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Value of white matter
hyperintensity volume and total
white matter volume for
evaluating cognitive impairment
in patients with cerebral
small-vessel disease
Sen Zhang, Yaya Hu, Huilin Yang, Qianqian Li, Jing Chen and
Hongying Bai*

Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Background: White matter hyperintensities (WMH) are a key imaging feature of

cerebral small-vessel disease (CSVD). However, there is a lack of standardized

methods for determining WMH volume, and the value of total white matter (WM)

volume in the assessment of cognitive impairment in patients with CSVD remains

unknown.

Objective: We aimed to explore the correlations of WMH volume and WM volume

with cognitive dysfunction and its components in patients with CSVD. We also

aimed to compare the value of the Fazekas score, WMH volume, and ratio of

WMH volume to total WM volume in the assessment of cognitive dysfunction.

Methods: The study included 99 patients with CSVD. Patients were categorized

into following groups based on MoCA scores: patients with mild cognitive

impairment and those without. Brain magnetic resonance images were processed

to investigate differences in WMH and WM volumes between the groups. Logistic

regression analysis was used to determine whether these two factors were

independent risk factors for cognitive dysfunction. Correlation analysis was used

to examine the relationships of WMH and WM volume with different types of

cognitive impairment. Receiver operating characteristic curves were used to

compare the effectiveness of the WMH score, WMH volume, and WMH to WM

ratio for evaluating cognitive dysfunction.

Results: There were significant differences in age, education level, WMH volume,

and WM volume between the groups (P < 0.05). After adjusting for age and

education, the multivariate logistic analysis indicated that both WMH volume and

WM volume were independent risk factors for cognitive dysfunction. Correlation

analysis indicated that WMH volume was mainly related to cognition involving

the visual space and delayed recall. WM volume was not strongly associated with

different types of cognitive dysfunction. The WMH to WM ratio was the strongest

predictor, with an area under the curve value of 0.800 and a 95% confidence

interval of 0.710–0.891.

Conclusion: Increases in WMH volume may aggravate cognitive dysfunction in

patients with CSVD, and a higher WM volume may reduce the effect of WMH
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volume on cognitive function to a certain extent. The ratio of WMH to total

WM volume may reduce the impact of brain atrophy, allowing for more accurate

evaluation of cognitive dysfunction in older adults with CSVD.

KEYWORDS

white matter hyperintensity, white matter volume, cerebral small-vessel disease (CSVD),
brain atrophy, cognitive impairment, cognitive dysfunction, risk factors, aging

1. Introduction

Cerebral small-vessel disease (CSVD), the most common
form of chronic progressive vascular disease, is characterized by
decreases in the size of the arteries, capillaries, and veins that supply
the white matter (WM) and deep structures of the brain. The
incidence of CSVD is very high, particularly among older adults,
who are at risk of complications including stroke, gait disorders,
mental/cognitive disorders, urinary disorders, and other major
events (Pantoni, 2010; Ter Telgte et al., 2018; Cannistraro et al.,
2019).

Magnetic resonance imaging (MRI) plays a key role in the
diagnosis of CSVD. The imaging features of CSVD can be
categorized as white matter hyperintensities (WMH), lacunar
infarction, cerebral microbleeds, enlarged perivascular space, brain
atrophy, and others (Li et al., 2018; Chen et al., 2019). One previous
study reported that baseline WMH increased the risk of cognitive
impairment and all-cause dementia (ACD) by 14%. WMH also
increases the risks of Alzheimer’s disease and vascular dementia
by 25 and 73%, respectively. High-grade WMH and consistently
increased volume or severity of WMH have been shown to increase
the risk of dementia (Hu et al., 2021).

