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Consumption of cannabis is on the rise as public opinion trends toward 
acceptance and its consequent legalization. Specifically, the senior population is 
one of the demographics increasing their use of cannabis the fastest, but research 
aimed at understanding cannabis’ impact on the aged brain is still scarce. Aging 
is characterized by many brain changes that slowly alter cognitive ability. One 
process that is greatly impacted during aging is axonal myelination. The slow 
degradation and loss of myelin (i.e., demyelination) in the brain with age has 
been shown to associate with cognitive decline and, furthermore, is a common 
characteristic of numerous neurological diseases experienced in aging. It is 
currently not known what causes this age-dependent degradation, but it is likely 
due to numerous confounding factors (i.e., heightened inflammation, reduced 
blood flow, cellular senescence) that impact the many cells responsible for 
maintaining overall homeostasis and myelin integrity. Importantly, animal studies 
using non-human primates and rodents have also revealed demyelination with 
age, providing a reliable model for researchers to try and understand the cellular 
mechanisms at play. In rodents, cannabis was recently shown to modulate the 
myelination process. Furthermore, studies looking at the direct modulatory 
impact cannabis has on microglia, astrocytes and oligodendrocyte lineage cells 
hint at potential mechanisms to prevent some of the more damaging activities 
performed by these cells that contribute to demyelination in aging. However, 
research focusing on how cannabis impacts myelination in the aged brain is 
lacking. Therefore, this review will explore the evidence thus far accumulated to 
show how cannabis impacts myelination and will extrapolate what this knowledge 
may mean for the aged brain.
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1. Introduction

Research looking into the potential therapeutic benefits offered by 
cannabis has drastically increased since its legalization (in Canada, 
medicinal: 2001, recreational: 2018) in many countries around the 
world. The proposed therapeutic benefits of cannabis consumption are 
numerous, ranging from pain management to a potential aid in 
multiple sclerosis (MS; Whiting et al., 2015; Paes-Colli et al., 2022). 
The possible benefit offered in MS—an autoimmune disease 
characterized by demyelination—introduces an interesting association 
between cannabinoids, the biologically active compounds found in 
cannabis, and myelination (Longoria et al., 2022).

Myelination is an essential process that involves the efficient and 
deft wrapping of myelin—a lipid rich sheath—around the axons of 
neurons by oligodendrocytes in the central nervous system (CNS). 
This wrapping facilitates rapid propagation of electrical signals and is 
essential for neuronal synchronization and proper communication 
between discrete regions of the brain. In adulthood, the total net level 
of myelin in the brain is relatively constant, but the myelin sheaths 
themselves turnover in a slow conserved cycle between degradation 
and regeneration, a process facilitated by oligodendrocytes (Buscham 
et al., 2019; Aber et al., 2022; Meschkat et al., 2022). However, this 
homeostatic cycle is lost in the aged brain, leading to an abnormal 
deposition of myelin and a net decline in myelin content (Peters, 2009; 
Rivera et al., 2022). This decline is evident in the healthy aged brain 
and is furthermore a common characteristic of many 
neurodegenerative diseases associated with aging (Guttmann et al., 
1998; Bartzokis, 2004; Cox et al., 2016; Coelho et al., 2021; Furber 
et al., 2022). Importantly, this loss is tightly linked to cognitive decline 
(Bartzokis, 2004; Bennett and Madden, 2014; Wang et  al., 2020; 
Coelho et al., 2021).

Due to the prevalence of demyelination in the aged brain and its 
association with cognitive decline, there is an urgent need to better 
understand and alleviate the burdens of this process. Certain lifestyle 
factors such as diet and exercise have recently emerged as a promising 
way to improve cognition and brain health throughout the lifespan. A 
controversial lifestyle factor that has relatively unknown cellular 
effects on the brain during aging is cannabis use.

In recent years, seniors (aged 65+) have increased their use of 
cannabis faster than any other demographic in North America, 
possibly as a result of some combination of destigmatization, 
legalization, and increased accessibility (Salas-Wright et al., 2017; Han 
and Palamar, 2020; Keethakumar et  al., 2021). However, research 
focusing on cannabis use in seniors is scarce, not to mention research 
specific to its impact on myelination. Therefore, it is prudent to 
identify what impact cannabis use has on the integrity of myelin in the 
aged brain in order to propose harm reduction strategies if needed. 
Alternatively, the potential for cannabinoids to therapeutically target 
demyelinating diseases points to an ability for cannabis to regulate the 
myelination process in a beneficial way. This lack of evidence regarding 
the beneficial or detrimental outcomes of cannabis on myelination in 
the aged brain highlights a clear gap in the literature. By excluding 
seniors, the currently available research is omitting a large portion of 
the population that would not only benefit from increased research, 
but also requests more information about the outcomes of cannabis 
use (Bobitt et al., 2019).

This review will outline how cannabis influences the myelination 
process in the CNS by examining its impact on different cell types, and 

will discuss how cannabis may alter the relationships between neurons 
and glial cells, particularly in the aged brain. The aim of this review is 
to highlight the potential for cannabis to modulate myelination in the 
aged brain and to emphasize the paucity of research in this area in 
order to stimulate future research.

