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Background: The growing prevalence of Alzheimer’s disease (AD) is becoming

a global health challenge without e�ective treatments. Defective mitochondrial

function and mitophagy have recently been suggested as etiological factors in

AD, in association with abnormalities in components of the autophagic machinery

like lysosomes and phagosomes. Several large transcriptomic studies have been

performed on di�erent brain regions from AD and healthy patients, and their data

represent a vast source of important information that can be utilized to understand

this condition. However, large integration analyses of these publicly available data,

such as AD RNA-Seq data, are still missing. In addition, large-scale focused analysis

onmitophagy, which seems to be relevant for the aetiology of the disease, has not

yet been performed.

Methods: In this study, publicly available raw RNA-Seq data generated from

healthy control and sporadic AD post-mortem human samples of the brain frontal

lobe were collected and integrated. Sex-specific di�erential expression analysis

was performed on the combined data set after batch e�ect correction. From

the resulting set of di�erentially expressed genes, candidate mitophagy-related

genes were identified based on their known functional roles in mitophagy, the

lysosome, or the phagosome, followed by Protein-Protein Interaction (PPI) and

microRNA-mRNA network analysis. The expression changes of candidate genes

were further validated in human skin fibroblast and induced pluripotent stem cells

(iPSCs)-derived cortical neurons from AD patients and matching healthy controls.

Results: From a large dataset (AD: 589; control: 246) based on three di�erent

datasets (i.e., ROSMAP, MSBB, & GSE110731), we identified 299 candidate

mitophagy-related di�erentially expressed genes (DEG) in sporadic AD patients

(male: 195, female: 188). Among these, the AAA ATPase VCP, the GTPase ARF1,

the autophagic vesicle forming protein GABARAPL1 and the cytoskeleton protein

actin beta ACTB were selected based on network degrees and existing literature.

Changes in their expression were further validated in AD-relevant human in vitro

models, which confirmed their down-regulation in AD conditions.

Conclusion: Through the joint analysis of multiple publicly available data sets,

we identify four di�erentially expressed key mitophagy-related genes potentially

relevant for the pathogenesis of sporadic AD. Changes in expression of these
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four genes were validated using two AD-relevant human in vitro models, primary

human fibroblasts and iPSC-derived neurons. Our results provide foundation for

further investigation of these genes as potential biomarkers or disease-modifying

pharmacological targets.

KEYWORDS

Alzheimer’s disease, mitochondria, mitophagy, lysosome, transcriptomics, VCP, ARF1,

GABARAPL1

1. Introduction

Recent years have seen a growing trend in the number of

Alzheimer’s Disease (AD) patients, which reached 44 million in

2014 and 47million in 2016 (Prince et al., 2014, 2016). This number

is expected to increase to over 74 million by 2030 and 131 million

by 2050 (Prince et al., 2015), causing significant burden on medical

systems due to patients’ need of long-term care (Prince et al., 2016).

Characterized by brain atrophy and the accumulation of amyloid

β plaques and neurofibrillary tangles in brain (Alzheimer, 1906),

the aetiology of AD remains largely unknown. Effective treatments

for AD are still lacking after decades of extensive research and

investments.

Recent studies indicated that some AD pathological features

may stem from defective disposal of dysfunctional mitochondria by

mitophagy. For instance, inhibition of amyloid β aggregates and tau

tangles, as well as restoration of cognitive ability, can be achieved

through mitophagy inducers in C. elegans and AD mice models

(Fang et al., 2019). Evidence suggests that compromised mitophagy

in AD may be attributed to abnormalities in lysosomal activity and

failure to incorporate dysfunctional mitochondria into lysosomes

for the correct formation of autophagosomes (Kerr et al., 2017).

Thus, lysosome and phagosome abnormality may be contributing

factors to mitophagy dysfunction in AD. However, the molecular

mechanisms underlying the disposal of defective mitochondria

by the autophagic machinery and mitophagy malfunction in

AD patients are yet to be systematically examined. Therefore,

an investigation of mitochondria-centered mechanisms holds the

promise to identify important molecular steps in the initiation and

progression of the disease, as well as potential novel biomarkers and

targets for intervention.

Meta-analysis of AD brain transcriptomic data (Patel et al.,

2019) has shown that differential gene expression in the frontal,

temporal, parietal lobe, and the cerebellum parallels the AD

histopathological changes that differentially affect these brain

regions in respect to both staging (Braak and Braak, 1991) and

severity. Considerable differences in AD pathology and prevalence

have also been observed between men and women (Grimm et al.,

2016; Podcasy and Epperson, 2016). These important observations

provided the scientific rationale for our investigation of AD gene

changes separately in different brain regions and in both sexes.

Transcriptomic assays such as microarray and RNA-Seq have

been widely used to investigate the gene expression profile behind

the molecular mechanisms of AD in different brain regions. These

have generated a considerable amount of data that have been made

available through both general and AD-dedicated databases such

as Accelerating Medicines Partnership-Alzheimer’s Disease (AMP-

AD) (Hodes and Buckholtz, 2016) and many genes and pathways

that may play crucial roles in AD have been identified [e.g., YAP1

(Xu et al., 2018) & SPCS1 (Patel et al., 2019)]. Although these data

have been thoroughly analysed, only few analyses focused on the

role of mitochondria-related genes and pathways in AD. Moreover,

RNA-Seq data provide chances to evaluate more genes that are not

included or difficult to be detected by microarray analysis.