At present, methods for evaluating WMH mainly include
the Fazekas scale (Fazekas et al., 1987) and professional image
processing software, which can be used to extract the volumes
of periventricular WMH, deep WMH, and WM. Some studies
have shown that the pathogenesis of periventricular WMH differs
from that of deep WMH. For example, cognitive impairment
has been associated with lateral ventricular WMH but not deep
WMH (de Groot et al., 2000). However, DeCarli et al. (2005)
reported a high correlation between the WMH volumes, suggesting
that it is not necessary to distinguish between them. A major
factor in this discrepancy is the lack of standardized methods for
determining WMH volume, which prevents comparison of data
among healthy adults included in different studies (Melazzini et al.,
2021). A study of Alzheimer’s disease demonstrated that WMH and
atrophy of lobes and gray matter are related to cognition (Ramusino
et al., 2022). However, differences in WM volume among different
patients are rarely considered in studies of WMH and cognitive
dysfunction, highlighting the need to address this issue to advance
clinical research. Therefore, in the present study, we explored the
relationships among WMH volume, WM volume, and cognitive
function in hospitalized patients with CSVD. We further aimed
to determine whether the ratio of WMH to total WM volume
can better assess cognitive impairment than WMH. There are two
hypotheses about cognitive dysfunction caused by WM volume:
1. There are very complex nerve conduction bundles in the WM,

and the reduction of their volume may affect or destroy this nerve
fiber network, thus affecting cognitive function. 2. WMH are areas
of the degeneration of normal WM structure, which plays a role
in promoting cognitive impairment in the elderly. We evaluated
whether the larger WM volume represents a stronger compensatory
ability after the generation of WMH. If this compensatory ability
exists, the assessment of WMH volume may need to be corrected
according to the WM volume.

2. Materials and methods

2.1. Participants

The study included 99 patients with CSVD who were
hospitalized in the Department of Neurology at the Second
Affiliated Hospital of Zhengzhou University and Xinzheng Public
People’s Hospital between January 2021 and August 2022. Inclusion
criteria were as follows: (a) meeting the neuroimaging diagnostic
criteria for CSVD (Wardlaw et al., 2013); (b) absence of mental
or neurological disorders, sufficient ability to communicate, and
ability to cooperate with treatment; (c) age ≥18 years, (d) provision
of written informed consent; and (e) availability of complete
clinical data. Exclusion criteria were as follows: (a) secondary
WM lesions; (b) secondary diseases that can cause cognitive
dysfunction, such as stroke and Alzheimer’s disease; (c) large MRI
artifacts making it difficult to measure volumes; and (d) serious
systemic diseases, such as severe systemic infection, disseminated
intravascular coagulation, and cardiopulmonary failure. The study
was approved by the Ethics Committee of the Second Affiliated
Hospital of Zhengzhou University. The patients provided their
written informed consent to participate in this study.

2.2. Data collection and assessment
methods

The following baseline data were collected for all patients: age,
sex, education level, history of hypertension, diabetes, coronary
heart disease, and other general information. Digital imaging and
communications in medicine (DICOM) data for cranial MRIs
were obtained for each participant. All participants underwent
evaluation using the Montreal Cognitive Assessment (MoCA)
(Nasreddine et al., 2005). MoCA scores were corrected according to
the level of education, with 1 point added to the total score for those
with less than 12 years of education. The Fazekas scale scored the
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FIGURE 1

Schematic diagram of the segmentation and extraction process for white matter and white matter hyperintensities. (A–C) T1-weighted images.
(D–F) T2-weighted fluid-attenuated inversion recovery images. g, skull stripping; h, threshold segmentation.

periventricular and deep WMH separately. Periventricular WMH:
0, no lesion; 1, cap-like or pencil-like thin layer signal near the
lateral ventricle; 2, the lesion was a smooth halo; 3, irregular high
signal near the ventricle and extended to the deep WM. Deep
WMH: 0, no lesion; 1, punctate lesions; 2, a small part of the lesion
fusion; 3, large area of lesion fusion. The total score for WMH was
obtained by summing the two (Fazekas et al., 1993).

2.3. Imaging

Magnetic resonance imaging was performed using a Siemens
MAGNETOM Skyra 3.0T MRI scanner. The examination
sequences included T1-weighted images, T2-weighted images,
T2 fluid-attenuated inversion recovery (FLAIR) images, and
magnetic resonance angiography (MRA). The field-of-view (FOV)
of the T1-weighted images was 260 mm × 260 mm, the matrix
was 160 × 160, the slice thickness was 1.6 mm, and there were
128 sagittal images. The FOV of the T2-weighted images was
240 mm × 240 mm, the matrix was 384 × 384, the slice thickness
was 5 mm, and there were 20 axial images. The FOV of the T2
FLAIR images was 215 mm × 230 mm, the matrix was 360 × 384,
the scanning layer thickness was 5 mm, and there were 20
horizontal images.