1.1. The importance of myelin

In 1854, Rudolf Ludwig Virchow coined a term for a ubiquitous 
substance in the brain—myelin (Boullerne, 2016). It would take 
another 100 years before the central function performed by this lipid-
rich sheath—saltatory conduction—was agreed upon. The rapid 
propagation of electrical information within the myelinated axon 
during saltatory conduction is possible due to the insulating properties 
of myelin and the nodes of Ranvier (Huxley and Stämpeli, 1949). The 
nodes of Ranvier are unmyelinated sections of the axon that have a 
high density of voltage-gated sodium (Nav) channels that respond 
rapidly to alterations in charge and function to propagate signals 
necessary for the depolarization of the next node during an action 
potential (Arancibia-Carcamo and Attwell, 2014). Myelin is therefore 
deposited around the axon in sections, known as internodes, which 
creates the boundaries for the nodes of Ranvier (Figure  1). The 
internodes effectively insulate the axon by increasing the resistance of 
the axonal membrane and by reducing the capacitance of the axon 
(Bakiri et al., 2011; Stadelmann et al., 2019).

Mounting evidence indicates that myelination does not become 
fixed after development, but is experience-driven and remains 
adaptive well into adulthood (Young et al., 2013; Bechler et al., 2015; 
Fields, 2015; Ford et al., 2015; Hill et al., 2018; Hughes et al., 2018; 
Jünemann et al., 2022). Various structural modifications can alter the 
efficiency of this system. For example, the density of Nav channels 
within the node and the length of the node itself can both alter 
conduction velocity with minimal energy expenditure (Arancibia-
Cárcamo et al., 2017). The diameter of the axon, thickness of the 
myelin sheath, and the length of the internode can also adjust 
conduction velocity; with wider axons, thicker sheaths, and longer 
internodes increasing conduction velocity up to a certain point 
(Waxman, 1980; Wu et al., 2012; Chapman and Hill, 2020). A large 
determinant of this adaptability is experience-driven neuronal activity, 
which has been shown to promote myelination and contribute to the 
modification of established myelin sheaths (Wake et al., 2011; Gibson 
et al., 2014; Bechler et al., 2018; Faria et al., 2019). These modifications 
then alter conduction speed, translating into variations in synapse 
strength and, therefore, synaptic plasticity (Fields, 2015).

The structural features of the myelin sheath are also important for 
maintaining the synchronization of action potentials within and 
between neurons. This synchronization is fundamental to circuit 
function and proper cognition. Experience-induced changes in 
myelination can alter this synchronicity and synaptic plasticity to 
optimize processing time within the circuit contextually, contributing 
to complex cognitive processes like social behavior, memory, motor 
learning and sensory experience throughout the lifespan (Liu et al., 
2012; Mount and Monje, 2017; Pan et al., 2020). However, the long-
range projection neurons that make up the bulk of these white matter 
pathways are the most vulnerable neurons during aging, and their 
deterioration can result in negative effects on the aforementioned 
cognitive processes (Mattson and Magnus, 2006).
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1.1.1. Myelin in the aged brain
It is now apparent that myelination does not peak until mid-life, 

with peak white matter volume occurring between 30 and 50-years of 
age in humans (Bartzokis et al., 2001; Sowell et al., 2003; Westlye et al., 
2010; Buyanova and Arsalidou, 2021). Non-invasive neuroimaging 
techniques like diffusion tensor imaging (DTI) have been widely 
utilized to determine the state of white matter in the human brain 
throughout the lifespan. These studies have found a significant 
reduction in white matter volume and alterations in the integrity of 
myelin that suggest deterioration during aging (Pakkenberg and 
Gundersen, 1997; Guttmann et al., 1998; Liu et al., 2017; Vinke et al., 
2018; Faizy et  al., 2020). Electron microscopy performed in aged 
non-human primates and rodents have further clarified this 

deterioration by revealing the structural alterations present in the 
myelin sheath, such as redundant myelination and reduced myelin 
thickness (Figure 1; Peters, 2009; Shepherd et al., 2012; Attia et al., 
2019; Phillips et al., 2019). These alterations also contribute to the 
disorganization of ion channels at the nodes of Ranvier and on the 
axonal membrane at the paranode—sections of the internode directly 
adjacent to the node—which likely have negative consequences on 
signal transduction (Hinman et al., 2006).

The macro-scale loss and micro-scale alterations in myelin impact 
the conduction speed and synchronization of action potentials, 
ultimately causing latencies and overall disruptions of neuronal 
communication that likely contribute to driving cognitive deficits in 
the aging population (Bartzokis, 2004; Bowley et al., 2010; Attia et al., 

