysmetabolism, and

FAD and other genes for Abeta dysmetabolism.
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Introduction

Currently, most would consider the amyloid/Abeta cascade
hypothesis to be the leading candidate for what causes Alzheimer’s
disease (AD) (Selkoe, 2011; Selkoe and Hardy, 2016). Indeed, this
hypothesis has fueled most of the recent clinical trials aimed at
removing Abeta/amyloid from the brain. With the failure of almost all
of these trials (Asher and Priefer, 2022), there have been a few clinical
trials aimed at trying to remove Tau which have also failed (Asher and
Priefer, 2022). Thus, questions have arisen as to whether deposition
of amyloid and/or Tau is the cause or is a consequence of the
disease (Herrup, 2015). This has led to some alternative hypotheses
that cholesterol metabolism or other pathways might be involved
(Høilund-Carlsen et al., 2022; Rudge, 2022).

With the discovery that Apolipoprotein E ε4 (ApoE4) is the
major susceptibility gene for late onset AD (LOAD), and since
APOE is the major cholesterol transporter in brain and the body,
there has been increasing interest in cholesterol metabolism in AD.
Indeed, studies in the last 20 years have shown that cholesterol
metabolism is intricately intertwined with Abeta/amyloid transport
and metabolism (Dietschy and Turley, 2001; Mulder et al., 2001;
Burns M. P. et al., 2003; Papassotiropoulos et al., 2003; Yanagisawa,
2003; Rahman et al., 2005; Michikawa, 2006; Kim et al., 2007; Liu
et al., 2007; Fan et al., 2009; Martins et al., 2009; Zhou et al., 2009;
Wollmer, 2010; Poirier et al., 2014; Chai et al., 2021; Rhea and Banks,
2021; Wang H. et al., 2021). Indeed, manipulations of cholesterol
transport and metabolism can completely ameliorate or worsen AD
pathology in mouse AD models, raising the question of whether
cholesterol metabolism might be upstream and be a driver or at least
a contributor to AD pathology in some AD subjects (Martins et al.,
2009; Staurenghi et al., 2021; Rudajev and Novotny, 2022).

Though white matter injury was described by Alzheimer in
his first reports of AD brain neuropathology, there has been the
general belief that the white matter injury was a consequence of gray
matter disease/neuronal cell death. However, interest in white matter
injury in AD brain has increased with the realization mostly from
MRI studies that white matter injury precedes amyloid plaques and
neurofibrillary tangles in human early onset familial AD (FAD), in
human late onset AD (LOAD), and in rodent AD models (Sexton
et al., 2011; Li et al., 2012; Sharma et al., 2022) (see below).
Moreover, high concentrations of Abeta have been shown to damage
oligodendrocytes and oligodendrocyte precursor cells (OPCs) as well
as myelin itself (see below). In spite of the tremendous increase
in knowledge noted above, there has not been a model proposed
that provides a connection between Abeta/amyloid transport and
metabolism, cholesterol transport and metabolism, and white matter
injury. Our purpose is to provide a plausible model and make a
connection between all three.

We propose that many systemic factors lead to white matter
injury, with increasing age being the number one initiator. Age
combined with ApoE status and many other factors, combined
with other AD risk factor genes, lead to myelin injury which
occurs in white matter and gray matter (Figure 1, arrows 2, 3, 5).
The myelin injury leads to cholesterol dysmetabolism in gray and
white matter (Figure 1, arrow 2). Increases of cholesterol in brain
impair export of Abeta and promote formation of amyloid plaques
(Gamba et al., 2015; Figure 1, arrow 1). Cholesterol also binds
APP to promote formation of Abeta. Oxidized forms of cholesterol
likely promote brain glucose hypometabolism (Gamba et al., 2019;

Figure 1, arrow 1). As Abeta levels increase they participate in
formation of Abeta aggregates which is promoted by cholesterol and
denatured myelin basic protein (MBP), another product of injured
myelin. These aggregates form amyloid plaques. Abeta itself is toxic
to oligodendrocytes and OPCs and thus also contributes to white
matter injury (Figure 1, arrow 3). Thus, a positive feedback injury
loop is established with injury to myelin/white matter as the source
of cholesterol fuel. Finally, cholesterol and Abeta both contribute
to forming hyperphosphorylated tau in neurofibrillary tangles and
contribute to vascular injury seen in AD (Figure 1, arrows 7–10).
These pathways are shown in greater detail in Figure 2.

We also propose that there are three major groups of
AD subjects that are initiated either by White Matter Injury
(Age, genetics, systemic factors) (Figure 1, arrow 5), Cholesterol
dysmetabolism (APOE4, other genes, diet) (Figure 1, arrow 4) or
Abeta dysmetabolism (FAD, other genes) (Figure 1, arrow 6). We
now outline the literature supporting these ideas, though this is not
an exhaustive review.

Evidence for white matter injury in AD

Humans–LOAD

Myelin injury in Alzheimer’s disease (AD) brain was first noted
by Alzheimer (Alzheimer et al., 1991; Möller and Graeber, 1998).
Following that there were infrequent mentions of white matter
pathology in AD brain including those by Terry who found evidence
of primary demyelination and lipid-like material passing through
the walls of small vessels to enter the lumen in AD brain (Terry
et al., 1964). The consensus in the field during the next 60 years,
however, was that white matter injury was a consequence of gray
matter injury, an idea still held by many (Papuć and Rejdak,
2020). However, it gradually became clear that white matter injury
was an important component of AD neuropathology (Englund,
1998), with late myelinating white matter and gray matter layers
developing plaques and tangles earlier and in greater numbers than
early myelinating areas (retrogenesis theory), with amyloid plaques
developing earliest in poorly myelinated gray matter regions (Braak
and Braak, 1996; Braak et al., 1999; Stricker et al., 2009; Brickman
et al., 2012). Abeta is also deposited in white matter where it is closely
associated with blood vessels (Iwamoto et al., 1997).

MRI studies in LOAD

Interest in white matter (WM) injury was stirred by the
development of brain MRI techniques (Diffusion Tensor Imaging–
DTI, and Diffusion Imaging) that made it possible to detect early
injury to WM (Gold et al., 2012; Radanovic et al., 2013; Nasrabady
et al., 2018; Xiao et al., 2022). Bartzokis et al. (2004) examined human
brains from normal aging and AD brains during life. They studied
the damaged myelin in normal aging and Alzheimer’s disease (AD)
brains by evaluating early myelinating and later myelinating regions
of the splenium and genu of the corpus callosum. They found changes
in myelin beginning at age 31 in normal brain, with later-myelinating
regions being more susceptible. This process was worse throughout
the AD brain (Bartzokis et al., 2004). Thus, they were among the
first to link myelin breakdown beginning in midlife and continuing
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FIGURE 1

Diagram showing proposed interactions between white matter injury, cholesterol dysmetabolism, and Abeta dysmetabolism that leads to Alzheimer’s
plaques, Tau hyperphosphorylation (Tau-PPP), and vascular dysfunction in Alzheimer’s disease (AD). FAD, Familial Alzheimer’s disease (early onset AD);
dMBP, degraded myelin basic protein.

in the aging brain to the more severe myelin breakdown that they
observed in AD brain (Bartzokis et al., 2003). They also showed that
the APOE4 allele worsened the white matter injury observed in old
healthy individuals (Bartzokis et al., 2007) and were some of the
first to emphasize WM injury in AD and its importance to guiding
future therapies since the amyloid hypothesis did not at that time
help explain WM injury in AD brains (Bartzokis, 2011). As noted
below, Abeta can directly injure myelin and oligodendrocytes and
could contribute to early WM injury.

A diffusion MRI study of young onset AD showed loss of U
fibers (superficial white matter) and dispersion of these fibers in
AD (Veale et al., 2021). Moreover, MRI shows greater diffusion
restriction in white matter in AD patients (Hanyu et al., 1997)
and in preclinical AD where patients are cognitively normal but
have positive amyloid positron emission tomography (florbetapir)
(Benitez et al., 2022). Other MRI studies show Diffusion Tensor
Imaging (DTI) abnormalities in preclinical AD (normal cognition,
but abnormal CSF AD markers) (Hoy et al., 2017). The fornix
was the most affected WM tract in one AD study (Jin Y. et al.,
2017). Another MRI DTI study showed widespread white matter
degeneration prior to the onset of dementia (Maier-Hein et al., 2015).
A meta-analysis of 227 AD patients and 215 healthy controls with
voxel based morphometry showed decreases of white matter volume
in AD subjects (Li et al., 2012). Several diffusion indices suggest
damage of the white matter is much worse in AD compared to
MCI (Mild Cognitive Impairment) (Shu et al., 2011). A meta-analysis
including 41 MRI-DTI studies showed abnormal mean diffusivity in
most regions of AD and MCI brains (Sexton et al., 2011). Combining

3-dimensional volumetric scans and DTI in AD patients suggests
macroscopic white matter atrophy is secondary to gray matter
atrophy, while microscopic white matter damage detected by MRI-
DTI starts earlier in frontal areas before any macroscopic atrophy in
gray and white matter can be detected (Yoon et al., 2011).