2.4. Volume measurement

The imaging files were processed using the professional medical
image FMRIB Software Library (FSL) v6.0. FSL was developed
by the Brain Functional Magnetic Resonance Imaging Center

(FMRIB) of Oxford University in the UK. FSL can process
structural and functional nuclear magnetic resonance using a
computer to accurately extract lesions and segment brain tissue
structures (Jenkinson et al., 2012). T1- and T2 FLAIR images
were processed successively by stripping the skull, followed by
threshold segmentation using an algorithm that divides the gray
level of the image into different grades and determines the
boundary of the object to be segmented by setting a gray threshold
(Figure 1).The specific operation process was as follows: first,
we entered the decompression image directory, and then used
bet for segmentation. The volume of the image of the operation
is the volume of intracranial volume. Next, the software tissue
type segmentation FAST was used to segment the brain tissues of
different structures, namely GM, WM, and CSF. The segmented
image was imported into 3D-slicer software (Gonzalo Domínguez
et al., 2016), and a segment was added through the Add button in
the software. The image was modified, 3D reconstructed, and the
volume was measured using the following commands: None, Draw,
and Erase, combined with the brain tissue anatomy. Normalized
WM volume was the ratio of WM volume to intracranial volume.

2.5. Statistical analysis

Statistical analyses were performed using SPSS version 26.0.
The Kolmogorov–Smirnov test was used to test the normality
of quantitative data. Quantitative data conforming to a normal
distribution were expressed as (x ± s), and those not conforming
to a normal distribution were expressed as M (P25, P75), “x ± s” is
the “mean ± standard deviation” and “M (P25, P75)” is the median
(25th percentile, 75th percentile). Count data were expressed as
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TABLE 1 Baseline characteristics.

Characteristics n (%), x ± s or M (P25, P75)
(n = 99)

Male 61 (61.6%)

Age [M (P25, P75), years] 70 (63, 73)

Hypertension 61 (61.6%)

Diabetes 26 (26.3%)

Coronary heart disease 28 (28.3%)

Education level [M (P25, P75), years] 9 (6, 12)

WMH volume [M (P25, P75), cm3] 9.89 (4.77, 16.36)

WM volume (x ± s, cm3) 499.84 ± 34.77

Intracranial volume (x ± s, cm3) 1,463.43 ± 61.12

MoCA score [M (P25, P75), points] 23 (20, 27)

WMH, white matter hyperintensity; WM, white matter; MoCA, Montreal
cognitive assessment.

relative numbers. An independent samples t-test was used for inter-
group analysis of normally distributed data, and the rank sum test
was used for inter-group analysis of non-normally distributed data.
Multivariate logistic regression analysis was used to explore risk
factors such as cognition and exercise. Spearman rank correlation
analysis was used to analyze the correlations between non-normally
distributed variables, with |r| < 0.4 indicating weak correlation;
0.4 ≤ |r| < 0.7 indicating moderate correlation, and 0.7 ≤ |
r| < 1 indicating strong correlation. FDR correction of P-values
in multiple testing using the Benjamini and Hochberg method.
FDR (q) < 0.05 was considered meaningful. Receiver operating
characteristic curve (ROC) analysis was used to analyze the
influence of the Fazekas score, volume of WMH, WM volume,
and the ratio of WMH volume to WM volume on cognitive
dysfunction in patients with CSVD. AUC values of 0.5–0.7, 0.7–
0.9, and ≥0.9 were considered to indicate low, moderate, and
high accuracy, respectively. P-values < 0.05 were considered
statistically significant.

3. Results

3.1. General data

A total of 99 patients with CSVD who met the inclusion criteria
were included in the study. Age and WMH volume were not
normally distributed (P < 0.05) while WM volume (P = 0.14) and
intracranial volume (P = 0.2) were. Participant average age was 70
(63, 73) years, and there were 61 men and 38 women. Table 1 shows
the detailed characteristics of the included patients.