FIGURE 1

The complex glial interactions that promote proper myelination and the general impact aging has on the myelin sheath | The process of myelination is 
extremely complex and is constantly evolving to our experiences and various environmental insults throughout the lifespan. Myelination is highly 
adaptive and is fine-tuned to these experiences through neuronal activity. Proper functioning of the myelinating glial cells of the CNS—
oligodendrocytes—and their precursor cells—oligodendrocyte progenitor cells (OPCs)—is essential, but the process also heavily relies on astrocytes 
and microglia. The top half of this figure depicts the complex arrangement that exists between the various glial cells and neurons that all contribute to 
proper myelination and circuit formation. The inset depicts the internodes of a myelinated axon and the nodes of Ranvier that they create. Lastly, the 
bottom of this figure shows the general alterations and ultimate degeneration that many myelinated axons face with increasing age. Typically, myelin 
sheaths become thinner, shorter and less compact (shown by the axon cross-section at the bottom) with age, although many other abnormalities also 
occur. These abnormalities also contribute to the disorganization of ion channels at the paranode and at the nodes of Ranvier. Created with BioRender.
com.
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2019). Cortical disconnection due to myelin loss has been proposed 
as a likely candidate for reduced cognition in aged individuals for 
decades. For example, early in vivo evidence in support of this 
hypothesis using DTI concluded that aged individuals (56–85-years 
of age) show an age-related decline in white matter, especially in the 
frontal lobe, which was linked with impairments in executive 
functioning (O’Sullivan et al., 2001). This observed decline has been 
confirmed by more recent studies showing impairments in memory, 
processing speed, attention, and general cognition, which were linked 
to reduced myelin content (Brickman et al., 2012; Cremers et al., 2016; 
Coelho et  al., 2021). It is important to keep in mind that these 
alterations occur in the “normal” aging brain, but are exacerbated in 
neurodegenerative diseases like Alzheimer’s disease (Papuć and 
Rejdak, 2020). Normal, or healthy, aging is an ill-defined term 
referring to the natural aging process that is devoid of significant 
physical or cognitive impairments and allows for the maintenance of 
subjective well-being (Wong, 2018). However, non-debilitating 
impairments are present in healthy aging, and may contribute to the 
progression of more serious disabilities.

The mechanisms underlying the natural degradation of myelin 
and the insufficiency of remyelination in the aged brain have not yet 
been definitively identified. However, it is probable that there are 
numerous confounding factors, of which many are expected to 
be tightly associated with the glial cells responsible for the deposition, 
maintenance and modification of the myelin sheath, as discussed 
below (Figure 2A).

1.2. Oligodendrocytes and oligodendrocyte 
progenitor cells

In the CNS, oligodendrocyte processes wrap around axons and 
form the myelin sheath (Boullerne, 2016). These glial cells are capable 
of extending many different processes to wrap multiple axons at a 
time, with the ability to differentially alter the parameters of each 
extension due to the activity of each individual neuron contacted 
(Chong et  al., 2012; Yeung et  al., 2014). Furthermore, mature 
oligodendrocytes are capable of facilitating remyelination after 
damage in cats and non-human primates, while maintaining 
established myelin sheaths (Duncan et al., 2018). One particularly 
relevant finding is that oligodendrocytes preferentially myelinate 
active axons in development and adulthood, as found in primary cell 
cultures, zebrafish and mice (Gibson et al., 2014; Hines et al., 2015; 
Wake et al., 2015; Mitew et al., 2018; Faria et al., 2019). Furthermore, 
through DTI, neuronal circuits activated during a task were found to 
have increased levels of myelination in seniors, showing the ability for 
activity-dependent myelination in the aged human brain (Scholz et al., 
2009; Jünemann et al., 2022).

The myelin sheath further provides a channel for metabolic 
support to the axon. Oligodendrocytes transport various energy 
metabolites like lactate from their soma through distinct cytoplasmic 
channels to the innermost layer of the myelin sheath where they are 
deposited into the periaxonal space (Figure 1; Fünfschilling et al., 
2012; Meyer et  al., 2018). The subsequent uptake of metabolites 
supports axon function and is essential for neuronal survival (Lee 
et al., 2012; Meyer et al., 2018).

However, before an oligodendrocyte can mature and participate 
in myelination, a complex differentiation process from 

oligodendrocyte progenitor cell (OPC) must occur. These cells not 
only populate the developing brain, but remain present in the adult 

A

B

FIGURE 2

The transitional relationship between myelination and aging and the 
possible therapeutic advantage of cannabinoids | As emphasized 
throughout this review, the process of myelination is an intricate 
undertaking that involves all glial cells in the brain and is mainly 
driven by experience induced neuronal activity in adulthood and 
during aging. (A) The top panel of this figure shows some of the 
general contributions glial cells and neurons make to the overall 
process of myelination. With increasing age, a switch in cell state 
takes place in glial cells and neurons, ultimately leading to improper 
myelination and impairments in cognition. (B) The bottom panel 
showcases some of the benefits that cannabis (mainly focusing on 
THC and CBD) can have on myelination, as found in animal studies; 
with the majority looking at younger time points. Although evidence 
suggests improved myelination and cognition from cannabis use in 
aging animals, the paucity of studies focusing on this time point 
translates to relatively unknown overall effects of cannabis on 
myelination. This question mark indicates that topic, which is in need 
of increased research. Not only will this help fill in the gap of 
knowledge as to how cannabis impacts myelination across the 
lifespan, but will also better inform researchers on the effects of the 
endocannabinoid system on the aged brain. With this understanding, 
we are also better able to inform the public and health authorities on 
the impact cannabis use has on the senior population, who at the 
moment show increasing levels of consumption. Created with 
BioRender.com.
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brain, providing a reserve for the replacement of the mature 
oligodendrocyte population (Bergles and Richardson, 2016). On top 
of this, OPCs were shown to form direct contacts with neuronal 
synapses, to participate in synaptic engulfment, and to engage in axon 
pruning during development and adulthood, thus contributing to 
circuit formation and modulation in mice (Bergles et  al., 2000; 
Auguste et  al., 2022; Buchanan et  al., 2022). Neuronal activity 
conveyed through these synapses relays information to OPCs that 
contributes to determining their proliferation, migration and 
differentiation, as well as oligodendrocyte survival, and myelination 
as a whole (Mitew et al., 2018; Moura et al., 2022).