A meta-analysis of 1,021 patients in 26 studies showed decreased
fractional anisotropy (FA) in AD compared to MCI patients. This
occurred in frontal lobe white matter, corpus callosum white matter,
fornix and hippocampus, cingulate gyrus and bundle, uncinate and
superior longitudinal fasciculus, and inferior fronto-occipital and
inferior longitudinal fasciculus (Qin et al., 2021). Thus, though there
are changes of WM in MCI, there is a progression of the changes
in going from MCI to AD. Not surprisingly, there are alterations
in white matter and white matter networks by DTI in preclinical
AD (cognitively normal, positive florbetapir-PET or abnormal CSF
Abeta) (Molinuevo et al., 2014; Fischer et al., 2015). There are also
MRI-DTI abnormalities in white matter of middle aged cognitively
normal subjects whose parents had AD (Bendlin et al., 2010).

Familial early onset AD (FAD)

The Bartzokis group described white matter (WM)changes using
MRI-Diffusion Tensor Imaging (DTI) with decreased Fractional
Anisotropy (FA) in the WM in preclinical and pre-symptomatic FAD
carriers, particularly in late-myelinating tracts connecting limbic
areas (Ringman et al., 2007). Decreased FA in the columns of the
fornix is particularly robust in early FAD, well before any amyloid
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FIGURE 2

A diagram of the molecular interactions between AD risk factors, white matter injury, cholesterol metabolism and transport, and Abeta metabolism and
transport. A variety of environmental, systemic, and genetic factors contribute to white matter injury which causes release of cholesterol from myelin.
The white matter cholesterol contributes to cholesterol dysmetabolism along with the APOE4 allele and multiple genetic risk factor genes. Cholesterol
has multiple interactions with Abeta including down-regulating LRP1, upregulating RAGE and binding APP to contribute to Abeta dysmetabolism. CVD,
cerebrovascular disease; CardioVD, cardiovascular disease; LPS, lipopolysaccharide; WMH, white matter hyperintensities; AD, Alzheimer’s disease; OPC,
oligodendrocyte progenitor cells; BBB, blood brain barrier; dMBP, degraded myelin basic protein; APP, amyloid precursor protein; TBI, traumatic brain
injury; APOE, apolipoprotein E; LRP1, low density lipoprotein receptor-related protein-1; RAGE, receptor for advanced glycation end products; ABCA1,
ATP binding cassette subfamily A member 1; LXR, liver X receptor; BACE, beta secretase 1; Tau-PPP, hyperphosphorylated Tau.

plaque and tau pathology (Ringman et al., 2007). Others studies
have supported WM injury in FAD (Migliaccio et al., 2012). White
matter hyperintensities are a prominent feature of FAD (Schoemaker
et al., 2022). Subjects with presenilin FAD mutations have many
biochemical alterations of their white matter (Roher et al., 2013). DTI
MRI studies have shown WM microstructural damage is more severe
in early onset FAD compared to LOAD with the two groups having
different topographical distributions of damage (Canu et al., 2013).

Down syndrome

Most Down’s syndrome patients older than forty develop
neuropathology identical to that seen in FAD and LOAD patients.
Diffusion Tensor Imaging (DTI-MRI) has shown abnormal myelin
in selected white matter tracts in non-demented, young Down
syndrome subjects (Romano et al., 2018). Diffusion MRI of Down
patients show early changes in late-myelinating and relative sparing
of early myelinating pathways, consistent with the “retrogenesis
model” proposed for sporadic AD. These late-myelinating tracts
correlated with cognitive abnormalities and with regional amyloid
deposition observed with Down syndrome (Rosas et al., 2020).

Neuropathology and molecular studies of
white matter injury

There have now been many pathological and molecular studies
showing loss of myelin and oligodendrocytes in AD white matter
(Brun and Englund, 1986; Sjöbeck et al., 2005; Butt et al., 2019).
There are early alterations in oligodendrocytes and oligodendrocyte
precursor cells (OPC) and alterations in transcription of myelin-
related genes in AD brains that are worse in those with more
co-morbidities (Ferrer and Andrés-Benito, 2020). A single cell
transcriptomic study of AD brain showed abnormal gene expression
in oligodendrocytes and OPCs (Mathys et al., 2019). Transcriptomic
network analyses showed abnormalities of two prominent myelin
pathways in AD compared to control brains (Humphries et al., 2015).

Cognitive impairment increases with the number of myelin
lesions in AD brain which is independent of the amount of amyloid,
and appears before any neuronal loss. Myelinating oligodendrocytes
in the gray matter are more vulnerable than those in white matter, and
the degeneration correlated with the amount oligodendrocyte DNA
damage (Tse et al., 2018). Fibrillar Abeta pathology in cortical gray
matter occurs in areas of focal demyelination in human presenilin-1
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FAD, LOAD, and two mouse AD transgenic models (Mitew et al.,
2010). The focal demyelination was greatest in the core of Abeta
plaques, with cores showing a focal loss of oligodendrocytes in FAD
and LOAD. In human AD and transgenic AD mice that had plaque-
free neocortical regions, these showed no evidence of demyelination
or loss of oligodendrocytes compared to controls (Mitew et al., 2010).

Lipids comprise 80% of myelin, and the myelin lipids,
galactosylceramide, and sulfatide are critical for normal neurological
function. One study found marked decreases of galactosylceramide
and sulfatide in AD brain which was due to the loss of their
biosynthetic precursor, very long chain ceramides (Couttas et al.,
2016). Ceramide synthase 2 (CERS2) produces very long chain
ceramides. CERS2 activity decreased at an early Braak stage I/II in
temporal cortex, and later Braak stage III/IV in hippocampus and
frontal cortex, indicating that decreased CERS2 activity precedes
formation of cortical neurofibrillary tangles (Couttas et al., 2016).
These myelin changes were observed in AD gray matter. Another
study found sulfatides depleted as much as 93% in gray matter
and 58% in white matter from AD brains of subjects with mild
dementia. All other lipid classes except plasmalogen were unaltered.
The content of ceramides, a class of potential sulfatide degradation
products, was increased three-fold in white matter and peaked with
very mild AD dementia (Han et al., 2002). Other studies have noted
increased Abeta and decreased cholesterol and myelin proteins in
AD WM (Roher et al., 2002) as well as decreased lipids (Wallin
et al., 1989). Lipid peroxidation is a prominent feature of AD brain
(Chia et al., 1984). APP (amyloid precursor protein) is prominent in
AD white matter (Sapirstein et al., 1994; Tokuda et al., 1994). Thus,
biochemical studies confirm myelin injury seen in MRI studies of AD.

AD animal models show white matter
injury

The 3 × Tg-AD mouse model shows myelin loss at 6 and
12 months of age. There is a corresponding oligodendrocyte
progenitor cell (OPCs) loss with surviving OPCS showing abnormal
structure suggesting OPC dysfunction and defective myelin repair
(Vanzulli et al., 2020). There is myelin lipid loss around amyloid
plaques coupled with APOE deposition and myelin sheath disruption
in 5xFAD mice (Kaya et al., 2020). APPxPS1 transgenic mice
show reduced fiber tract volumes in corpus callosum and anterior
commissure with axon loss and myelin breakdown (Chen et al.,
2011; Dong et al., 2018). Triple-transgenic AD (3 × Tg-AD)
mice exhibit myelin abnormalities similar to FAD patients; and
the PS1 (M146V) mutation predisposes mouse OPCs to Aβ(1-
42) -induced alterations in cell differentiation and function that
results in an abnormal distribution of myelin basic protein (MBP)
(Desai et al., 2011).

The above studies along with many not cited here have led some
investigators to ask “Is Alzheimer’s disease a disease of white matter?”
(Sachdev et al., 2013; Nasrabady et al., 2018). This review suggests
that white matter injury contributes to cholesterol dysmetabolism
which then contributes to Abeta dysmetabolism. One of the central
questions that remains unanswered from all of these studies is
whether the white matter changes that occur in AD are secondary
to very early gray matter/axon injury, or whether they are due to
“primary effects” on the myelin (Fletcher et al., 2013). We argue
that age, AD risk factor genes and systemic factors can selectively

injure oligodendrocytes, OPCs and myelin that results in cholesterol
dysmetabolism which tips the scales toward Abeta retention and
aggregation and amyloid plaque formation.

Evidence that white matter (WM)
injury can precede ad pathology

Humans

There is evidence in both early onset FAD and sporadic late onset
AD (LOAD) that myelin and oligodendrocyte injury precede the
development of amyloid plaques and neurofibrillary tangles (Cai and
Xiao, 2016; Butt et al., 2019). A study was performed for 162 healthy
2–25 month-old infants with no family history of any neurological
or psychiatric disorders for APOE ε4 carrier compared to non-
carrier groups (Dean et al., 2014). The APOE ε4 carrier group had
several white and gray matter differences not seen in the non-carriers
(Dean et al., 2014). APOEε4 carriers have disrupted rates of cognitive
and white matter development in childhood (Remer et al., 2020).
Alterations in white matter integrity occur in normal middle-aged
women at high risk for AD who either have a family history of
AD or at least one APOE4 allele (Gold et al., 2010). White matter
microstructure is altered as assessed by DTI-MRI in cognitively
normal middle-aged APOE-ε4 homozygotes prior to any Abeta/tau
pathology (Operto et al., 2018). An AD family history correlated
with lower Fractional Anisotropy (FA) on MRI-DTI in brain regions
known to be affected by AD. There was no main effect of APOE4
in one study; however, APOE4 carrier patients with a family history
of AD and an APOE4 allele had the most abnormal white matter
compared to other groups (Bendlin et al., 2010). APOE4 status affects
white matter integrity in young to middle age individuals before
amyloid plaque or Tau pathology (Goltermann et al., 2021). The
decreased fractional anisotropy in DTI-MRI studies of white matter
of mild cognitive impairment (MCI) patients were associated with
progression to AD (Lo Buono et al., 2020).