In fact, the results of many transcriptomic studies (especially

microarray) suffer from lack of reproducibility and high variability

(Zhang et al., 2009; Perng and Aslibekyan, 2020), partially due

to limitations in sample sizes. Integrative analysis of publicly

available datasets can be a solution to this problem while avoiding

the expense of new costly high-throughput experiments. Possible

methods to integrate datasets include: (1) merging of expression

matrices, (2) meta-analysis of Differentially Expressed Gene (DEG)

lists and (3) pooling together the raw data. While merging

of expression matrices followed by cross-platform normalisation

could be the only choice for microarray data from various

platforms, to avoid batch effect and high false discover rate of

meta-analysis, pooling of raw data at the beginning of analysis is

more suitable and reliable for RNA-Seq data when the datasets are

generated from similar samples and experimental settings. Though

more popular in clinical research, pooled analysis has also been

used for omics data analysis (Sonnenblick et al., 2018; Matikas et al.,

2019; Traylor et al., 2021).

Network-based approaches are useful for identifying potential

core genes among the DEGs. For instance, in Protein-Protein

Interaction (PPI) networks, a gene whose product interacts with

many other gene products (i.e., with higher degree in the graph)

is in general more likely to be a key gene. At the same time,

a gene targeted by more microRNAs that are regulated in the

opposite direction to this gene, could be regarded to have

more reliable differential expression, because a microRNA can

bind to the mRNAs of its target gene and degrade the latter.

Many unbiased screenings have been published, utilising module

detection algorithms to these networks followed by enrichment

analysis based on gene sets, or key genes determination for each

module (Hu et al., 2020; Wan et al., 2020; Yu et al., 2021). In our

opinion, it is more reliable to combine algorithms and the existing

knowledge of a disease to avoid the ignorance about important key

genes (especially those with smaller fold changes) that are related to

particular biological processes, which are not necessarily enriched.

To the best of our knowledge, there is no integration study

using the pooling method on RNA-Seq datasets from post-mortem

brain samples of AD patients. Only two microarray-based
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integration studies have been published, using meta-analysis

(Patel et al., 2019), and merging of expression matrices (cross-

platform normalisation) (Xu et al., 2018), respectively. Other

similar bioinformatics studies lack experimental validation or did

not focus on mitophagy (Hu et al., 2020; Yu et al., 2021).

In this study, raw RNA-Seq data of brain AD samples and age-

matched controls were acquired from publicly available sources.

DEGs were identified after pooling together samples from the

frontal lobe (FL) separately for each sex and correcting covariates

and batch effects. Gene sets, whose descriptions include one of

the three keywords (i.e., mitophagy, phagosome & lysosome), were

collected from different databases (e.g., KEGG, GO, Mizushima,

& Reactome). Their member DEGs were extracted for following

Protein-Protein Interaction (PPI) network analysis via STRING.

Four candidate genes (VCP, ARF1, GABARAPL1, and ACTB) were

selected from highly connected genes in the PPI network from

the STRING database (Szklarczyk et al., 2019) and the microRNA-

mRNA interaction network for experimental verification. These

genes were validated by literature search and experiments in state-

of-the-art human AD models (skin fibroblast and iPSC-derived

neurons). This research highlights four novel genes whose products

and functions might be relevant for mitophagy and mitochondria

alterations described in AD.

2. Materials and methods

2.1. Data collection

The workflow of this study is shown in Figure 1. At the

beginning, nine possibly eligible AD RNA-Seq datasets were

identified: six GSE datasets downloaded from Gene Expression

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/gds) and three

AMP-AD datasets from several brain regions.

For the six GSE datasets (i.e., GSE125583, GSE125050,

GSE110731, GSE104704, GSE95587, & GSE53697) (Scheckel et al.,

2016; Friedman et al., 2018; Nativio et al., 2018; Li et al., 2019;

Srinivasan et al., 2020), metadata describing patients’ phenotype

(e.g. age, sex, & Braak score) were collected from the GEO using

R package GEOquery (v 2.48.0) (Davis andMeltzer, 2007). The raw

RNA-Seq data were downloaded from the Sequence Read Archive

(SRA) (https://www.ncbi.nlm.nih.gov/sra/) and converted to fastq

format using fasterq-dump in SRAtoolkit (v 2.10.2).

For the three AMP-AD datasets (i.e., MayoRNAseq, MSBB,

& ROSMAP) (Allen et al., 2016; De Jager et al., 2018; Wang

et al., 2018), the metadata and RNA-Seq data in fastq format

were both requested and downloaded from the Synapse (https://

www.synapse.org/) via the Python package synapseclient and

synapseutils. Instead of the BAM files stored in each study, fastq

files generated by the RNAseq Reprocessing Study carried out by

the AMP-AD consortium were used.

2.2. Inclusion criteria for datasets and
patients

Datasets were only included in the analysis if they were

generated by a study that (1) utilised bulk RNA-Seq; (2) included at

least 5 AD patients and 5 age-matched controls; and (3) examined

post-mortem samples of human brain. Eligibility criteria further

required patients to be aged above 65 to ensure only late-onset AD

patients were considered. The Braak score (Braak et al., 2006) was

recorded in the metadata of most datasets, and was used as the

diagnosis criteria of AD. Patients with Braak score 0, I, or II were

classified into control groups, while IV, V, VI were classified into

AD groups. Patients with a Braak score of III were excluded due to

ambiguity in AD diagnosis.