1.2.1. Oligodendrocytes and OPCs in the aged 
brain

The degeneration and improper renewal of myelin in the aged 
brain is predictably associated with the oligodendrocyte population. 
Many of the extrinsic factors that impact oligodendrocyte function 
[e.g., pro-inflammatory cytokines, reactive oxygen species (ROS)] are 
the products of other glial cells and will be discussed in more detail 
subsequently. Changes in axonal signaling can also present challenges 
for continued myelination. As described, neuronal activity induces 
myelination—therefore, it is likely that altered activity due to neuronal 
dysfunction may lead to changes in activity-dependent myelination 
(Sams, 2021). Furthermore, mitochondrial dysfunction in the neurons 
of aged mice (12-month-old) resulted in decreased production of ATP 
and increased production of ROS, which may subsequently damage 
oligodendrocytes and OPCs over time, thereby preventing OPC 
differentiation and myelination (Stahon et al., 2016; Spaas et al., 2021). 
Although the axons remain functional and oligodendrocytes remain 
active in 12-month-old mice, neuronal viability will likely decline due 
to reduced ATP and increased production of free radicals, perhaps 
resulting in degeneration with increasing age (Stahon et al., 2016). 
Conversely, age-related degeneration of myelin, oligodendrocytes and 
the neuron-oligodendrocyte relationship also likely leads to a decrease 
in metabolic support provided by oligodendrocytes, further impacting 
neuronal function (Hill et al., 2018; Zhang X. et al., 2021).

In aging, oligodendrocytes and OPCs also accumulate signs of 
oxidative DNA (mitochondrial and nuclear) damage, a feature which 
is commonly found in neurodegenerative diseases like Alzheimer’s 
disease and MS (Tse and Herrup, 2017). Oligodendrocytes and OPCs 
are particularly vulnerable to oxidative stress due to their extremely 
high metabolic demand needed for the endogenous production of 
myelin and their decreased ability to deal with free radicals (French 
et al., 2009; Giacci et al., 2018). For example, oligodendrocyte lineage 
cells were shown to have only half the glutathione—a major 
intracellular antioxidant—content compared to astrocytes in primary 
cell cultures from rats (Juurlink et al., 1998). Importantly, synthesis of 
glutathione naturally declines during aging in mice, further rendering 
oligodendrocyte lineage cells susceptible to damage and dysfunction 
(Wang, 2003). Additionally, OPCs are particularly susceptible to 
damage by oxidizing agents because of a delay in the production or 
reduced activity of antioxidant enzymes (e.g., glutathione peroxidase), 
which increases with maturation (Back et al., 1998; Baud, 2004; Spaas 
et  al., 2021). A recent review hypothesizes that this increased 
vulnerability to oxidative stress may inhibit OPC differentiation 
(Spaas et al., 2021).

A decline in newly formed mature oligodendrocytes has been 
observed in the aged brain (Soreq et al., 2017; Hill et al., 2018; Wang 

et al., 2020; Rivera et al., 2021; Dimovasili et al., 2022). However, OPC 
density does not seem to decline with age when compared across the 
lifespan in mice, non-human primates or humans (Sim et al., 2002; 
Doucette et al., 2010; Yeung et al., 2014; Wang et al., 2020; Dimovasili 
et al., 2022). Although it is generally accepted that the OPC population 
remains stable in the aged brain, a more recent study found 
significantly reduced OPC (NG2+) density in the corpus callosum of 
18-month-old mice (Rivera et al., 2021). Nonetheless, the inability of 
OPCs to differentiate into mature oligodendrocytes in the aged brain 
is not currently debated, and it likely contributes to the reduced 
capacity for remyelination and declining oligodendrocyte population 
(Sim et al., 2002; Neumann et al., 2019; Segel et al., 2019; Rivera et al., 
2021; Zhang X. et al., 2021; Dimovasili et al., 2022). This reduced 
ability to differentiate may be a consequence of a markedly different 
proteome in aged OPCs (de la Fuente et  al., 2020). For example, 
aldehyde dehydrogenase 1 family member A1 (ALDH1A1) and 
transcription factor 4 (TCF4) are both involved in OPC differentiation 
and have notably reduced expression levels in aged rats 
(>15-months-old; de la Fuente et al., 2020).