Progression of changes of episodic memory can be predicted
in cognitively intact, healthy aged individuals by disruption of
white matter microstructure by DTI-MRI in the temporal lobe
(Lancaster et al., 2016). These findings were observed in individuals
with a high AD risk with a family history of AD and an APOE4
allele. This suggests the white matter disruption is related to
early neuropathological changes prior to any cognitive changes or
formation of plaques and tangles (Lancaster et al., 2016). DNA-
damage to oligodendrocytes occurs before formation of plaques and
tangles in AD brain (Tse et al., 2018).

The best evidence for myelin injury occurring prior to formation
of plaques and tangles comes from those patients with early onset
autosomal dominant, familial AD (FAD). This is because the age
of onset of formation of amyloid plaques and tangles is fairly
consistent. MRI -diffusion tensor imaging (DTI) of FAD mutation
carriers shows white matter abnormalities in late-myelinating tracts
before formation of plaques and tangles (Ringman et al., 2007).
FAD mutation carriers had greater total White Matter Hyperintensity
volumes, which increased 6 years before predicted symptom onset
(Lee et al., 2016). The parietal and occipital lobes were affected nearly
22 years before estimated onset (Lee et al., 2016). In another FAD
study there was a stronger increase of mean diffusivity by DTI-MRI
within parietal and frontal white matter in FAD mutation carriers
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(Araque Caballero et al., 2018), with changes being observed 5–
10 years before predicted symptom onset and correlating with low
CSF Abeta1-42 and high tau, P-tau and TREM2 (Araque Caballero
et al., 2018).

AD animal models

All rodent AD models studied show evidence of white matter
injury prior to formation of plaques and tangles. Diffusion MRI
of 3 × Tg-AD mice showed myelin abnormalities throughout
brain including fimbria and fornix before development of AD
pathology (Falangola et al., 2020). Myelin basic protein (MBP)
immunoreactivity in the fimbria was less in 3 × Tg-AD mice
compared to controls. Diffusion MRI detected myelin abnormalities
in 2-month-old 3 × Tg-AD mice who develop amyloid plaques by
6 months (Falangola et al., 2020). APP/PS1 AD mice show myelin
loss and MBP mRNA and impaired oligodendrocyte development in
2–3 month old mice well before the formation of plaques and tangles
(Wu et al., 2017; Dong et al., 2018). Myelin deficits in 5XFAD mice
start at month of age and worsen with age (Gu et al., 2018). An
index of myelin thickness changed in 1-month-old 5XFAD mice in
hippocampus and entorhinal cortex compared to controls and spread
to other regions in older mice. 5XFAD mice have spatial memory
deficits by 1 month and spatial learning deficits by 2 months of
age that correlate with abnormalities of myelin (Gu et al., 2018).
Myelin abnormalities occur months before amyloid plaque pathology
in 3 × Tg-AD mice (Desai et al., 2009, 2010). There is increased BBB
permeability in Tg2576 AD in gray and white matter in mice months
before any evidence of plaques and tangles (Ujiie et al., 2003).

Thus, there is increasing evidence for white matter (WM) injury
prior to formation of plaques and tangles particularly in FAD and
in AD mouse models. The evidence for LOAD is less convincing,
though there is evidence for MRI-DTI abnormalities in cognitively
normal individuals at high risk for AD including those with a family
history of AD and/or an APOE4 allele. These findings require an
explanation but may help us understand why so many systemic
factors appear to contribute to AD risk, since many systemic factors
have significant effects on brain white matter than can accumulate
with aging (Figure 2). Age is the number one risk factor for LOAD
and since there are increasing white matter abnormalities with aging,
this may help explain why aging plays such a prominent role both in
FAD and LOAD. These observations do not rule out an important
role for Abeta/APP since Abeta has been shown to damage white
matter (see next section). Thus, elevations of Abeta prior to formation
of plaques might contribute to WM injury (see below).

By linking white matter injury to cholesterol and Abeta
metabolism and transport, we postulate that this helps explain why
so many systemic factors increase the risk of AD. We postulate that
the many AD risk factors act on white matter particularly with aging
when the BBB is leakier (Methia et al., 2001; Ujiie et al., 2003; Zipser
et al., 2007; Zlokovic, 2008; Deane et al., 2009; Farrall and Wardlaw,
2009; Jaeger et al., 2009; Lamartinière et al., 2018; Ma et al., 2018;
Barisano et al., 2022; Wang et al., 2022c). Indeed, BBB dysfunction
precedes amyloid plaque formation (Ujiie et al., 2003). Thus, we
propose that many AD risk factors contribute to white matter injury
and cholesterol dysmetabolism as shown in Figure 2. We now discuss
some of the AD risk factors that contribute to WM injury in normal
aging and in AD brain.

Multiple mechanisms of white matter
(WM) injury in AD

Age

Age is the most important factor that determines risk and time of
onset of LOAD and early onset/familial AD (Braak and Braak, 1997;
Liu et al., 2017). How age predisposes to AD, however, has not been
clear (Stahon et al., 2016). One possibility is that age-induced injury
to white matter could be the primary reason (Liu et al., 2017; Chen
et al., 2020; Sorond et al. (2020)). Indeed, age and APOE-ε4 allele
status affect myelin content in white matter of cognitively normal
adults (Operto et al., 2019). However, to complicate this assertion it
has been found that increasing age decreases LRP1 at the BBB which
would decrease Abeta efflux from cells and the BBB, and increasing
age increases RAGE at the BBB which would increase Abeta influx
into brain (Osgood et al., 2017). Though this would certainly favor
formation of amyloid plaques, the increased Abeta with age could
also contribute to myelin/white matter injury as noted below. There
is also an age-related decrease in oligodendrocyte precursor cells and
formation of new oligodendrocytes which decreases white matter
injury repair (Miyamoto et al., 2013; Dimovasili et al., 2022). There is
also impairment of OPCs developing into mature oligodendrocytes
in aging white matter (Bagi et al., 2018). White matter remains
vulnerable to normal aging processes through the tenth decade of
life (Bennett et al., 2017). There is less cholesterol in aging brain
likely as the result of myelin loss (Stommel et al., 1989). A diffusion
MRI study showed aging affected white matter microstructure and
macrostructure (Schilling et al., 2022). Overall, there is a loss of
myelin and oligodendrocytes that progresses with normal aging and
in AD brain in spite of an increase of oligodendrocyte precursor cells
(Hampton et al., 2012; Chen et al., 2021).

Aging is also associated with increases of cytokines, chemokines,
lipopolysaccharide (Hakoupian et al., 2021), inflammation and
increased oxidative stress that contribute to white matter injury
(Altendahl et al., 2020). Indeed, T cell infiltration of white matter is
associated with cognitive decline as normal monkeys age (Batterman
et al., 2021). Microglia in white matter associate with myelin injury
in both normal aging and in AD brain and are presumed to clear
damaged myelin (Safaiyan et al., 2021). With aging NMDA receptors
localize to myelin as well as oligodendrocytes, making them more
vulnerable to glutamate (Stys and Lipton, 2007; Baltan, 2016). With
aging there is a decrease in LRP1 and an increase of RAGE at the
BBB which would elevate Abeta levels and make the myelin more
vulnerable to injury from Abeta (see below) (Osgood et al., 2017).

APOE4

The number of oligodendrocytes (OLs) decreases in frontal
cortex of APOE4 brains (Cheng et al., 2022). This decrease of OLs
was also observed in humanized APOE4 transgenic mice without any
neuronal loss. Cultured OLs were killed by lipidated APOE4 (Cheng
et al., 2022).

Other evidence for APOE4 causing myelin injury includes the
finding of DTI white matter abnormalities in cognitively normal
APOE4 homozygotes (Operto et al., 2018) and heterozygotes
(Nierenberg et al., 2005). APOE affects microstructural properties
of the brain WM from early adulthood (Westlye et al., 2012). In
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contrast APOE2 elderly cognitively normal carriers have robust white
matter by DTI (Chiang et al., 2012). Even one APOE4 allele increases
cognitive decline and white matter damage in non-demented elderly
(Sun et al., 2020). ApoE4 is associated with atherosclerosis, amyloid
angiopathy, and WM damage in AD (Tian et al., 2004) and likely
accounts at least in part for the frequent co-occurrence of these
conditions in AD patients (Sweeney et al., 2019).