2.3. Quality control and preprocessing of
RNA-Seq data

An overview of the sequencing quality was visualised for each

sample by FASTQC (v 0.11.9) (Andrews, 2010) and summarised

by each dataset by using R package ngsReports (v 1.2.0) (Ward

et al., 2020). Trimmomatic (v 0.39) (Bolger et al., 2014) was utilised

to trim low-quality bases from reads and discard low quality

reads from samples in the “sliding-windows” mode. Sequences

originating from adaptors were also removed with Trimmomatic

“palindrome” mode. Values of parameters were chosen partially

based on observation and recommendations (MacManes, 2014).

Salmon (Patro et al., 2017) was adopted to quantify the

transcript expression for all samples, using human reference

transcriptome and annotations from GENCODE (Frankish et al.,

2019) (release 33). A shell script “shuffle.sh” in BBmap (Bushnell,

2014) was applied to randomise the reads in these fastq files while

keeping each pair of reads for paired-end (PE) data at the same

place in the pair of fastq files. The expression values at transcript

level were then summarised to gene level by applying R package

tximport (v 1.14.0) (Soneson et al., 2016).

To include samples without sex information in themetadata for

the following analyses and to avoid mislabeling, prediction of sex

was performed on all samples. The prediction was based on a ratio

between total read counts on chromosome Y and total read counts

on chromosome X as well as Principal Component Analysis (PCA).

2.4. Integrating datasets and di�erential
expression analysis

For the three datasets (i.e., ROSMAP, MSBB, & GSE110731) of

Frontal Lobe (FL) shown in Table 1, age and Post-Mortem Interval

(PMI) were included as covariates. Surrogate Variables (SVs) were

then estimated for variance in gene expression that cannot be

explained by the two known covariates using R package SVA (v

3.28.0) (Leek, 2014).

To visualise the effectiveness of batch effect correction, PCA

was applied before and after batch correction. Variance stabilising

transformation was employed using R package DESeq2 (v 1.22.2)

(Love et al., 2014). The “removeBatchEffect” function in R package

limma (v 3.36.5) (Ritchie et al., 2015) was then utilised to adjust the

gene expression matrices by the covariates including SVs. Adjusted

gene expression matrices were only used for visualisation, not

DE analysis.
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FIGURE 1

Overview of the work flow. Green rectangle, data; Blue parallelogram, operations on data; M, male; F, female.

TABLE 1 Three selected AD frontal lobe RNA-Seq datasets.

Database Dataset Published year Brain region Sample size

AD (M / F) Control (M / F)

AMP-AD MSBB 2015 Frontal lobe 415 (132 / 283) 137 (63 / 74)

AMP-AD ROSMAP 2015 Frontal lobe 505 (147 / 358) 153 (74 / 79)

GEO GSE110731 2019 Frontal lobe 10 (6 / 4) 10 (5 / 5)

/ Total (before filtering) / / 930 (285 / 645) 300 (142 / 158)

/ Total (after filtering) / / 589 (177 / 412) 246 (120 / 126)

M, male; F, female.

Mapping of detailed brain regions to broader brain regions was

carried out partially according to the criteria used by two previous

studies (Xu et al., 2018; Patel et al., 2019). For example, frontal

cortex, superior frontal gyrus, and dorsolateral prefrontal cortex

were all mapped to frontal lobe.

DE analysis was performed using R package DESeq2 (v 1.22.2)

(Love et al., 2014). Briefly, raw count matrices, metadata (including

covariates & disease status) and average transcript lengths

were directly passed to DESeq2 which calculated normalisation

factors for each sample (Anders and Huber, 2010) based on

the average transcript length estimated by the R package

tximport (v 1.14.0) (Soneson et al., 2016). Covariates were also

included in the modelling process to correct for batch effects.

The resulting p-values were adjusted using Benjamini-Hochberg

method (Benjamini and Hochberg, 1995) for multiple testing to

control for False Discovery Rate. Genes with an adjusted p-value

<0.05 and an absolute value of log2 fold change >0.1 were

considered significant DEGs for downstream analysis. Known AD-

related genes from a systematic review (Hu et al., 2017) were used

to validate the DE analysis results.
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2.5. Selection of genes related to
mitophagy

To extract DEGs between healthy control and sporadic AD

patients related to mitophagy, several geneset databases were

utilised, including wikiPathways (Slenter et al., 2018) (v 20200510),

GO (Ashburner et al., 2000; The Gene Ontology Consortium,

2019), KEGG pathway (Kanehisa and Goto, 2000), KEGG module,

Reactome (Jassal et al., 2019), and MSigDb (Liberzon et al., 2011,

2015). Although MSigDb includes GO, KEGG and Reactome, the

latter 3 databases were still included separately to secure the latest

versions. Redundant genes were removed. Genesets whose names

contained at least one of the three keywords (i.e., mitophagy,

lysosome & phagosome) were collected. Their member genes were

extracted using R package clusterProfiler (v 3.8.1) (Yu et al., 2012)

and combined into a union of non-redundant mitophagy-related

genes. The intersection between mitophagy genes and DEGs were

passed on to downstream analyses.