OPCs also display differing levels of ion channels and receptors 
depending on age and brain region (Spitzer et al., 2019). For example, 
the density of N-methyl-D-aspartate (NMDA) receptors on OPCs 
significantly declines with increasing age (>6-months-old) in multiple 
regions of the mouse brain, including the corpus callosum (Spitzer 
et al., 2019). This change likely affects activity-dependent myelination 
in the aged brain by significantly impacting the ability for OPCs to 
sense and act on glutamate released from active neurons (Gautier 
et al., 2015; Spitzer et al., 2019). Interestingly, this NMDA receptor-
mediated activity-dependent myelination requires the simultaneous 
presence of glutamate and growth factors like brain derived 
neurotrophic factor (BDNF), hinting at the importance of surrounding 
glial cells (Lundgaard et al., 2013). As a note, α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors are 
important for the initial stages of remyelination after experimentally 
induced demyelination, where the binding of glutamate released from 
active axons within the lesion promotes proliferation, survival and 
differentiation of OPCs during development and adulthood in rodents 
(Gautier et al., 2015; Kougioumtzidou et al., 2017). Although AMPA/
kainate receptor levels remain relatively constant or increase with age, 
the impaired ability for neurons to form new synaptic contacts with 
OPCs, combined with a decline in NMDA receptors, may decrease 
OPC differentiation and activity-dependent myelination in the aged 
brain (Spitzer et al., 2019; Sams, 2021).

A general increase in ROS and free radicals in the aged brain and 
a phenomenon known as “niche stiffening” of the extracellular matrix 
(ECM) directly adjacent to OPCs can also prevent their differentiation 
(French et al., 2009; Segel et al., 2019). Niche stiffening is a dynamic 
process that physically alters the elasticity of tissue, which increases 
the rigidness of the ECM in the brain of aged mice (>14-months-old; 
Swift et al., 2013; Segel et al., 2019). The mechanosensitive ion channel 
PIEZO1 was found to be  essential for the OPC detection of the 
elasticity of the ECM, and the knockdown of PIEZO1 resulted in 
increased proliferation and differentiation of OPCs in the aged CNS 
of mice (Segel et al., 2019). Furthermore, the introduction of aged 
OPCs into the ECM within the prefrontal cortex of neonatal rats 
rescued their proliferative and differentiating abilities, indicating the 
importance of the environment for these OPC functions (Segel 
et al., 2019).
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Microglia and astrocytes may also influence OPC cell fate through 
their modulation of the ECM. For instance, primary microglial cells 
from aged (18–24-months-old) rats treated with an inflammatory 
stimulus [i.e., transforming growth factor-β (TGF-β)] creates a 
microglial-deposited ECM that promotes the differentiation of OPCs 
into astrocytes, thereby preventing oligodendrocyte differentiation 
and myelination (Baror et al., 2019). Furthermore, oligodendrocytes 
in aged mice (18-months-old) release factors that promote microglial-
mediated survival of oligodendrocytes, but prevent OPC 
differentiation (Luan et al., 2021). Similarly, astrocytes were found to 
inhibit OPC differentiation and disrupt remyelination by releasing 
chondroitin sulfate proteoglycans into the ECM in primary mixed 
glial cell cultures from mice (Keough et al., 2016).

Lastly, as mentioned, neurotrophic factors (e.g., BDNF) released 
from glial cells impact the ability for OPCs to contribute to activity-
dependent myelination. These are just a few examples of the influence 
surrounding glial cells have on OPCs, oligodendrocytes and the 
process of myelination. However, astrocytes and microglia are 
profoundly altered structurally and functionally in the aged brain, and 
these changes extend to the cells and structures they support 
(Figure 2A).

1.3. Astrocytes in myelination

Astrocytes are an extremely diverse group of glial cells that 
contribute to the blood–brain barrier (BBB), blood flow modulation, 
metabolite supply, and perform modulatory roles at the synapse 
involved in synaptic activity and plasticity (Sofroniew and Vinters, 
2010). Furthermore, astrocytes are vital for myelination. The loss of 
astrocytes reduces the density of oligodendrocytes, initiates 
demyelination, and promotes myelin abnormalities (e.g., 
decompaction) in the white matter of developing and adolescent mice 
(7 days to ~1.5-months-old; Tognatta et al., 2020). These effects are 
likely partly due to local increases in extracellular glutamate causing 
excitotoxicity, and reduced trophic support [e.g., platelet-derived 
growth factor (PDGF)] from astrocytes (Tognatta et al., 2020). The 
uptake of glutamate from the extracellular space is an essential 
function performed by astrocytes that prevents excitotoxicity of 
neurons and glial cells (Mcdonald et al., 1998; Hassel et al., 2003; 
Matute et al., 2007; Goursaud et al., 2009; Mahmoud et al., 2019). 
Additionally, the controlled release of gliotransmitters (e.g., glutamate) 
from astrocytic hemichannels—membrane channels between cells 
and the extracellular space made up of connexin proteins—directly to 
synapses modulates synaptic transmission and plasticity, and was even 
shown to be essential for behavioral outputs including fear memory 
consolidation in rats (~2-months-old; Ye et al., 2003; Stehberg et al., 
2012; Abudara et al., 2018).