Abeta

Abeta peptides can kill mature oligodendrocytes (OLs) but not
oligodendrocyte precursor cells (OPCs) in culture (Xu et al., 2001;
Roth et al., 2005; Horiuchi et al., 2012). Moreover, Abeta peptides
also inhibit myelin sheet formation after differentiation of OPCs
(Horiuchi et al., 2012). Importantly, mature oligodendrocytes contain
APP (Garcia-Ladona et al., 1997) and secrete Abeta1-40 and Abeta
1-42 (Skaper et al., 2009b). The metalloprotease ADAMTS4 found
in oligodendrocytes generates N-truncated Aβ peptides and suggests
OLs could release amyloidogenic peptides in AD (Zeng et al., 2005;
Walter et al., 2019). Abnormalities of this Abeta secretion could lead
to white matter injury (Skaper et al., 2009b). Abeta peptides produce
OL cell death by activating the sphingomyelinase-ceramide (Lee et al.,
2004). One study has suggested Abeta oligomers may remove lipid
molecules from the myelin bilayer (Ngo et al., 2021). Indeed, AD
senile amyloid plaques have a 1:1 ratio of Abeta and cholesterol
(Ngo et al., 2021). Injection of Abeta1-42 into rat brain corpus
callosum damages myelin, oligodendrocytes and axons (Jantaratnotai
et al., 2003). Soluble Abeta is increased in AD white matter and
has no correlation with the number of gray matter amyloid plaques
(Collins-Praino et al., 2014). Cerebral amyloid levels are associated
with greater white matter hyperintensity progression in cognitively
normal older adults (Scott et al., 2016).

It seems possible that Abeta may have a larger role in
oligodendrocyte/OPC/myelin injury in some cases of AD. For
example, in familial AD (early onset), there are marked increases
of brain Abeta that are initially intracellular without extracellular
increases that could cause white matter injury prior to any plaque
and tangle formation. There are early increases in Abeta in the
hippocampus of APP transgenic mice that occur prior to formation
of plaques and tangles, which are markedly increased by a high fat
and/or high cholesterol diet (Shie et al., 2002, 2003).

Familial AD genes

Presenilin-1 mutations increase Abeta related oligodendrocyte
injury (Desai et al., 2011) and other FAD mutations also appear
to have Abeta related WM injury (Zhang et al., 2022; Figure 1).
Triple-transgenic AD (3 × Tg-AD) mice, which harbor three FAD
mutations, show myelin abnormalities similar to FAD patients,
suggesting that Abeta may contribute to white matter injury (Desai
et al., 2009). A Presenilin mutation affects OPC differentiation,
compromised OPC cell function, affected myelin basic protein
distribution, and sensitized the OPCs to Abeta induced injury which
was prevented by a GSK-3β inhibitor (Desai et al., 2010, 2011). These
results were supported by a previous study showing a Presenilin-1
mutation worsens glutamate and Abeta injury to OLs, worsens WM
damage and worsens memory function in mice (Pak et al., 2003).

Abeta production is increased with Presenilin redistribution and
aberrant cholesterol transport (Burns M. et al., 2003). FAD patients
with Presenilin mutations have a number of WM biochemistry
abnormalities (Roher et al., 2013).

Cholesterol

About a quarter of the cholesterol found in the body is in the
brain, with most of the brain cholesterol found in myelin. Most of the
brain cholesterol is synthesized within the brain itself, with the blood
brain barrier isolating peripheral from brain cholesterol. However,
there are transporters at the BBB that transport cholesterol from
brain to blood and another that transports cholesterol from blood to
brain (see below) (Dietschy and Turley, 2001; Björkhem and Meaney,
2004). The brain cell types that synthesize cholesterol shifts from
neurons during embryogenesis to oligodendrocytes during postnatal
myelination and finally mainly to astrocytes in the adult brain (Saher
and Stumpf, 2015).

A study of 403 young normal adults showed that cholesterol
levels influence white matter integrity as defined by DTI; moreover,
changes of cholesterol- related genes produced age-specific effects in
brain (Warstadt et al., 2014). Serum cholesterol can predict DTI white
matter microstructure (Warstadt et al., 2014). Patients with familial
hypercholesterolemia have a greater incidence of mild cognitive
impairment (Zambón et al., 2010) which is associated with white
matter abnormalities as assessed by MRI-DTI (Lee et al., 2009; Fischer
et al., 2015). Local cholesterol metabolism orchestrates remyelination
(Berghoff et al., 2022). Blood cholesterol modestly increases the
risk of dementia in a study of more than 1.8 million people over
two decades (Iwagami et al., 2021), which could be due in part
to its effects on brain white matter. AD patients with the Swedish
APP 670/671 mutation have increased 27-hydroxycholesterol in their
brains (Shafaati et al., 2011). Since the 27-OH cholesterol ester comes
from peripheral blood, this implies peripheral cholesterol influx is
increased in brain by this mutation (see below).

Hypertension and cardiovascular disease

Cardiovascular disease is associated with white matter injury
(Suzuki et al., 2021; Austin et al., 2022). Elevated blood pressure
even in young adults leads to white matter abnormalities (Maillard
et al., 2012). Blood pressure and indicators of brain small-vessel
disease are associated with atrophy of structures affected by AD (den
Heijer et al., 2005). Hypertension associated with dementia leads to
oxidative damage and metabolic dysfunction, systemic inflammation
and variability in autonomic control of heart rate (Daugherty,
2021). Spontaneously hypertensive rats have vascular tight junction
disruption associated with inflammatory white matter injury (Yang
et al., 2018). Age-related differences in cerebral WM are worsened
by hypertension (Burgmans et al., 2009). Amyloid angiopathy and
hypertension are both associated with white matter lesions by MRI
in the aging brain (Scott et al., 2015). Even transient hypertension
in midlife can result in white matter lesions and cerebrovascular
pathology in rat brain later in life (Lai et al., 2021). Proton magnetic
resonance spectroscopy showed similar white matter biochemical
changes in patients with chronic hypertension and early Alzheimer’s
disease (Catani et al., 2002).
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White matter hyperintensity volumes are greater in old adults
with low cardiac output due to cardiovascular disease (Jefferson
et al., 2007). AD patients have lower cardiac ejection fractions, lower
cerebral blood flow and more atherosclerotic plaques in the aorta
and brain arteries. Cardiac ejection fraction, basilar artery blood flow
velocity and internal carotid artery velocity are associated with AD
(Jin W. S. et al., 2017). Low cardiac index is associated with AD
(Jefferson et al., 2015). Hypertension, heavy alcohol consumption,
and diabetes damage white matter which accelerates cognitive decline
in the elderly (Wang et al., 2015).

Experimentally induced brain hypoperfusion induces white
matter injury (Farkas et al., 2004; Chen et al., 2022). Bilateral
occlusion of the common carotid arteries causes white matter damage
in adult rats (Kim et al., 2008). Brain ischemia can be a prelude to AD
(Pluta et al., 2021). Vascular dysfunction, in part due to hypertension
and atherosclerosis, is an early feature of AD (Sweeney et al., 2019).
Of note, there are progressive cerebrovascular abnormalities in an AD
mouse model (Jullienne et al., 2022).

White matter hyperintensities (WMH)

The relationship between WMH and WM injury in AD is not
clear. However, WMH lesion volume appears to be a risk factor
for developing AD and presumably the WMH injury associated
with AD (Defrancesco et al., 2013). White matter hyperintensities
predict amyloid increase in Alzheimer’s disease (Grimmer et al.,
2012). The spatial distribution of WMH is associated with future
amyloid accumulation in the cognitively normal elderly without
PET-detectable amyloid pathology (Moscoso et al., 2020). A higher
WMH volume is a risk factor for the conversion to AD (Defrancesco
et al., 2013). WM disease is one predictor of progression from mild
cognitive impairment to AD (Prasad et al., 2011). A meta-analysis
of 36 prospective trials showed that WMH increased the risk of
developing impaired cognition and frank dementia (Hu et al., 2021).

Inflammation/Oxidative
stress/Inflammasomes

Mature oligodendrocytes (OLs) in both AD patients and
an AD mouse model undergo NLRP3-dependent Gasdermin
D-associated inflammatory injury to myelin and axons (Zhang et al.,
2020). Knockdown of Drp1 (a mitochondrial fission guanosine
triphosphatase) in oligodendrocytes (OLs) in AD mice blocks NLRP3
activation, prevents myelin loss, and improves memory function
(Zhang et al., 2020). Drp1 activation in OLs decreases glycolysis
in AD mouse models by inhibiting hexokinase 1 (HK1), which
triggers NLRP3-associated inflammation. Thus, the Drp1-HK1-
NLRP3 pathway appears to play a major in OL injury and possibly
reducing brain glucose metabolism seen in AD (Zhang et al., 2020).

Serum total antioxidant status assays show increased oxidative
stress in AD brain (Zito et al., 2013). The Nrf2 knockout mouse
emphasizes the importance of oxidative stress to myelin health.
Nrf2 is an oxidant-activated transcription factor that increases the
expression of almost every known anti-oxidant gene. Nrf2 knockout
mice are normal when young and in midlife develop a diffuse loss of
myelin by the time they are 10 months of age (Hubbs et al., 2007).
Thus, the survival of myelin into older age is absolutely dependent

on the presence of Nrf2 activation of anti-oxidants enzymes, and any
decrease of anti-oxidant status associated with aging might account
in part for aging related and even AD related myelin injury. The
importance of inflammation in AD is emphasized by the fact that
Non-Steroidal Anti Inflammatory Drugs (NSAIDS) do not affect the
course of AD, but they do markedly decrease the risk of developing
AD when taken prior to any clinical symptoms or signs (de Craen
et al., 2005; Vlad et al., 2008; Imbimbo, 2009; Nguyen et al., 2022).
Given these findings it seems reasonable to suggest that anti-oxidants
and NSAIDs might help protect white matter during aging and
perhaps delay injury to myelin and delay AD. IL18 has been suggested
to be a proinflammatory marker for cerebral white matter injury
(Altendahl et al., 2020).