2.6. Network analysis and candidate key
gene selection

To construct PPI networks, the STRING database (v 11)

(Szklarczyk et al., 2019) was adopted to extract known interactions

between mitophagy-related DEGs. For each sex, the above selected

DEGs (refer to 2.5) were uploaded to STRING via its API using R

(v 3.6.1). Among DEGs that were not selected (i.e., differentially

expressed but not a member gene of the above genesets), those

interacting with at least 20 selected DEGs were also uploaded,

because they might also be closely related to mitophagy. The degree

and log 2 fold change of genes were visualised by the sizes and

colours of nodes in the PPI plot respectively.

microRNA-mRNA pairs were downloaded from 2 databases:

mirTarBase (Chou et al., 2018) and miRSponge (Wang et al., 2015),

with the ID being unified according to miRBase, while differentially

expressed microRNA in AD frontal lobe were obtained from a

systematic review (Takousis et al., 2019) which combined RNA-Seq

and microarray results regardless of male or female. A microRNA-

mRNA interaction network was built based on these data.

Criteria for selecting key genes from down-regulated genes

were: (1) degree≥ 20 in male or female PPIs; (2) targeted by at least

10 up-regulated microRNAs; (3) the number of down-regulated

microRNA targeting the gene should not exceed 1/3 of that of up-

regulated microRNA; (4) has at least some implication in AD or

mitophagy or mitochondria in literature.

2.7. Primary cells and culture condition

Primary skin fibroblasts [AG02261 (Ctrl1), AG16086 (Ctrl2),

AG07377 (AD1), and AG06263 (AD2)] were obtained from the

Coriell Institute for Medical Research (NJ, USA). Two fibroblast

cell lines from sporadic AD (sAD) patients and two correspondent

healthy sex- and age-matched samples have been used (see

Supplementary Table 1 for details about age, sex, and disease

status). Human fibroblasts were cultured in AmnioMAXTM-II

Complete Medium (Gibco, #11269016) in 5% CO2 in a humid

incubator at 37◦C.

2.8. iPSCs information and culture
condition

iPSCs were obtained from Zameel Cader at Nuffield

department of Clinical Neurosciences, University of Oxford. Three

iPSCs from sAD patients and three corresponding healthy sex- and

age-matched samples were used (see Supplementary Table 2 for

details about age and sex of the patients). iPSCs were cultured in

Matrigel-coated plates and cultured with mTesR1 medium.

2.9. iPSCs-derived neurons

iPSCs were differentiated into neurons following a previously

validated and published protocol (Zhang et al., 2013). Briefly, iPSCs

were cultured in mTesR1 medium added with Ngn2 and rtTA

lentivirus on day -1, and then the next day (Day 0) the culture

medium was replaced with DMEM/F12 medium containing N2

(Thermo Fisher), NEAA (Invitrogen), human BDNF (10 mg/l,

PeproTech), and human NT-3 (10 mg/l, PeproTech). Doxycycline

(2 g/l, Clontech) was added on day 0 to induce TetO gene

expression. On day 2, a 24 hr puromycin (1 mg/l) selection

period was started. On day 3, medium was changed to Neurobasal

medium containing B27(Thermo Fisher), Glutamax (Invitrogen),

BDNF and NT3; After day 7, 50% of the medium in each well

was exchanged every 2 days. On day 14, iPSCs-derived neurons

(iN) were collected and processed for RNA extraction and gene

expression analysis.

2.10. RNA extraction and gene expression
analysis

Total RNA was isolated from both fibroblast and induced

neurons (iN), using RNeasy MiniKit (Qiagen) following the

manufacturer instruction. RNA was analysed both for purity and

concentration with an Agilent BioTek spectrometer (CHECK).

Samples with OD260/280 ratio around 2.0 were included in the

gene expression analysis. cDNA was synthesized using FIREScript

RT cDNA synthesis MIX with oligo (dT) primer (Solis BioDyne)

according to the manufacturer instructions. Real-time (RT)-PCR

was performed using HOT FIREPol EvaGreen qPCR mix from

Solis BioDyne following instructions from manufacturer using an

Applied Biosystems QuantStudio 6Flex Real-Time PCR system.

Three housekeeping genes, HPRT1, RPL13, and TBP were tested

for their suitability as control genes.HPRT1 and RPL13a have

already been shown to have a stable expression in several brain

diseases (Penna et al., 2011; Rydbirk et al., 2016; Panina et al.,

2018; González-Bermúdez et al., 2019). Also in our models, they

showed ubiquitous gene expression both across brain regions and

reprogrammed iPSCs and were therefore chosen as reference genes

for normalisation in the gene expression analysis. The relative
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FIGURE 2

Volcano plot of DE analysis for the combined FL dataset. Significant DEGs are shown in red points, with known AD-related genes highlighted. (A)

Male: 3,548 up, 2,667 down. (B) Female: 2,299 up, 2,562 down.

mRNA expression was calculated using the 2−11CT method.

Expression analysis of the following genes was undertaken: ARF1,

ACTB, GABARAPL1, GAPDH, and VCP. All oligonucleotide

primers were designed using PrimerBlast (NCBI-NIH) and

analyzed with NetPrimer (BioSoft) (Supplementary Table 3).

2.11. Statistics

Statistical analysis was performed with Prism 6.0 (GraphPad

Software, https://www.graphpad.com/scientific-software/prism/).

One-way multiple comparisons Student’s t-test with Bonferroni’s

multiple comparison post hoc test was used for mean comparisons

between conditions as required. The number of samples used for

statistical analyses (n) refers to either the number of different

individuals per group or total samples in the study, being always

four independent biological replicates. Differences were considered

significant when p < 0.05. Data in bar graphs are reported as

mean± SD.