3.2. Correlation of WM volume and WMH
volume with different degrees of
cognitive impairment

The patients were divided into two groups: a mild cognitive
impairment (MCI) group (n = 65) including patients with MoCA

scores <26 and a non-MCI group including patients with MoCA
scores ≥26. WM volume [P (MCI) = 0.2, P (non-MCI) = 0.2],
intracranial volume [P (MCI) = 0.06, P (non-MCI) = 0.2], and
normalized WM volume [P (MCI) = 0.2, P (non-MCI) = 0.2] of
two were normally distributed. There were significant differences
in age, education level, WMH, and WM volume between the
groups (P < 0.05). As shown in Table 2, there were no significant
differences in sex, hypertension, diabetes, coronary heart disease, or
intracranial volume between the two groups (P > 0.05).

3.3. Multivariable logistic analysis of
factors predicting cognitive impairment

Multivariable logistic regression analysis was performed to
determine risk factors for cognitive impairment. Age, educational
level, WMH, WM volume, and WM normalized volume were
included. The stepwise forward method was used to identify WMH
(P = 0.001, OR = 1.195, 95% CI: 1.074, 1.330), WM volume
(P = 0.003, OR = 0.976, 95% CI: 0.960, 0.992), and education level
(P = 0.039, OR = 0.875, 95% CI: 0.771, 0.993) as predictors of
cognitive impairment; no collinearity was observed between them.
The correlation analyses indicated that patients with high WMH
volume, low WM volume, and low education level were more likely
to develop MCI (Table 3).

3.4. Spearman rank correlation analysis
between WMH volume, WM volume, and
different cognitive components

The MoCA contains domains related to visual space and
execution, naming, attention, speech, abstraction, delayed memory,
and orientation ability. WMH volume exhibited moderate
correlations with the total MoCA score and with subscale scores
for visual space and execution and delayed memory (P < 0.05,
q < 0.05). Total WM volume was weakly correlated with subscale
scores for visual space and execution, attention, language, and
delayed memory (P < 0.05, q < 0.05) (Table 4). Partial correlation
analysis revealed that age and education level were significantly
correlated with WMH volume (P < 0.05, q < 0.05), but not
with WM volume (P > 0.05, q > 0.05). We used Spearman
partial correlation analysis with age and education level as control
variables and found that WMH volume was weakly correlated
with the total MoCA score and with subscale scores for visual
space and execution, delayed memory, orientation, visual space and
execution, and attention (P < 0.05, q < 0.05). WM volume was
moderately correlated with MOCA total score and subscale scores
for attention. WM volume was weakly correlated with subscale
scores for visual space and execution, orientation, language, and
delayed memory (P < 0.05, q < 0.05) (Table 5).

3.5. Receiver operating characteristic
curve analysis

Receiver operating characteristic curve analysis was used to
analyze the influence of the Fazekas score, WMH volume, WM
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TABLE 2 Comparison of baseline data between the MCI and non-MCI groups.

Items MCI group
(n = 65)

Non-MCI group
(n = 34)

X2/Z/t P

Male (n, %) 40 (61.54) 21 (61.76) 0.000 0.982

Age [M (P25, P75), years] 71 (64, 74) 65 (56, 72) 2.129 0.033

Hypertension (n, %) 39 (60) 22 (64.70) 0.209 0.648

Diabetes (n, %) 18 (27.69) 8 (23.53) 0.200 0.655

Coronary heart disease (n, %) 19 (29.23) 9 (26.47) 0.084 0.772

Education level [M (P25, P75), years] 8 (4, 12) 11 (8, 14) −2.641 0.008

WMH volume [M (P25, P75), cm3] 12.11 (6.97, 21.01) 4.61 (2.48, 11.31) 4.657 <0.001

WM volume (x ± s, cm3) 491.97 ± 30.33 514.87 ± 38.09 3.038 0.004

Intracranial volume (x ± s, cm3) 1,458.23 ± 51.21 1,473.36 ± 76.51 −1.038 0.305

Normalized WM volume (x ± s, %) 33.75 ± 1.95 34.99 ± 2.49 −2.715 0.008

MCI, mild cognitive impairment.

TABLE 3 Multivariable logistic analysis of factors predicting cognitive impairment.