Diabetes

Diabetes is a surprising but recognized risk factor for AD.
APOE4 and diabetes interact to promote injury to later myelinating
WM regions in cognitively normal aged adults (Foley et al., 2014).
A rodent model of experimental diabetes shows decreased LRP1
(reduced Abeta efflux) and increased RAGE (increased Abeta influx)
which led to higher Abeta levels and memory deficits (Ma et al.,
2017). Diabetes alters the rat cerebral cortex myelin lipid profile
(Cermenati et al., 2017). Diabetes causes microvascular injury which
affects white matter (Ly et al., 2017). Dysregulated proteolysis of
RAGE and APP in type 2 diabetes mellitus also provides a possible
risk factor to AD (Kojro and Postina, 2009). Diabetes mellitus-
related behavioral deficits in mice correlate with dysfunction of
oligodendrocyte precursor cells (Wang et al., 2022a).

Lipopolysaccharide (LPS)

We have shown that the combination of LPS with hypoxia
followed by brief focal cerebral ischemia in the adult rat resulted
in white matter damage in both hemispheres which preceded the
formation of amyloid-like plaques in ischemic cortex weeks later
(Zhan et al., 2015a). LPS acts at the BBB to increase Abeta influx
(not RAGE dependent) and decrease Abeta efflux (LRP1 dependent)
(Jaeger et al., 2009), which could participate in amyloid plaque
formation (Deane et al., 2009) and contribute to Abeta mediated
myelin injury as noted above. Lipopolysaccharide induced sepsis
causes amyloid-β plaque formation and tau phosphorylation in
cortex and hippocampus of rats (Wang et al., 2018; Kirk et al., 2019).

LRP1

(low-density lipoprotein receptor-related protein 1)Low-density
lipoprotein receptor-related protein 1 is required for survival of
oligodendrocyte progenitor cells (OPC) (Schäfer et al., 2019). Since
cholesterol can down-regulate LRP1 (Zhou et al., 2021), this could
potentially impair function of OPCs and impair myelin repair. OPCs
require LRP1 to maintain normal cholesterol and require LRP1 to
differentiate into mature oligodendrocytes (OLs) (Lin et al., 2017).
OLs and OPCs deficient in LRP1 have increased levels of sterol-
regulatory element-binding protein-2 and cannot maintain normal
cholesterol levels. Treatment of LRP1 deficient OPCs treated with
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cholesterol or pioglitazone (to activate PPAR-γ) cannot differentiate.
However, treatment with both promotes OPC differentiation into
mature OLs (Lin et al., 2017). Thus, changes of LRP1 levels and
cholesterol dysmetabolism as shown below in AD could lead to OPC
and white matter abnormalities.

Blood brain barrier/Pericytes

Degeneration of pericytes disrupts blood flow to the white-matter
which results in fibrinogen deposition which in turn causes loss
of myelin and axons and OLs. This disrupts white matter circuits
causing functional loss before loss of neurons (Montagne et al.,
2018). Astrocytes not only help maintain the BBB integrity but
also synthesize cholesterol, express ApoE, and provide cholesterol
to neurons and oligodendrocyte in brain (Saher and Stumpf, 2015;
Wang et al., 2018). Thus, astrocyte delivery of cholesterol to
oligodendrocytes could affect white matter integrity.

Fibrinogen causes OL cell death in oligodendrocyte and pericyte
cultures. Decreasing systemic fibrinogen decreased white-matter
fibrinogen deposition, pericyte cell death, vascular injury and white-
matter changes. Thus, changes in the BBB and pericytes can result
in myelin/WM injury (Montagne et al., 2018). Pericyte deficient
mice have increased flux of cholesterol into brain and increased
cholesterol synthesis (Saeed et al., 2014) which could impair
myelin function. Free cholesterol and APOE cannot pass the BBB,
whereas 24-hydrocholesterol can exit brain via the BBB and 27-
hydroxycholesterol can enter brain via the BBB (Rhea and Banks,
2021). APOE deficiency compromises the BBB especially after injury,
whereas APOE protects against neuropathology induced by high
cholesterol diets and maintains the BBB during aging (Fullerton et al.,
2001; Methia et al., 2001; Mulder et al., 2001). Abeta causes BBB
dysfunction of vascular endothelial cells which is prevented by LRP6
activation of the Wnt/β-catenin pathways (Wang et al., 2022c).

Other AD risk factors

A meta-analysis of risk factors that predict progression from
mild MCI to AD included: APOE4, CSF tau levels, atrophy of the
hippocampus and temporal lobe and entorhinal cortex, diabetes
mellitus, high blood pressure, increasing age, traumatic brain injury
(TBI), and female sex (Li et al., 2015; Graham et al., 2022; Mielke
et al., 2022). Notably, a number of these are also associated with
white matter injury. Of interest is the distribution of white matter
abnormalities in TBI patients resembles those of with early AD
(Fakhran et al., 2013).

Recent studies linking APOE, cholesterol,
and myelination

A recent study by Mok et al. (2022) shows that APOE is
localized mainly to astrocytes, and that astrocyte APOE facilitates
the transfer of cholesterol to oligodendrocytes which require it for
normal differentiation and development. They show that APOE4
decreases the astrocyte transport of cholesterol both in vivo and
in vitro which disrupts oligodendrocyte differentiation (Mok et al.,
2022). A study by Wang et al. (2022b) shows that microglia

promote myelin debris clearance, but that APOE4 microglia are
unable to do this which further disrupts the myelin. Using
snRNA-seq on human post-mortem tissue, Blanchard et al. (2022)
identified altered lipid homeostasis in APOE4 oligodendrocytes and
validated their findings in iPSCs. Thus, APOE4 disrupts normal
cholesterol homeostasis in astrocytes and likely neurons which in
turn affects oligodendrocyte differentiation and survival and affects
developing and mature myelin as well as phagocytosis of damaged
myelin.

White matter injury in ad brain
contributes to cholesterol
dysmetabolism

Brain contains a fourth of the body’s cholesterol, and cholesterol
accounts for ∼1/4 of the lipids found in myelin (Martins et al.,
2009; Cantuti-Castelvetri et al., 2018; Sharma et al., 2022). Most
cholesterol in brain is synthesized by brain cells – mostly astrocytes
in adult brain, with the half-life of the cholesterol being ∼5 years
(Martins et al., 2009). Thus, injury to myelin would result in
cholesterol dysmetabolism. White matter injury is associated with
loss of cholesterol and myelin proteins which is proposed to cause
diffuse cholesterol dysmetabolism in myelin in both gray and white
matter (Roher et al., 2002). Even plasma lipids, including LDL
cholesterol and HDL cholesterol are associated with myelin/white
matter injury in AD (Iriondo et al., 2021). Cholesterol is decreased
over 70% in AD white matter (Wallin et al., 1989), supporting the
idea that myelin injury contributes to cholesterol dysmetabolism
(Roher et al., 2002). Notably, defective cholesterol clearance by
the transporters discussed below which are down regulated in AD
limits remyelination in the aged central nervous system (Cantuti-
Castelvetri et al., 2018). Myelin debris clearance requires cholesterol
transporters including ApoE. Stimulation of reverse cholesterol
transport restores the capacity of old mice to remyelinate lesioned
white matter. The cholesterol in myelin debris can overwhelm the
ability of phagocytes and microglia to remove the debris. This
results in formation of cholesterol crystals and dysfunctional immune
response to the debris which impair white matter remyelination
(Cantuti-Castelvetri et al., 2018). Thus, cholesterol released from
damaged myelin orchestrates remyelination (Berghoff et al., 2022).
Myelin-derived lipids including cholesterol act on the liver X receptor
(LXR) to regulate macrophage and microglial activity (Figure 2;
Bogie et al., 2012).

Though total cholesterol decreases as myelin injury progresses in
AD brain, it is likely that the amount of released “free” cholesterol
from myelin increases and is immediately bound to APOE which
transports cholesterol into cells. Thus, the levels of APOE-bound
cholesterol are postulated to be increased in AD brain. This increased
cellular cholesterol leads to increased Abeta in endothelial cells,
neurons, oligodendrocytes and other cells. This occurs in part
because the increased cholesterol in endothelial cells inhibits LRP1
which decreases Abeta egress from brain/endothelial cells to blood,
and increased cholesterol activates RAGE which increases Abeta
influx from blood to endothelial cells and brain as reviewed in the
next section and shown in Figure 2. In addition, as noted above,
cholesterol dysmetabolism may contribute to white matter injury
itself. If so, this sets a vicious cycle in motion (Figure 1).
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Myelin injury coupled with
cholesterol dysmetabolism
contribute to Abeta dysmetabolism
and ad pathology

Cholesterol

There is now a considerable literature on how cholesterol and
ApoE interact with Abeta synthesis and transport, APP metabolism,
amyloid formation and tau phosphorylation (Michikawa, 2006;
Carter, 2007; Popp et al., 2013; Allinquant et al., 2014; Gamba et al.,
2015; Sun et al., 2015; Fanaee-Danesh et al., 2019; Loera-Valencia
et al., 2019; Chew et al., 2020; Chai et al., 2021; Nanjundaiah et al.,
2021; Wu et al., 2022). In general higher plasma and brain cholesterol
and its metabolites correlate with higher brain Abeta levels and lower
CSF Abeta levels (Reed et al., 2014; Iriondo et al., 2020). Increased
blood total cholesterol, decreased HDL-C increased LDL-C levels in
blood are associated with an increased risk of AD (Tang et al., 2019).
Statins decrease the risk of developing AD (Sjögren and Blennow,
2005; Haag et al., 2009; Zhu et al., 2018; Langness et al., 2021) though
it is controversial whether statins affect the course of AD (Sjögren and
Blennow, 2005; Zhu et al., 2018).