3. Results

3.1. Datasets selection

Three bulk RNA-Seq datasets of post-mortem frontal lobe

samples from AD patients and age-matched controls were selected

(Table 1). Datasets for other brain regions were excluded for

incomplete metadata and low data quality. After combining the 3

datasets and filtering the samples by the inclusion criteria (refer

to 2.2), a total of 589 AD (M: 177; F: 412) and 246 control (M:

120; F: 126) frontal lobe (FL) samples were analysed, following the

workflow in Figure 1.

3.2. DE analyses based on integrated data

For the combined FL datasets, the expression levels of 37,787

genes (incl. protein-coding genes and non-coding RNAs) were

quantified. The Volcano plots of the combined dataset show that

most of the significant DEGs have small absolute values of log2 fold

change which may be due to variation in gene expression between

samples and datasets (Figure 2). It is noted that smaller effect sizes

are common phenomena for integrative studies (Xu et al., 2018;

Patel et al., 2019) compared to what is generally observed for DE

analysis of single datasets.

In total, 4,457 male specific, 3,103 female specific, and 1758

shared AD DEGs were identified in the frontal lobe. Many genes

have been previously reported as AD-associated (Hu et al., 2017),

whose gene symbols are shown in Figure 2. For instance, brain-

derived neurotrophic factor (BDNF) was down-regulated in both

sexes, consistent with previous findings that a reduction in BDNF is

associated with cognitive impairment in AD (Amidfar et al., 2020),

whereas elevated BDNF levels can improve cognitive function in

an AD mouse model (Choi et al., 2018). Another example is the

transcription factor SP1 (specificity protein 1) whose up-regulation

was observed in both sexes, in line with previous studies in an AD

mouse model (Citron et al., 2015), as well as in human AD cortex

and hippocampus (Villa et al., 2013). Such reference genes served

as a validation of the DE analysis.

3.3. Genesets related to keywords and their
member DEGs

Fifty-three genesets containing the key words mitophagy,

lysosome or phagosome were identified in 4 databases (Table 2).
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TABLE 2 Number of genesets potentially related to mitophagy in each

database.

Database Keyword Number of gene set

KEGG Mitophagy KEGG mitophagy animal

Lysosome KEGG lysosome

Phagosome KEGG phagosome

GO Mitophagy 5, e.g., GO mitophagy, GO negative
regulation of mitophagy

Lysosome 25, e.g., GO endolysosome, GO golgi to
lysosome transport

Phagosome 15, e.g., GO phagosome acidification, GO
phagosome maturation

Reactome Mitophagy 3, e.g., REACTOME receptor mediated
mitophagy, REACTOME pink parkin
mediated mitophagy

Lysosome REACTOME lysosome vesicle biogenesis,
REACTOME prevention of phagosomal
lysosomal fusion

Phagosome REACTOME cross presentation of
particulate exogenous antigens phagosomes,
REACTOME suppression of phagosomal
maturation

Mizushima Phagosome MIZUSHIMA autophagosome formation

No relevant genesets were found in the wikiPathways database,

which is thus not shown in the table. The Mizushima database

is a part of MSigDb. Some well-studied mitophagy pathways

are included in the above genesets, such as receptor-mediated

mitophagy (Yamaguchi et al., 2016) and PINK1/PARKIN-mediated

mitophagy (Eiyama and Okamoto, 2015). Both functional and

morphological genesets were included in the analysis. Taking

the union of their member genes, 716 non-redundant genes

were regarded as mitophagy-related, among which 195 were

differentially expressed for males, 188 for females, and were further

used for network analysis.

3.4. Network analysis: PPI and
microRNA-mRNA network

In order to identify potential key genes among numerous

relevant DEGs, 2 PPI networks were obtained from the STRING

database for male and female, respectively. In the networks, each

node represents a DEGs. DEGs that were not member of relevant

genesets but interacted with at least 20 members of the network

were also added to the network (shown in rectangles instead of

circles) and defined as candidate new members of these genesets.

The size of each node is proportional to its degree (the number

of genes that a certain gene interacts with). The direction of gene

regulation is indicated by the gene nodes’ colour, with down-

regulated genes in green while up-regulated genes in red. The depth

of a node’s colour is in proportion to the absolute value of the log2

fold change of a gene, which ranges from 0 to 0.4 (Figure 3).

The PPI network construction began with 195 genes for male

and 188 genes for female. After adding candidate new members,

the total number of nodes were 311 for male and 298 for female.

In total of 3,641 and 3,677 protein interactions for male and female

were retrieved from the STRING database respectively, forming the

edges of the PPI network.

MicroRNAs’ suppression of their target mRNAs was regarded

as evidence for genes’ differential expression at mRNA level. From

literature and databases, 559 unique DE-microRNA in FL (395 up,

128 down), and 380,639 microRNA-mRNA pairs were retrieved to

create the microRNA-mRNA interaction network. MicroRNAs that

were reported in some papers as up-regulated in AD FL but also

reported to be down-regulated in the same number of studies were

excluded from the analysis.

3.5. Genes selection for experimental
validation

Based on the aforementioned criteria (refer to 2.6) and

existing knowledge, four genes were finally selected: VCP,

ARF1, GABARAPL1, and ACTB (Table 3), which are highly

connected in both PPI (Figures 3A, B) and microRNA-mRNA

network (Figure 3C). For brevity, only the first three genes and

genes/microRNAs that interact with them are shown in the figure.

The network visualisation was done in Cytoscape (v 3.8) (Shannon,

2003).

As expected, a number of known mitophagy genes interact

with the selected genes. For example, FUN14 domain containing

1 (FUNDC1), which interacts with GABARAPL1 and is down-

regulated in both sexes, assists the phagophore to engulf

dysfunctional mitochondria for mitophagy (Cai and Jeong, 2020).