Variable b SE Wald χ2 P OR (95% CI)

Constant 12.453 4.168 8.928 0.003 –

WMH volume 0.178 0.055 10.652 0.001 1.195 (1.074, 1.330)

WM volume −0.024 0.008 8.999 0.003 0.976 (0.960, 0.992)

Education level −0.133 0.065 4.249 0.039 0.875 (0.771, 0.993)

WMH, white matter hyperintensity; WM, white matter; CI, confidence interval; b, regression coefficient; SE, standard error; Wald χ2 , Chi-square value; OR, odds ratio.

TABLE 4 Results of the correlation analysis.

WMH volume WM volume

rs P q rs P q

MoCA score −0.531 <0.001 <0.001 0.393 <0.001 <0.001

Visual space and execution −0.442 <0.001 <0.001 0.322 0.001 0.003

Naming −0.192 0.056 0.056 0.113 0.266 0.333

Attention −0.246 0.014 0.018 0.362 <0.001 <0.001

Language −0.297 0.003 0.005 0.343 0.001 0.003

Abstract −0.241 0.016 0.018 0.150 0.139 0.199

Delayed memory −0.442 <0.001 <0.001 0.251 0.012 0.020

Orientation −0.361 <0.001 <0.001 0.350 <0.001 <0.001

Age 0.418 <0.001 <0.001 −0.025 0.809 0.865

Education level −0.285 0.004 0.006 −0.029 0.778 0.865

WMH, white matter hyperintensity; WM, white matter; rs , Spearman rank correlation coefficient; q, false discovery rate (FDR).

volume, and the ratio of WMH volume to WM volume on cognitive
dysfunction in patients with CSVD. The ratio was the strongest
predictor, with an area under the curve (AUC) value of 0.800
and a 95% CI of 0.710–0.891. When the threshold was 0.97%, the
sensitivity and specificity for identifying cognitive dysfunction in
patients with CSVD were 0.908 and 0.529, respectively, yielding
the largest Youden index. The second highest AUC was observed
for WMH volume (AUC = 0.786), with a 95% CI of 0.692–0.880.
When the threshold was 4.72, the sensitivity and specificity for
identifying cognitive impairment in patients with CSVD were 0.908
and 0.529, respectively, yielding the largest Youden index (Figure 2
and Table 6).

4. Discussion

Previous studies have reported associations of CSVD with
cognitive impairment, mental disorders, gait disorders, urinary
incontinence, and other problems that represent risk factors for
a variety of acute and chronic neurological diseases in the older
adult population (Pantoni, 2010; Ter Telgte et al., 2018; Cannistraro
et al., 2019; Chen et al., 2019; Hu et al., 2021). WMH is a
key imaging feature of CSVD and has also been associated with
cognitive dysfunction, stroke, Alzheimer’s disease, dementia, and
death. WMH may also lead to cognitive dysfunction via secondary
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TABLE 5 Results of the partial correlation analysis.

WMH volume WM volume

rs P q rs P q

MoCA score −0.336 0.001 0.008 0.458 <0.001 <0.001

Visual space and execution −0.224 0.016 0.032 0.385 <0.001 <0.001

Naming −0.018 0.863 0.863 0.097 0.343 0.343

Attention −0.232 0.022 0.035 0.413 <0.001 <0.001

Language −0.204 0.045 0.060 0.324 0.001 0.002

Abstract −0.112 0.277 0.317 0.154 0.132 0.151

Delayed memory −0.307 0.002 0.008 0.249 0.014 0.019

Orientation −0.285 0.005 0.013 0.348 <0.001 <0.001

Controlled variables: age, education level. WMH, white matter hyperintensity; WM, white matter; rs , Spearman rank correlation coefficient; q, false discovery rate (FDR).

demyelination and subsequent neuronal loss (Sachdev et al., 2004;
Wang et al., 2021).

At present, the assessment of WMH severity in CSVD is
mainly based on a simple qualitative analysis of the Fazekas score
(Fazekas et al., 1987). This scoring method can be used to assess the
severity of WMH to a certain extent and has exhibited associations
with cognitive dysfunction. However, in clinical work, researchers
have gradually observed that scores may be the same for WMH
manifestations with significant differences in severity, meaning that
it may not accurately reflect the extent of cognitive dysfunction in
these patients.