TREM2, a risk factor for AD, affects cholesterol, myelin,
and phospholipid metabolism, and promotes the AD microglial
phenotype (Li et al., 2022). As many as a third of the genes
associated with AD are related to cholesterol metabolism (Carter,
2007; Wollmer, 2010). A risk score based upon the more than
50 AD associated loci associated can predict AD with up to
90% accuracy (Sims et al., 2020) and many of these 50 loci
relate to cholesterol metabolism. Transcriptomic data show that
the cholesterol gene expression changes found in AD brain are
not observed in Parkinson’s disease (PD) brain samples. There are
alterations in cholesterol biosynthesis, cholesterol catabolism and
cholesterol transport which is accompanied by the accumulation of
cytotoxic oxysterols (Varma et al., 2021). APOE4 causes cholesterol
dysmetabolism (Jeong et al., 2019).

One human study (Religious Orders Study/Memory and
Aging Project) showed that LDL-cholesterol correlated with AD
neuropathology and amyloid angiopathy regardless of the of APOE
status (Wingo et al., 2022). Finally, CSF 7-Ketocholesterol which is
derived from peripheral blood correlates with CSF Abeta levels and
DTI white matter abnormalities in cognitively healthy adults (Iriondo
et al., 2020).

Lipoprotein receptor 1 (LRP1) regulates brain levels of ApoE
and cholesterol (Liu et al., 2007). LRP1 also transports Abeta out
of cells and out of the brain (Deane et al., 2009). Deletion of APP
or parts of the G-secretase complex increased LRP1 expression and
function. This was blocked by APP intracellular domain (AICD)
over expression (Liu et al., 2007). AICD, along with Fe65 and Tip60,
bind the LRP1 promoter to decrease it transcription. APP regulates
cholesterol and apolipoprotein E metabolism in brain via (Liu et al.,
2007). Pericytes at the BBB remove aggregated Abeta using a LRP1-
dependent APOE isoform specific mechanism (Ma et al., 2018).

Lipopolysaccharide (LPS), found in Gram-negative bacterial cell
walls, is increased in AD brain and co-localizes with amyloid plaques
and oligodendrocytes (Zhan et al., 2016). LPS also causes cholesterol
dysmetabolism by stimulating cholesterol 24-hydroxylase which
results in cholesterol efflux from cells and the brain across the BBB,

as well as inhibiting 3-hydroxy-3-methulglutaryl-CoA reductase, the
rate-limiting enzyme for cholesterol synthesis (Na et al., 2021).

Cholesterol binding to Abeta and APP
fostering formation of amyloid plaques

High cholesterol causes Alzheimer’s amyloid pathology to appear
earlier in transgenic AD mouse models (Refolo et al., 2000).
Cholesterol and possibly APOE bind Abeta peptide monomers as
well as APP (Barrett et al., 2012; Di Scala et al., 2013; Kanekiyo
et al., 2014; Panahi et al., 2016; Hashemi et al., 2022). Cholesterol
and APOE regulate APP cleavage (Howland et al., 1998; Mills
and Reiner, 1999). Mutations in the APP cholesterol-binding site
alter APP processing to form less toxic Aβ peptides (Hanbouch
et al., 2022). Free cholesterol fosters Aβ self-assembly on membranes
(Hashemi et al., 2022), likely along with degraded myelin basic
protein as noted below (Zhan et al., 2018). Cholesterol also promotes
Aβ42 aggregation through a nucleation pathway (Habchi et al.,
2018). Cholesterol oxidation products enhance Abeta aggregation
and neurotoxicity (Usui et al., 2009). Cholesterol also promotes Abeta
aggregation through formation of an endogenous seed (Yanagisawa,
2003). Cholesterol also interacts with MBP both of which bind
APP (Rivas et al., 1998). Cholesterol, APOE and Abeta co-localize
in amyloid plaques (Mori et al., 2001; Burns M. P. et al., 2003).
Presenilin-1 insufficiency inhibits the normal cleavage of APP (De
Strooper et al., 1998). The AD associated C99 APP fragment regulates
cholesterol transport (Montesinos et al., 2020).

Dietary cholesterol and cholesterol
transporters

Increased dietary cholesterol intake promotes Abeta formation
and AD pathology (Pappolla et al., 2003; Ghribi et al., 2006;
Ismail et al., 2017; Liu et al., 2018; Wu et al., 2022) and tau
hyperphosphorylation (Bhat and Thirumangalakudi, 2013; Park et al.,
2013) and cognitive impairment (Umeda et al., 2012). Decreased
cholesterol biosynthesis decreases γ-secretase activity and decreases
Aβ generation (Kim et al., 2016). Hypercholesterolemia increases
Abeta production by increasing BACE1 and RAGE levels, and
decreasing IDE (Insulin Degrading Enzyme) and LRP1 levels (Jaya
Prasanthi et al., 2008). Peripheral cholesterol metabolism is generally
quite independent of central cholesterol metabolism, with the
exception that 27-hydroxycholesterol can enter brain from blood
(Mahalakshmi et al., 2021), presumably accounting for dietary effects
of cholesterol on Abeta metabolism and cognition (Heverin et al.,
2015; Zhang et al., 2018). Increased 27-hydroxycholesterol uptake by
brain causes decreased glucose uptake, perhaps contributing to the
glucose hypometabolism associated with AD (Gamba et al., 2019).
In addition, 24-hydroxycholesterol can exit brain accounting for
decreased Abeta and amyloid plaques (Brown et al., 2004). Indeed,
24-hydroxycholesterol levels in CSF are increased in AD compared
to controls (Schönknecht et al., 2002).

The three main cholesterol exporters from brain are cholesterol
24-hydroxylase from the CYP46A1 gene, ABCA1 and ABCG1
(Panzenboeck et al., 2002; Brown et al., 2004; Ohtsuki et al., 2007;
Figure 2). ABCA1- and ABCG1-mediated cholesterol transport
out of brain into the CSF is impaired in AD (−73 and −33%,
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respectively) which would tend to increase brain cholesterol which
in turn would affect Abeta/amyloid metabolism (Marchi et al., 2019;
Figure 2). In addition, a polymorphism of the CYP46 cholesterol
export gene increased Abeta and Tau and increased the risk of
AD (Papassotiropoulos et al., 2003). Increasing APOE levels and
ABCA1, its lipid transporter, increase the clearance of Aβ from
brain (Wildsmith et al., 2013). High cholesterol diets produce BBB
dysfunction (Takechi et al., 2013) which would tend to decrease
clearance of both Abeta and cholesterol from brain.

27-hydroxycholesterol which is derived from the blood and
APOE4 activate the C/EBPβ/δ-secretase pathway to form amyloid
plaques (Wang Z. H. et al., 2021). 27-hydroxycholesterol promotes
Aβ accumulation in mild cognitive impairment patients and in the
APP/PS1 mouse AD model (Zhang et al., 2019). Increasing blood
27-Hydroxycholesterol modulates brain cholesterol metabolism
and impairs learning and memory in rats (Zhang et al., 2015)
and mice (Heverin et al., 2015). Since cholesterol cannot cross
the BBB while 27-hyroxycholesterol does cross, it is likely that
hypercholesterolemia increase in AD risk is accounted for by influx
of 27-hydroxycholesterol from blood to brain (Heverin et al., 2005,
2015; Björkhem et al., 2006; Shafaati et al., 2011; Zhang et al., 2015,
2018, 2019; Gamba et al., 2019; Wang Z. H. et al., 2021; Wang et al.,
2022d; Wu et al., 2022).

A short hairpin RNA directed against Cyp46a1 mRNA using an
AAV vector decreased expression of the Cyp46a1 gene in neurons
of normal mice and increased cholesterol in the neurons (Djelti
et al., 2015). This produced apoptotic cell death, hippocampal
atrophy and memory impairments which were associated with APP
recruitment to lipid rafts which increased Abeta and Tau (Djelti
et al., 2015). The same group found that Abeta increased in the
brain of the APP23 mouse AD model of AD following inhibition of
Cyp46a1 expression, one of the cholesterol transporters (Figure 2;
Djelti et al., 2015).