VDAC1 and OPTN are known mitophagy mediators as well

(Bakula and Scheibye-Knudsen, 2020). Interestingly, β-Synuclein

(SNCA), which is not a member of any canonical mitophagy

genesets/pathways, is shown to interact with many mitochondrial

outer membrane components and play a role in mitochondrial

dysfunction (Malpartida et al., 2021) and mitophagy (Shaltouki

et al., 2018) in Parkinson’s disease. It also interacts with VCP and

GABARAPL1 in the PPI network in this study. Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), also not a member of any

canonical mitophagy genesets/pathways, promotes the fusion of

damaged mitochondria with lysosome, thus promoting mitophagy

in Huntington’s disease (Hwang et al., 2015). It interacts with the

three selected genes. In summary, the above evidence supports the

reliability of the PPI networks in this research.

In the microRNA-mRNA interaction network (Figure 3C),

most of the microRNAs targeting the first three selected down-

regulated genes are up-regulated, supporting the differential

expression of these genes. For microRNAs targeting ACTB, there

are still more up-regulated than down-regulated microRNAs,

though the numbers are close.

3.6. Experimental validation of VCP, ARF1,
GABARAPL1, and ACTB

The average expression levels of the four selected genes in the

combined AD FL transcriptomics dataset is shown in Figure 4A. To
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FIGURE 3

PPI and microRNA-mRNA interaction networks of DEGs related to mitophagy in frontal lobe (FL). (A) PPI of male DEGs; (B) PPI of female DEGs; (C)

microRNA-mRNA interaction network based on selected common DEGs between male and female, as well as microRNA-mRNA pairs without sex

information. Red: up-regulated genes; Green: down-regulated genes; Circle: genes that are already included in genesets related to mitophagy;

Rectangle: candidate new member genes of geneset related to mitophagy; Triangle: microRNA; Node sizes are in proportion to node degree; Depth

of node colours are in proportion to log2 fold change.

validate the bioinformatic results, the expression of the four down-

regulated genes related to mitophagy in Alzheimer’s disease, which

had been selected (i.e., ARF1, GABARAPL1, VCP, and ACTB)

were analysed by qPCR in AD-relevant cellular models. In iPSCs-

induced neurons (iN), the expression of all the four genes was

significantly decreased in sAD patients when compared to age and

sex matched healthy controls. This was observed in both males

and females but was more pronounced in females (Figure 4B). In

the case of human fibroblasts, significant changes in the relative

gene expression between AD patients and age/sex-matched healthy

individuals was detected only in males but not in females. In

particular, VCP, ARF1, and ACTB showed a significant reduction of

expression, whereas GABARAPL1 was slightly increased in human

fibroblast from male AD patients compared to healthy controls

(Figure 4C). In the case of the female samples no differences in gene

expression were detected between AD fibroblasts and matching

controls in the case of VCP, ARF1, ACTB, or a slightly increased

expression in the case of GABARAPL1 (Figure 4C), although not

statistically significant.

4. Discussion

Prior studies have noted the essential role of mitochondria and

mitophagy in AD, but the molecular mechanisms and relevance

are still to be further investigated and understood (Kerr et al.,

2017). Despite the large number of AD transcriptomics studies,

performing sex- and brain region-specific integrative analysis on

existing data, thus exploiting large sample sizes, and using genesets-

and network-based approaches with a selective focus on specific

biological processes such asmitophagy can lead to the identification

of important key genes, which might have been previously ignored.

Once experimentally validated, these genes could turn to be

promising core genes in AD pathogenesis.
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TABLE 3 Genes selected for experimental validation.

Gene Description Log2 fold change Degree in PPI Number of targeting microRNA

Male Female Male Female Up Down

VCP Valosin containing protein –0.11 –0.10 56 61 10 1

ARF1 ADP ribosylation factor 1 –0.21 –0.10 33 46 17 4

GABARAPL1 GABA type A receptor
associated protein like 1

–0.23 –0.28 37 45 17 2

ACTB Actin beta –0.17 –0.05 (n.s.) 29 / 22 12

FIGURE 4

Experimental validation of di�erential expression gene analysis in preclinical AD models. (A) Bioinformatic analysis of di�erential gene expression; (B)

Individual gene expression in iN samples paired samples by age and gender (total n = 6; Multiple pairwise t-test); (C) Individual gene expression in

human fibroblast samples paired by age and gender (total n = 4; Multiple pairwise t-test). Solid graph bars represent control groups and striped bars

represent AD groups; blue and red bars represent male and female individuals, respectively. Data in graph bars are reported as mean with their

corresponding standard deviation. Statistical significance is reported as *p < 0.05; **p < 0.01; ***p < 0.005 and ****p < 0.0001.
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With the idea of optimizing the use of publicly available

data, we pooled together three RNA-Seq datasets generated from

frontal lobe samples of AD patients and healthy controls. We

used them for DE analysis with batch effects correction (Figures 1,

2). Several DEGs were identified through geneset analysis, PPI,

and microRNA-mRNA network analysis (Figure 3), which could

be critical players in mitochondria-centered AD mechanisms. All

these genes were related to at least one of the keywords: mitophagy,

lysosome, and phagosome.