Astrocytes also maintain appropriate levels of K+ ions in the 
extracellular space and effectively disperse them throughout the 
pan-glial network that spans the entire brain (Beckner, 2020). The 
pan-glial network allows for the diffusion of ions and small metabolites 
between coupled cells connected through gap junctions, which are 
made up of adjoining hemichannels (Orthmann-Murphy et al., 2008; 
Stephan et  al., 2021). The loss of astrocyte-oligodendrocyte gap 
junctions results in myelin pathology (e.g., vacuolation) and loss of 
astrocytes (Magnotti et al., 2011; Tress et al., 2012). Additionally, many 
human diseases characterized by demyelination (e.g., MS and 

neuromyelitis optica) show early disruption of gap junctions between 
astrocytes and oligodendrocytes and a decline in connexin proteins 
(Markoullis et al., 2012; Masaki, 2015).

Astrocytes are also a main source of cholesterol, facilitate iron 
transport, and directly provide oligodendrocytes with metabolic 
support (via gap junctions) in the adult CNS, all contributing to the 
processes needed to synthesize myelin (Jurevics and Morell, 2002; 
Schulz et al., 2012; Saher and Stumpf, 2015; Camargo et al., 2017; 
Cheli et al., 2020). Lastly, a wide range of soluble factors [e.g., BDNF 
and chemokine (C-X-C motif) ligand 1 (CXCL1)] released by 
astrocytes can have myriad effects on myelination, as found in rodents 
(Tsai et al., 2002; Fulmer et al., 2014; Kıray et al., 2016).

1.3.1. Astrocytes and myelination in the aged 
brain

Due to the vast number of functions performed by astrocytes in 
the CNS, age-related dysfunction of these cells predictably has wide-
ranging impacts on brain function. Firstly, observations in aged mice 
(20–24-months-old) reveal morphological changes in astrocytes and 
alterations in territorial domain that may result in reduced contacts 
between adjacent astrocytes, disconnecting them from the greater 
pan-glial network which is essential for many homeostatic functions 
(e.g., K+ spatial buffering, metabolic and cholesterol supply to 
oligodendrocytes; Grosche et al., 2013; Popov et al., 2021; Verkhratsky 
et al., 2022). A steady reduction in astrocytic glutamate transporters, 
reduced capacity to buffer and disperse K+, and an overall decrease in 
their ability to sense synaptic activity (partly due to reduced density 
of ionotropic receptors) was also observed in aged mice 
(20–24-months-old), disrupting long-term potentiation of synapses 
in the hippocampus (Lalo et al., 2011; Popov et al., 2021). This is likely 
partly due to excess levels of glutamate in the extracellular space 
resulting in excitotoxicity, which damages neurons, oligodendrocytes, 
and myelin (Olney, 1971; Matute et  al., 2007; Fu et  al., 2009). 
Additionally, the increase in hemichannel activation due to an increase 
in pro-inflammatory cytokines [e.g., tumor necrosis factor-α (TNF-α) 
and interleukin-1β (IL-1β)] in primary cell cultures and mice results 
in an increase in the release of various ions (i.e., K+, Ca2+) and 
gliotransmitters (i.e., ATP, glutamate) into the extracellular space, 
further disrupting homeostasis and possibly contributing to neuronal 
death (Retamal et al., 2007; Froger et al., 2010; Karpuk et al., 2011; 
Orellana et al., 2011; Satarker et al., 2022). The cholesterol synthesis 
pathway is also significantly altered in astrocytes from aged mice 
(24-months-old), likely contributing to the observed decline of 
cholesterol in the aged brain and potentially hindering production of 
myelin (Boisvert et al., 2018; Palmer and Ousman, 2018).

An altered gene expression profile is further observed in aged 
astrocytes. Increases in genes associated with cytokine pathways, 
antigen presentation, the complement cascade, and reactivity [e.g., 
glial fibrillary acidic protein (Gfap)] were observed in astrocytes in the 
hippocampus, hypothalamus, visual cortex, striatum and cerebellum 
of aged mice (24-months-old; Boisvert et al., 2018; Clarke et al., 2018). 
GFAP is an intermediate filament protein commonly used as a marker 
for astrocytes, which significantly increases in pathological-like states 
(e.g., aging and MS), indicating heightened astrocyte reactivity in 
rodents and humans (Nichols et al., 1993; Saraste et al., 2021).

This elevated expression of GFAP has also been linked to astrocyte 
senescence (Salminen et al., 2011; Boisvert et al., 2018). Senescence 
refers to cells that enter into a distinct state characterized by 
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dysfunctional mitochondria, increased production of ROS, and an 
altered secretory profile as a consequence of DNA damage, telomere 
shortening and an altered environment (Sikora et  al., 2021). The 
downstream effects of these pathways exacerbate inflammation and 
impair myelination via inhibition of the OPC cycle and loss of 
functional support for oligodendrocytes by astrocytes, as shown in 
primary cell cultures and in mice (Palmer and Ousman, 2018; Willis 
et al., 2020). Interestingly, astrocytes often do not transition into this 
more damaging/senescent-like state unless microglia induce the 
switch through the release of cytokines like IL-1α and TNF (Herx 
et al., 2000; Liddelow et al., 2017; Clarke et al., 2018; Jha et al., 2019). 
There are numerous reasons for an altered microglial secretory profile 
in aging, but one specific to white matter regions could be an increase 
in myelin debris that cannot be efficiently cleared/metabolized by 
microglia, resulting in cellular stress (Safaiyan et al., 2016).