Cholesterol and tau

An analysis of protein co-expression from Tau transgenic mice
and AD brains identified four highly associated modules including
cholesterol biosynthesis (Tsumagari et al., 2022). Pathogenic tau
mutations upregulate cholesterol synthesis pathways (Glasauer
et al., 2022). DHCR24, which is synthetase 3β-hydroxysterol-
124 reductase (DHCR24), regulates cholesterol synthesis and
metabolism. DHCR24 knockdown activates Ras/MEK/ERK
signaling which causes tau hyperphosphorylation (Mai et al.,
2022). Dietary cholesterol induces higher levels of tau and
tau hyperphosphorylation (Wang et al., 2022d). The levels of
CYP46A1 and 24S-hydroxycholesterol in the hippocampus are
lower in the THY-Tau22 mouse AD model which would explain
the higher brain cholesterol in these mice (Burlot et al., 2015).
Increasing the CYP46A1 and 24S-hydroxycholesterol levels
with AAV vectors improve the cognitive deficits and long-term
depression in the THY-Tau22 mouse AD model (Burlot et al.,
2015). A high cholesterol diet induces tau hyperphosphorylation
in APOE deficient mice (Rahman et al., 2005). P-tau181
levels independently predict the CSF desmosterol, cholesterol
and 24S-hydroxycholesterol concentrations in AD patients
(Popp et al., 2013).

APOE/Cholesterol effects on Abeta/APP

Various studies suggest APOE genotype affects Abeta clearance
and deposition by direct binding with APP. However, at least one
study suggests ApoE affects amyloid-β (Aβ) export in spite of little
evidence of direct APOE and Aβ association in their experimental
paradigm (Verghese et al., 2013). However, two apolipoprotein E
mimetic peptides have been shown to directly bind LRP1 and
presumably regulate its ability to transport Abeta out of the brain
(Croy et al., 2004). Another study appeared to show direct binding
of intact APOE to LRP1 (Zhu and Hui, 2003). A novel APOE blocked
the interaction of APOE and the N-terminal of APP, reduced Abeta
pathology and improved memory functions in an AD mouse model
(Sawmiller et al., 2019).

Cholestenoic acid, a cholesterol metabolite, decreases γ-secretase
activity (Jung et al., 2015). Changes in membrane cholesterol decrease
γ-secretase activity and Aβ (Kim et al., 2016). Inhibition of ACAT
(a family of enzymes that converts membrane cholesterol into esters
for cholesterol storage and transport) decrease brain Aβ (Puglielli
et al., 2001, 2004; Bhattacharyya and Kovacs, 2010; Bryleva et al.,
2010). An ACAT inhibitor decreases amyloid plaques in a mouse
AD model (Hutter-Paier et al., 2004). Ablating the ACAT1 gene
increases 24 (S)-hydroxycholesterol content (which should decrease
brain cholesterol) and decreases amyloid plaques in a mouse AD
model (Bryleva et al., 2010). Peripheral liver APOE4 can exert adverse
effects on the normal and AD brain independent of the brain allele
(Liu C. C. et al., 2022).

Cholesterol effects on Abeta transporters

Low-density lipoprotein receptor-related protein 1 is the main
transporter for Abeta out of cells and out of brain via the BBB (Shibata
et al., 2000; Zlokovic et al., 2010). Hypercholesterolemia decreased
LRP1 expression, which would decrease Abeta efflux across the BBB,
and increased RAGE expression, which would increase Abeta influx
through the BBB, in cerebral endothelial cells (Zhou et al., 2021).
Hypercholesterolemia increased brain apoptosis in AD mice. In an
in vitro experiment, increasing cholesterol decreased LRP1, increased
RAGE, and increased Abeta in cerebral endothelial cells. These
effects were mediated by Wnt/β-catenin signaling pathway acting on
the LRP1 and RAGE promoters (Zhou et al., 2021). Other studies
have also shown that cholesterol, which is transported by APOE,
decreases LRP1 and increases RAGE to increase Abeta in endothelial
cells, neurons and glia (Cutler et al., 2004; Mosconi et al., 2008).
Cholesterol regulates metalloproteinase mediated shedding of LRP1
(Selvais et al., 2011). APOE4 is not as effective as other ApoE isoforms
in regulating LRP1 shedding, which may help explain the different
abilities of these isoforms to remove Aβ from brain (Bachmeier
et al., 2014). LRP1 and APOE mRNA levels are elevated in AD brain
(Akram et al., 2012), perhaps in response to increased levels of Abeta
(LRP1 transporter) and Cholesterol in AD brain. LRP1 modulates
Wnt signaling to affect cholesterol storage and fatty acid synthesis
(Terrand et al., 2009). Notably, LRP1 controls phosphorylation of
cPLA2 which in turn modulates ABCA1 expression and cholesterol
export from cells and from the brain (Zhou et al., 2009). This shows
the intricate relationship between Abeta and cholesterol transport
and means that changes in one will affect transport of the other
(Loera-Valencia et al., 2019; Figures 1, 2).
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Astrocyte-Derived Cholesterol Regulates Abeta Production
in Neurons. Astrocyte-derived cholesterol together with APOE
facilitates the movement of neuronal APP in and out of lipid
rafts to interact with beta and gamma secretases to form Abeta
(Wang H. et al., 2021). Preventing cholesterol synthesis by astrocytes
decreases amyloid plaques and phosphorylated tau in an AD
mouse model (Wang H. et al., 2021). Treating astrocytes with
cholesterol-free APOE or decreasing cholesterol synthesis in cultured
neurons causes APP to migrate out of lipid clusters allowing it to
interact with alpha secretase which produces soluble APP, which
protects neurons against Abeta injury. Thus, astrocyte regulation
of cholesterol metabolism produces high cholesterol levels in
astrocytes but low cholesterol levels in neurons which inhibits Abeta
formation in neurons (Wang H. et al., 2021). Thus, astrocytes play
a central role in regulating cholesterol metabolism in the adult
brain, and thereby modulates amyloid metabolism to presumably
protect neurons and possibly oligodendrocytes against Abeta toxicity
(Staurenghi et al., 2021).

ABCA and other ABC transporters
(cholesterol and Abeta)

As noted above, LRP1 modulates cPLA2 phosphorylation,
ABCA1 expression and export of cholesterol out of cells (Zhou et al.,
2009). Downregulation of ABCA7 modifies cholesterol metabolism
and decreases Aβ peptide efflux and promotes amyloid plaque
formation in an in vitro BBB model (Lamartinière et al., 2018).
ABCA1- and ABCG1-mediated efflux of cholesterol from brain to
CSF is decreased in AD (Marchi et al., 2019). Lipidation of ApoE
by ABCA1 is needed for the RXR agonist bexarotene to clear Abeta
and improve memory deficits (Corona et al., 2016). A mutation in
ABCA1 found in 1 in 500 subjects is associated with low APOE
plasma levels and a high AD risk and high risk of cerebrovascular
disease (Nordestgaard et al., 2015). Brain pericytes ABCA1 exports
cholesterol but has no effect on Abeta (Saint-Pol et al., 2012). ABCG1
and ABCA1 regulate efflux of cholesterol from neurons to APOE
and decrease formation of amyloid plaques (Kim et al., 2007; Behl
et al., 2021). Of note, one study found that Tangier disease ABCA1
mutants modulate cellular amyloid-β production independent of
any effect on cholesterol (Kim et al., 2011). ABCA1 deficiency
decreases brain ApoE and increases amyloid plaque formation in
APP23 mice (Koldamova et al., 2005). ABCA1 binds APOE and then
increases cholesterol transport across the BBB. Decreased ABCA1
function increases Abeta deposition and increased ABCA1 decreases
formation of amyloid plaques (Wollmer et al., 2003; Martins et al.,
2009). Abcg4 at the mouse BBB decreases Abeta entry into brain, a
process antagonized by cholesterol (Dodacki et al., 2017). ABCB1 and
ABCA1 increase Abeta export from brain, which is also antagonized
by cholesterol (Elali and Rivest, 2013). ABCA1 and ABCG1 export
cholesterol from astrocytes but not from neurons and ABCG4 exports
cholesterol from neurons but not astrocytes (Chen et al., 2013).
ABCA1, along with cholesterol 24-hydroxylase/CYP46A1, are mainly
responsible for cholesterol efflux from brain to blood at the BBB (Do
et al., 2011; Saint-Pol et al., 2012). Decreasing the function of either
increases brain cholesterol which increases Abeta by decreasing LRP1
and increasing RAGE which promotes amyloid plaque formation
(Figure 2).

Cellular Localization of the Molecules in the Model (Figure 2).
Though there has not been a systematic study of the cellular

localization of the molecules listed in Figure 2 in human AD brain,
more evidence is coming to light. For example, APOE appears to be
mainly associated with astrocytes (Mok et al., 2022) and cholesterol
synthetic genes are localized mainly to astrocytes (Glasauer et al.,
2022). LXR, ABC and BACE are expressed in neurons, glia
and endothelial cells (Chen et al., 2013). Oligodendrocytes along
with neurons and astrocytes synthesize APP and Abeta (Skaper
et al., 2009a). Cholesterol derived from astrocytes regulates Abeta
production in neurons (Wang H. et al., 2021). LRP1 and RAGE are
expressed in most cells in brain (Gaultier et al., 2009), but play a key
role in endothelial cells where they regulate the ingress and egress of
Abeta to brain via the BBB. Pericytes remove Abeta via a LRP1-APOE
isoform specific mechanism (Ma et al., 2018). Microglia phagocytose
APP via the LPS CD14 receptor (Liu et al., 2005).