The prevalence of AD, as well as its incidence in the individual

over 80, is significantly higher in women compared to men

(Mielke et al., 2014). Recent epidemiological data suggest that

women present faster cognitive decline than men (Levine et al.,

2021), thus suggesting the existence of sex difference in AD risk

factors, presentation, and progression. However, the molecular

mechanisms of sex-biased differences in AD and the sex-specific

effects of some genes in AD are still elusive (Dumitrescu et al.,

2019; Guo et al., 2022). The use of publicly available datasets allows

for large sample size and the possibility of comparing differences

between sexes.

Here, we started from datasets containing complete metadata

for each sample as well as large enough sample sizes, and patients

that were unambiguously diagnosed with late onset AD.

As to quality control, in each sequencing read, bases with

high probability of being sequencing errors, which are referred

to as low quality bases, were removed. This also applies to

technical sequences (e.g., adaptors) that were used to complete

the sequencing process and did not contain biological information

from the original RNA sequence (Bolger et al., 2014). After this,

high quality sequencing reads from each sample were assigned to

each transcript in the reference transcriptome, generally based on

sequence similarity, in order to quantify the expression level of each

gene (Patro et al., 2017).

The main brain area affected in AD, the cerebral cortex, is

anatomically divided into four lobes: frontal, parietal, occipital,

and temporal lobe. Each of the lobes is further organised in

complex structural subregions, i.e., gyri (bumps) and sulci (groves

or fissures), with specific functions. Since RNA-Seq data from small

sub-regions of the cerebral cortex are not abundant, we considered

sub-regions belonging to the same lobe as equivalent with regard to

how their RNA-Seq data reflect AD pathology, as also previously

reported (Xu et al., 2018; Patel et al., 2019). By integrating data

at lobe level, much larger sample size can be achieved to enable

novel discovery.

Even for the same brain region, RNA-Seq datasets generated by

different laboratories usually show varying gene expression levels,

possibly due to different tissue-sampling methods, sequencing

operations or other technical factors specific to each laboratory

(Lazar et al., 2013). These un-wanted non-biological variations

(i.e., batch effect), which also occur between batches within the

same dataset, can even conceal the differences between AD and

control, necessitating batch effect correction when integrating

datasets. Therefore, batch effect correction was performed on the

selected datasets before conducting differential expression analysis

(Figure 1).

Differential expression analysis is a statistical test with a null

hypothesis that the log2 fold change between AD and control for

a gene’s expression level is zero. Since RNA-Seq’s read counts do

not follow normal distribution but negative binomial distribution

instead, and there is an obvious dependency between mean and

variance, t-test is not applicable here. We thus adopted Wald test

and other necessary operations via the R package DESeq2 (Love

et al., 2014).

From nine DEGs shortlisted by their PPI degrees and by

the regulation directions of microRNAs targeting them, four

genes were selected based on bibliographic research on their

involvement in mitochondrial function and autophagy: ARF1

(ADP ribosylation factor 1), GABARAPL1 (GABA type A receptor

associated protein like 1), VCP (valosin containing protein),

and ACTB (actin beta). Among them, the ACTB product is a

cytoskeletal protein with typically housekeeping functions and

considered having a stable expression. However, actin and actin-

binding proteins have also been recognised as histopathological

structures, which may contribute to AD pathogenesis and

to primary behavioural symptoms of the disease (Bamburg

and Bloom, 2009). Indeed, dysregulation of actin cytoskeleton

observed in mouse AD models has been related to synaptic

impairment and dendritic spine loss associated to AD (Rush

et al., 2018). and recent genomic convergence and network

analysis have found ACTB to be a significant AD risk gene

(Talwar et al., 2014). In our study, the bioinformatic analysis on

human transcriptomic data highlighted a statistically significant

decrease on ACTB expression in AD individuals compared to

matching controls in males, but not in women (Figure 4A).

In both human iN and fibroblasts, this trend was further

confirmed in male samples, whereas a statistically significant

ACTB downregulation was detected also in AD iN in females

(Figures 4B, C).

Of the other three genes, the ATPase VCP has been previously

described for its role in Parkin-dependent mitophagy by extraction

of ubiquitinated proteins from the outer mitochondrial membrane

and selective degradation of damaged mitochondria through

autophagosome fusion (Tanaka et al., 2010; Xu et al., 2011;

Papadopoulos and Meyer, 2017; Bento et al., 2018). Also in

neuronal cells, mitochondrial function seems to depend on

VCP-mediated quality control (Fang et al., 2015) and VCP has

been shown to bind the ER-associated protein UBXD2, which

accumulates in neurons of the AD brain at early stages (Liang

et al., 2006). Furthermore, it has been recently reported that VCP

mutations can be associated with tau pathology, thus supporting

an important role of VCP in AD pathogenesis (Darwich et al.,

2020).

Our results show in the bioinformatic analysis a significant

decrease both in males and females (Figure 4A). Similarly,

this reduced expression of VCP in male samples was also

significant in iN and fibroblast whereas for females samples

it only reach statistical significance in iN but not fibroblast

(Figures 4B, C).

ARF1 is a small GTPase classically studied for its involvement

in the trans-golgi vesicle transport (Donaldson and Jackson,

2011) and seems to play a role in the post-Golgi trafficking and

recycling of BACE1, suggesting that alterations in ARF1 may

perturb BACE1 traffic and increase the processing of Amyloid β

precursor protein (APP) which generates more Aβ40 and Aβ42,

Frontiers in AgingNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1101216
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Mei et al. 10.3389/fnagi.2023.1101216

the main pathogenic β-amyloid peptides and precursors of the

amyloid plaques (Tan et al., 2020). Recent studies in cancer

cell lines highlighted the important role of Arf-1 at the contact

sites between ER and mitochondria, and how Arf-1 contributes

to maintain mitochondrial morphology and function (Andersen

et al., 2020). Interestingly, in yeast and C. elegans, Arf-1 has

also been shown to regulate mitofusin/Fzo1 homeostasis and the

removal of its toxic mitochondrial clusters (Ackema et al., 2014).