1.4. Microglia in myelination

Microglia—the resident immune cells of the CNS—perform vital 
functions in all stages of life. They act as gardeners, constantly 
surveying their surroundings looking for debris to clear, shaping and 
pruning synapses, maintaining appropriate glial and neuronal 
population sizes, modulating neuronal activity, and releasing various 
trophic factors to support growth and development of glial cells and 
neurons (Šimončičová et al., 2022). Microglia also play a substantial 
role in myelination, contributing to the developmental and 
experience-driven process of adaptive myelination (Kalafatakis and 
Karagogeos, 2021; Santos and Fields, 2021). In fact, microglia are 
present at higher densities in human white matter compared to gray 
matter, highlighting their importance in this environment 
(Mittelbronn et al., 2001; Askew et al., 2017). However, evidence is 
more contradictory for microglial density in mice. One study found 
increased density of microglia in the white matter of the forebrain, 
whereas an earlier study found increased density in gray matter from 
the entire mouse brain (Lawson et al., 1990; Savchenko et al., 2000). 
Therefore, it is important to keep in mind the region analyzed, as 
microglial density and function can greatly vary. Additionally, it is 
important to note that the microglial population is not homogenous, 
but instead exists as a continuum of states that contribute in divergent 
fashions to supporting brain development, activity, plasticity and 
integrity (Paolicelli et al., 2022).

Although microglia have a plethora of functions, three of their 
activities primarily contribute to myelination. (1) Microglia release a 
repertoire of soluble factors [e.g., insulin growth factor-1 (IGF-1), 
IL-1β, TGF-β] that facilitate the promotion and prevention of 
myelination (Hsieh et al., 2004; Pang et al., 2007; Santos and Fields, 
2021; McNamara et  al., 2023). (2) Microglia phagocytose myelin 
debris, which is important as myelin debris can inhibit OPC 
differentiation, while efficient clearance of myelin debris allows for 
effective remyelination after experimental demyelination in rodents 
(Kotter, 2006; Neumann et al., 2008; Lampron et al., 2015). It was also 
reported that microglia are capable of removing incorrectly deposited 
myelin directly from the axon, contributing to the refinement of 
myelin sheaths, as shown in zebrafish and mice during development 
(Hughes and Appel, 2020; Djannatian et  al., 2023). (3) Microglia 
dynamically contact active axons, guided by the nodal efflux of K+ 
ions. This interaction was associated with improved remyelination 

after experimental demyelination in mice, and may be a way by which 
microglia prevent neuronal damage from hyperactivity (Madry et al., 
2018; Ronzano et al., 2021). Microglia respond rapidly to hyperactive 
neurons and wrap their processes around axons to facilitate rapid 
repolarization, thus preventing excitotoxicity and maintaining 
neuronal viability in mice (Kato et al., 2016). Therefore, microglia are 
emerging as essential modulators of neuronal activity that substantially 
contribute to determining neuronal architecture and function 
(Badimon et al., 2020; Cserép et al., 2021).

1.4.1. Microglia and myelination in the aged brain
Microglia are not immune to the challenges of aging. Changes 

observed in aged mice (≥12-months-old) include an upregulation of 
genes associated with the immune response, and a decrease in genes 
associated with environment probing and interactions with the ECM 
(Grabert et al., 2016; Angelova and Brown, 2019). Furthermore, an 
age-related metamorphosis in their secretory profile, resulting in 
increased pro-inflammatory markers is also a common characteristic 
of microglia, as observed in those sorted from the aged mouse brain 
(≥18-months-old; Holling et al., 2004; Sierra et al., 2007; Norden and 
Godbout, 2013; Koellhoffer et al., 2017; Marschallinger et al., 2020). 
For instance, aged mice have microglia with increased levels of the 
nod-like receptor protein 3 (NLRP3) inflammasome (Youm et al., 
2013). After inflammasome activation, an increase in the production 
of IL-1β, IL-6, TNF-α and others are observed in the mouse brain 
(Youm et al., 2013; Hu et al., 2019). Many of these compounds are 
beneficial and required for proper myelination, however, a problem 
arises when this activation becomes chronic, as is the case in the aged 
brain (Tilstra et  al., 2011). Prolonged activation of inflammatory 
pathways in astrocytes and microglia promote demyelination, while 
their inhibition has the potential to support remyelination in rodents 
(Jha et al., 2010; Raasch et al., 2011; Goldmann et al., 2013; Blank and 
Prinz, 2014).

Impairments in microglial phagocytosis of cellular debris is 
common in the aged mouse brain (≥20-months-old) as well, 
perhaps contributing to the increase in inflammatory factors seen 
during aging (Ritzel et  al., 2015; Safaiyan et  al., 2016; Cantuti-
Castelvetri et  al., 2018; Marschallinger et  al., 2020). Impaired 
phagocytosis could be partly attributed to the dysfunction of an 
overwhelmed clearance system (Safaiyan et al., 2016; Thériault and 
Rivest, 2016; Marschallinger et al., 2020). For instance, continuous 
increases in myelin debris cannot be accommodated by microglia 
in the long-term, which subsequently leads to dysfunctional 
lysosomal activity and a noticeable increase in insoluble lipofuscin-
like granules—a marker of aging, dystrophy and possibly 
senescence—in mice (Safaiyan et al., 2016).