Advanced computational and imaging methods play an
increasingly important role in medical diagnostics, and the capacity
for quantitative analysis of brain tissue has gradually matured over
the last several decades. Quantitative studies have reported that
high WMH volume increases the risk of cognitive impairment and
movement disorders in older adults (Su et al., 2017; Hu et al.,
2021). Other studies have indicated that increased WMH volume
is associated with more severe affective symptoms in patients
with bipolar I disorder, suggesting a link between WMH and
mental symptoms (Tighe et al., 2012; Tully et al., 2020). One study
that analyzed WMH volume and gray matter volume reported a
negative correlation between the two, noting that the relationship
between WMH volume and cognitive impairment was independent
of total gray matter volume (Boyle et al., 2016). Another study,
which demonstrated a correlation between WMH and both
cognitive and motor dysfunction, reported a correlation between
the progression of WMH and the volume of cerebrospinal fluid in
the lateral ventricle (Silbert et al., 2008). A study using machine
learning (ML) combined with magnetic resonance imaging (MRI)
demonstrated that the microstructure of WM is associated with
different types of dementia (Palesi et al., 2018; Castellazzi et al.,
2020). It proves the basis of the influence of WM structure on
cognitive impairment.

In the current study, we analyzed relationships among WMH
volume, WM volume, and cognitive dysfunction in patients with
CSVD. Significant differences in WMH and WM volumes were
observed between patients with and without MCI. Previous studies
have demonstrated that age and education level have an impact
on cognitive function in patients with CSVD (Pinter et al., 2015),
consistent with our findings. A multivariate analysis incorporating
WMH volume, WM volume, age, and education level identified

both WMH volume and WM volume as independent risk factors
for cognitive impairment. A previous meta-analysis demonstrated
that WMH volume was associated with the risk of cognitive
impairment and it supported our findings (Guo and Shi, 2022).
A study on subclinical cerebral small vessel disease and processing
speed in non-dementia patients (Hotz et al., 2021) revealed a
correlation between WMH volume, normal WM volume and
processing speed, also demonstrating that education level was
a protective factor for WM volume and normal WM volume.
WMH volume was also found to be associated with education and
cognitive impairment (Xia et al., 2020). This is consistent with our
current observation that WM volume and WMH volume were risk
factors for cognitive impairment, and WMH volume was inversely
proportional to education level. However, the total WM volume
we used did not show a relationship with education level. Another
study also demonstrated that WMH volume is associated with mild
impairment of processing speed and executive function (Nylander
et al., 2018). This supports our finding that the WMH volume is
highly correlated with the visual space and execution scores in the
MOCA scale.

The innovation of this research is reflected in the following
aspects. First, when exploring the relationship between WM high
signal volume and cognitive impairment, we included WM volume
as a variable. We found that both WM high signal volume and WM
volume were associated with cognitive impairment. The correlation
was still observed after adjusting for age, education and other
related factors. Secondly, correlation analyses suggested that there
are differences in the correlation between these WM high signal
and WM volumes and different types of cognitive impairment.
This finding demonstrated that the two variables affect cognitive
function through different underlying mechanisms which may
be related to pathology. Thirdly, we observed that the absolute
WM volume was more closely related to cognitive function than
the normalized volume corrected by intracranial volume. WMH
volume was related to age and education level, and the correlation
with cognitive dysfunction was reduced after controlling for these
variables. However, WM volume was not related to age or education
level, and the correlation with cognitive impairment was only
slightly affected by these variables. Further, we used the ratio of
WMH volume to WM volume as an index to evaluate cognitive
impairment and found that this index was superior to WMH
volume in evaluating and predicting cognitive impairment.
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FIGURE 2

Receiver operating characteristic (ROC) curve.

TABLE 6 Receiver operating characteristic (ROC) curve parameters.

Index AUC Cut-off value Youden index Sensitivity Specificity

WMH volume 0.786 4.72 0.437 0.908 0.529

WM volume 0.667 511.335 0.314 0.785 0.471

Ratio 0.800 0.966 0.437 0.908 0.529

Fazekas score 0.658 − 0.232 0.938 0.294

AUC, area under the curve; WMH, white matter hyperintensity; WM, white matter.