In the present study the bioinformatic transcriptomics analysis

highlighted a significant decrease in AD individuals compared

to matching controls both in males and females (Figure 4A).

This observation was further confirmed in iN from both male

and female AD samples (Figure 4B), whereas in fibroblasts a

statistically significant downregulation of ARF-1 was detected

only in male AD patients (Figure 4C). Previous expression

profiling studies indicate that Arf-1 is likely to act in most

if not all tissues, but given the different membrane trafficking

requirements of different cell types it seems possible that its

gene expression varies between cell types (Chintapalli et al.,

2007).

GABARAPL1 is a member of the LC3/GABARAP protein

family and ortholog of ATG8. It mediates receptors trafficking

to the plasma membrane (Schaaf et al., 2016) and participates to

autophagosome formation by interacting with Nix and regulating

the pool of healthy mitochondria (Novak et al., 2010). Under

mitochondrial stress conditions, GABARAPL1 has been shown to

promote the clearance of damaged mitochondria (Novak et al.,

2010), whereas its decreased expression has been associated to

accumulation of the damaged organelles (Boyer-Guittaut et al.,

2014; Li et al., 2020). Interestingly, GABARAPL1 appears to be

more highly expressed in the CNS as compared to other family

members (Grand et al., 2013), however its role so far has been

mainly investigated in antimicrobial responses (Sasai et al., 2017)

and cancer (Boyer-Guittaut et al., 2014). Only very recently,

a bioinformatic analysis reported GABARAPL1 as one of the

genes differentially expressed in peripheral blood of AD patients

(Wang et al., 2022), whereas proteome-wide analysis of brain

extracellular vesicles seems to suggest that GABARAP proteins

can be actively incorporated in these vesicles and this mechanism

may be disrupted with AD progression (Gallart-Palau et al., 2020).

Here, we describe for the first time a decreased GABARAPL1

expression in iPSCs-derived neurons from AD patients compared

to healthy individuals, both in males and females (Figure 4B). On

the contrary, a slight increase was observed in primary fibroblasts,

which was statistically significant only in the male samples

(Figure 4C). While GABARAPL1 is present at comparable mRNA

levels in all fetal tissues, it seems to be differentially expressed in

adult tissues with the highest expression levels observed in the

brain, heart, liver, skeletal muscle, kidney, spleen, ovary, small

intestine, placenta, and peripheral blood leukocytes (Le Grand

et al., 2011). The different trend observed in GABARAPL1 gene

expression between the two cell types highlights the importance of

comparing different cellular models when investigating potential

disease biomarkers. In this study, the results obtained in iN, a

cellular system in line with the human brain samples, validated the

bioinformatics data for all the four selected genes and could be used

as a reference system.

Changes in expression of the four genes (ACTB, VCP, ARF1

GABARAPL1) here identified by the bioinformatic analysis were

further validated in two state-of-the-art models in the field of AD

research, and in translational research aimed to target discovery

and drug development for this neurodegenerative disease (de

Leeuw and Tackenberg, 2019). Neurons derived by IPSC of patients

are widely used as they have been shown to recapitulate key aspects

of AD, both for the sporadic and familial form. Furthermore, the

directed differentiation into a single cell type culture allows to study

a cell type-specific phenotype. However, one general concern is

lack of maturity and aging signatures of iPSC-derived neural cells,

due their reprogramming (de Leeuw and Tackenberg, 2019). For

this reason, in this work gene expression was validated also in

human primary skin fibroblast from patients. In fact, the use of skin

fibroblasts from patients represents an exceptional complementary

tool for in vitro investigations as they appear to recapitulate early

pathological events shown in the AD brain (Olesen et al., 2022).

Finally, it has been shown that AD may affect systemic processes

like glucose metabolism and cardiometabolic health and not only

the central nervous system (Morris et al., 2014), thus prompting

the search for an early biomarker of the disease in easily accessible

tissues. The identification of such a diagnostic and therapeutic tool

would meet the currently unmet and urgent need of early diagnosis

of AD and easy implementation in the clinical practice.

The decreases expression of these four genes in both human

iPSC-derived neurons and fibroblasts from AD patients suggest

that they could play a role in different tissues and affect AD

progression through regulating mitophagy and mitochondria

homeostasis. Interestingly, in the case of fibroblasts these

systematic changes in gene expression were more consistent in

male individuals, suggesting the possibility of sex difference in their

regulations and highlighting the importance of identifying the best

model to mimic the changes observed in human samples.

5. Conclusion

Altogether, by optimising the use of public available

resources from human AD brain studies, by combining different

bioinformatic approaches and by narrowing the large-scale

RNA-Seq data analysis to genes associated to mitophagy, this study

highlights four genes (VCP, ARF1, GABARAPL1, and ACTB),

as promising relevant genes in AD pathology. Although their

changes were also further validated here in biological in vitro

systems relevant for sporadic AD, such as human fibroblasts

and iPSC-derived neurons, more functional experiments and in

vivo studies are needed to confirm their value as potential novel

biomarkers and targets for intervention.
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