As mentioned, ABCA1, along with cholesterol 24-
hydroxylase/CYP46A1 and ABCG1, are mainly responsible for
cholesterol efflux from brain to blood at the BBB (Do et al., 2011;
Saint-Pol et al., 2012; Marchi et al., 2019), with ABCA1 localized in
pericytes (Saint-Pol et al., 2012). In addition, cholesterol export in
astrocytes is induced by lipid-free apolipoproteins and lipoproteins,
while cholesterol export from neurons occurs only by lipoproteins
(Chen et al., 2013; Jeong et al., 2019). ABCA1 and ABCG1 regulate
cholesterol export from astrocytes but not neurons (Chen et al.,
2013; Jeong et al., 2019; Sierri et al., 2021). ABCG4, which is highest
in neurons, regulates cholesterol export only from neurons (Chen
et al., 2013; Jeong et al., 2019). Microglia play a role in regulating
cholesterol metabolism through the TREM2 receptor (Li et al., 2022).

In normal brain immunocytochemical studies show cholesterol
hydrolases CYP46A1 and CYP27A1 in neurons and some astrocytes,
and CYP27A1 in oligodendrocytes (Brown et al., 2004). In contrast,
in AD brain CYP46A1 is in astrocytes and around amyloid
plaques, whereas CYP27A1 decreased in neurons, increased in
oligodendrocytes, and was present around amyloid plaques (Brown
et al., 2004).

White matter injury and myelin basic
protein in AD

Myelin basic protein Affects Abeta/APP metabolism, and
Degraded MBP aggregates and binds Abeta to form plaques. There
are decreased levels of soluble APP (sAPPα) in brains of Shiverer
(shi/shi) MBP deficient mice, though total APP and sAPPβ were
unchanged (Seiwa et al., 2021). The reduced sAPPα was likely due
to disintegrin and metalloproteinase-9 (ADAM9) catalysis and non-
amyloidogenic processing of APP. MBP -/- mice have increased
production of Abeta (Seiwa et al., 2021). However, the MBP-/- mice
have virtually no amyloid plaques which we propose is due to the
fact that plaque formation may require aggregation of MBP and
cholesterol with Abeta (see next section).

Myelin basic protein

Myelin basic protein (MBP) is an integral part of myelin. In an
early study MBP in AD brain was associated with neuronal fractions
and neurofilaments (Selkoe et al., 1981). MBP binds Abeta and APP
(Hoos et al., 2009; Kotarba et al., 2013) and intact MBP can degrade
Abeta (Liao et al., 2009; Mitew et al., 2010; Ou-Yang et al., 2015).
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LRP1 at the BBB removes degraded MBP (dMBP) from the CNS
(Gaultier et al., 2009). In our LPS-ischemia-hypoxia rat AD model
we found dMBP surrounding vessels weeks before the formation of
amyloid-like plaques (Zhan et al., 2015a). Thus, white matter (WM)
injury would produce higher levels of dMBP which would compete
with Abeta for removal from the CNS, and thus tend to elevate Abeta
levels. That is, WM injury would elevate brain Abeta. It is conceivable
that other molecules from damaged myelin (e.g., PLP, MOG, and
MAG) might also bind LRP1 to compete with Abeta and elevate Abeta
levels in brain.

In addition, we discovered in our LPS-hypoxia-ischemia rat
model that dMBP occurred prior to the appearance of amyloid-
like plaques (Zhan et al., 2015a). Once amyloid-like plaques formed
in this model, they co-localized with dMBP. We speculated that
dMBP formed aggregates and helped aggregate Abeta into plaques
(Zhan et al., 2015a). This is consistent with studies of multiple
sclerosis which have shown that MBP forms aggregates in areas of
demyelination (Frid et al., 2015).

It is notable that intact MBP, the N-terminal region, reduces
fibrillar amyloid-beta deposition in the Tg 5xFAD mouse model
(Ou-Yang et al., 2015) by direct binding to Abeta (Hoos et al.,
2009; Kotarba et al., 2013). In addition, the N-terminal regions
of MBP can prevent beta amyloid fibrillar assembly and degrade
Abeta (Liao et al., 2009; Ou-Yang et al., 2015). This likely accounts
for the fact that most amyloid plaques are not found in intact
myelin and in fact are found in poorly myelinated regions and
demyelinated regions of gray matter (Mitew et al., 2010; Schmued
et al., 2013). This also accounts for the fact that there is no intact
myelin around plaques in LOAD, early onset familial AD, and in
mouse AD models (Mitew et al., 2010). That is, intact MBP in
intact myelin would degrade Abeta so that amyloid plaques could
not form; plaques can only form in demyelinated regions of gray or
white matter (Liao et al., 2009; Mitew et al., 2010; Ou-Yang et al.,
2015). This also likely accounts for the fact that amyloid plaques in
rodent and human brains are associated with degraded MBP and
probably not intact full length MBP (Zhan et al., 2014, 2015a,b).
Importantly, the absence of MBP almost completely eliminated the
formation of amyloid plaques (Ou-Yang and Van Nostrand, 2013),
a finding we interpret to mean that dMBP was not present to help
aggregate Abeta into plaques. As noted above, cholesterol plays role
in aggregating Abeta as well as MBP (Banerjee et al., 2021; Hashemi
et al., 2022).

Of note, antibodies to MBP in AD are 11 times more abundant
than controls and found in 16 of 18 AD cases compared to 7 of
90 controls (Singh et al., 1992). This implies there is a net efflux of
MBP from brain to blood in AD, and this efflux is through the LRP1
receptor as noted above, which would compete with Abeta and elevate
brain Abeta.

Reversing white matter injury
improves cognition in animal AD
models

LINGO-1 negatively regulates oligodendrocyte differentiation
and myelination and is increased in AD brain. Using the APP/PS1
mouse AD model, an anti-LINGO-1 antibody was shown to improve
memory function which was associated with fewer LINGO-1 cells

and amyloid plaques but with increased numbers of OPCs and
oligodendrocytes and increased myelin density (Yang et al., 2022).
A prior study showed no Aβ deposition in 1-month-old 5XFAD
mice, but they did have spatial memory deficits associated with
demyelination in limbic structures. The same LINGO-1 antibody
decreased the myelin injury and improved memory deficits (Wu
et al., 2018). A flavenol antioxidant improved memory in 3 × Tg-
AD mice, which correlated with fewer amyloid plaques, increased
myelin-related gene expression and decreased myelin damage (Yu
et al., 2022).

Another recent study showed the rate of new myelin formation
was markedly increased in APP/PS1 mice (Chen et al., 2021). Despite
this increase, overall myelination levels were decreased in brains of
APP/PS1 mice and human AD brains (Chen et al., 2021). To combat
this, myelin renewal was enhanced by deleting the muscarinic M1
receptor in oligodendroglia or by giving animals the pro-myelinating
drug clemastine. Both treatments markedly improved memory tasks
in APP/PS1 mice and increased hippocampal sharp waves. The
improved memory function occurred even though the numbers of
amyloid plaques and microglia were unaffected by the treatments
(Chen et al., 2021). Taken together, these results demonstrate the
potential of enhancing myelination as a therapeutic strategy to
improve AD-related memory deficits.

Exercise affects myelin in mouse AD models as well. Running
decreases the loss of myelinated fibers in hippocampus in the
APP/PS1 mouse AD model (Chao et al., 2015). Exercise prior to the
onset of AD pathology prevents the memory loss and loss of myelin
in white matter in the APP/PS1 mouse AD model (Zhang et al.,
2017). Physical exercise may improve cognitive function slightly in
AD patients (Liu W. et al., 2022).

Questions and future studies

The current data suggest that elevated brain cholesterol produced
in part by myelin injury appears to be bad for the AD brain.
This occurs in part because elevated cholesterol acts to increase
Abeta in brain. However, the roles of individual cells from the
astrocytes that synthesize most of the cholesterol in adult brain
to the endothelial cells that regulate cholesterol and Abeta influx
and efflux need to be better understood. How do microglia which
phagocytose damaged myelin deal with the cholesterol, and how do
cholesterol and oligodendrocytes interact. Does elevated cholesterol
accelerate and worsen AD pathology in FAD, LOAD and mouse
AD models. Can preventing myelin injury prevent AD. Experiments
addressing these and many other questions raised by the model in
Figures 1, 2 are sure to extend our knowledge and hopefully help
lead to approaches to ameliorate, cure or better yet prevent FAD and
LOAD.

Conclusion

In addition to Abeta dysmetabolism, there is cholesterol
dysmetabolism and white matter injury in AD. Moreover, underlying
genetics including FAD genes, APOE4 and AD risk factor genes
play critical roles in determining whether white matter injury
or cholesterol dysmetabolism or Abeta dysmetabolism lead to
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AD neuropathology and dementia. This review makes the new
connection that white matter injury contributes to cholesterol
dysmetabolism and that both can drive AD neuropathology with the
appropriate genetic predisposition. Finally, Abeta dysmetabolism can
also contribute to white matter injury resulting in a vicious injury
cycle that may be difficult to slow, halt or reverse. Importantly,
cholesterol metabolism and white matter injury provide alternative
treatment and prevention targets in AD.
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