Postmortem MRI studies have shown that WMH-related
pathologies include mild microglial activation, astrocyte
proliferation, oligodendrocyte reduction, myelin or axon loss,
and perivascular space dilation (Fazekas et al., 1991). Astrocytes
are the most abundant glial cells in the central nervous system
(CNS). Although they were long regarded as passive cells that
provide structural support for neurons, astrocytes are now thought
to play a necessary role in supporting and maintaining a healthy
CNS. There are two main subtypes of astrocytes: protoplasmic
and fibrous astrocytes, which are located in the gray matter and
WM (Lebel and Deoni, 2018). Glutamate, a major excitatory
neurotransmitter in the human CNS, plays a role in a variety of
neurological diseases (Beart and O’Shea, 2007) and is involved in
communication between axons and glial cells through synaptic
release deep in the WM (Alix and Domingues, 2011). Destruction
of the synaptic structure between astrocytes or their axons may
be the pathological basis by which WM lesions induce cognitive
dysfunction.

Notably, many astrocyte lesions manifest as frontal lobe
dominance (van der Knaap and Bugiani, 2017), indicating that
astrocytes in the frontal WM and/or their synaptic structures

may be more fragile than other WM regions and are more
affected by WMH and decreases in WM volume. A study of the
nerve fiber bundles in the WM of the frontal lobe demonstrated
that hand kinematics and visual motion processing are related
to the anatomical structure of the WM network in the frontal
lobe (Budisavljevic et al., 2017), in accordance with the strong
correlation observed between WMH and visual space and executive
function in the current study (based on MoCA scores). WM
lesions can induce a variety of disconnection syndromes, such as
conduction aphasia, associative visual agnosia, apraxia, and pure
alexia (Catani and ffytche, 2005), further supporting the notion that
WMH and WM volumes are related to the pathological basis of
cognitive dysfunction.

In the current study, the correlation between WMH volume
and delayed memory was relatively strong, while correlations
with visual, attention, orientation, verbal, and other aspects were
weak. However, the specific reasons for this difference remain
unclear. Correlations between total WM volume and different
types of cognitive dysfunction were also weak. Although total
WM volume may have a more comprehensive impact on different
types of cognitive dysfunction, strong individual differences in
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compensatory ability may limit its value for predicting changes in
cognitive function. However, our results indicated that the ratio of
WMH to WM volume was most effective in identifying cognitive
function in our patients with CSVD. This ratio may correct for
the effect of brain atrophy or individual differences in WMH
volume to a certain extent. While further studies are required to
uncover the specific mechanisms underlying this phenomenon,
a correlation between brain parenchymal volume and cognitive
function was previously demonstrated (O’Sullivan et al., 2004).
Cognitive dysfunction has also been associated with markers of
brain atrophy in the corpus callosum (Yamauchi et al., 1994),
GM, and hippocampus (Mungas et al., 2001). Together, these
results suggest that WM volume is related to cognitive function,
in part by reflecting brain atrophy. The existence and progression
of WMH and lacunar infarction in the lateral ventricle have also
been associated with the aggravation of brain atrophy but not
with vascular risk factors (Kloppenborg et al., 2012). While brain
atrophy plays an important role in the pathogenesis of WMH, brain
atrophy and WMH often occur simultaneously. Thus, considering
WMH only in the evaluation of cognitive dysfunction will likely
lead to deviations. In contrast, the ratio of WMH to total WM
volume may reduce the impact of brain atrophy to more accurately
reflect the likelihood of cognitive dysfunction.

There are some limitations to this study. Firstly, the sample size
was small due to the high incidence of CSVD. We plan to conduct
further research incorporating a larger sample and improve the
longitudinal aspect to further elucidate these results. Secondly, the
cross-sectional study design and the combination of longitudinal
studies in the study may make the results more reliable.

5. Conclusion

In this study, we quantitatively analyzed the WMH volume and
WM volume of patients with CSVD using medical image analysis
software, observing that both were correlated with cognitive
impairment. Both WMH volume and WM volume were also
identified as independent risk factors for cognitive impairment.
However, they may exert different effects on different aspects of
cognition. WMH may be related mainly to cognitive processes
involving visual space, executive function, and delayed memory.
Our results also indicate that the ratio of WMH to total WM
volume may reduce the impact of brain atrophy, allowing for
more accurate evaluation of cognitive dysfunction in older adults
with CSVD. The current study ultimately provides new insight
into the pathological mechanisms by which WMH is related to
cognitive dysfunction.
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