A specific population of microglia in the white matter of the aged 
brain (≥18-months-old), white matter associated microglia (WAM), 
has an increased expression of triggering receptor expressed on 
myeloid cells 2 (TREM2)—a receptor important for phagocytosis, 
lipid metabolism and proper myelination (Poliani et al., 2015; Safaiyan 
et al., 2021). In aged humans (50–80-years-old), microglia in the white 
matter have increased expression of genes associated with lipid-
metabolism as well [e.g., secreted phosphoprotein 1 (SPP1) and 
apolipoprotein E (APOE)], hinting at the possibility of the presence of 
WAMs in humans; although TREM2 did not significantly associate 
with these white matter microglial clusters (Sankowski et al., 2019; 
Safaiyan et  al., 2021). Their function is likely similar to the 
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hypothesized function of WAMs in mice, which is thought to include 
myelin debris clearance and lipid metabolism (Safaiyan et al., 2021).

Interestingly, microglia isolated from whole brains of aged mice 
(≥21-months-old) show significantly downregulated expression levels 
of TREM2 compared to younger mice (Hickman et al., 2013; Thomas 
et  al., 2022). This could be  due to a net decrease in microglial 
expression of TREM2, despite the increases seen in WAM. However, 
it has also been hypothesized that with time WAMs may become 
overwhelmed and enter into a senescent state, thereby reducing 
function and contributing to white matter degeneration and cognitive 
decline (Ahn et  al., 2022). This senescent state—perhaps more 
common in WAM from rodents >18-months of age—may have 
reduced expression of TREM2, contributing to the observed decline 
in expression with age.

Senescent microglia may have a reduced capacity to modulate 
neuronal activity because of genetic changes that result in reduced 
surveillance, migration, and sensitivity to endogenous ligands, and a 
heightened sensitivity to pathogens, as seen in 24-month-old mice 
(Hickman et al., 2013; Madry et al., 2018; Angelova and Brown, 2019). 
For example, due to the downregulation of genes for purinergic 
receptors (e.g., P2ry12) and potassium leak channels (e.g., Thik-1) in 
aged mice, the ability for microglia to sense hyperactive neurons and 
migrate toward them in order to facilitate rapid repolarization would 
be reduced, impairing their beneficial modulation (Hickman et al., 
2013; Kato et al., 2016; Madry et al., 2018). This may be a contributing 
factor for neuronal hyperactivity and excitotoxicity found in the aged 
brain, which negatively affects memory (Bishop et al., 2010; Stargardt 
et al., 2015; Li et al., 2020).

The age-mediated alterations in microglial function that are 
evident in the aged brain are thought to arise from at least two factors. 
(1) Microglia become overwhelmed and cannot keep up with demand, 
and/or (2) shift into a less sensitive state trying to keep inflammatory 
signals to a minimum by reducing their reactivity to endogenous 
ligands (Hickman et al., 2013). Although some microglia may enter 
into a senescent state, many of these cells still have the ability to aid 
the aged brain and maintain/improve cognition. An interesting avenue 
to achieve this may be  through the use of cannabis and the 
endocannabinoid system. Indeed, all glial cell types have receptors for 
cannabinoids, which have wide ranging effects on cellular function, 
indicating that cannabis may be  beneficial for glial regulation of 
myelination (Figure 2B; Stella, 2010; Navarrete et al., 2014; Ilyasov 
et al., 2018; Martinez Ramirez et al., 2023).

1.5. The endocannabinoid system

The endocannabinoid system extends to most regions of the body. 
It encompasses naturally occurring endogenous (endo)cannabinoids, 
the enzymes needed for their formation and degradation, and 
cannabinoid receptors (Lu and Mackie, 2016). Although many 
receptors take part in endocannabinoid signaling [e.g., peroxisome 
proliferator-activated receptors (PPARs), transient receptor potential 
cation channels (TRPs)], the two main cannabinoid receptors are 
cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 
(CB2R; Howlett, 2002).

CB1Rs are widespread in the CNS and are the most prevalent 
G-protein coupled receptor in the mammalian brain (Herkenham 
et  al., 1990; Marsicano and Lutz, 1999). In the hippocampus and 

cortex, CB1Rs have an especially high localization on inhibitory 
neurons, although their distribution and localization patterns differ 
throughout the human and rodent CNS (Glass et al., 1997; Marsicano 
and Lutz, 1999; Tsou et  al., 1999; Fletcher-Jones et  al., 2020). 
Interestingly, a significant number of CB1Rs are not expressed on the 
cell surface, but instead localize to lysosomes and late endosomes, as 
shown in cell lines and primary cell cultures—possibly contributing 
to lysosomal integrity and function (Rozenfeld and Devi, 2008; Bilkei-
Gorzo, 2012; Fletcher-Jones et al., 2020). Additionally, CB1Rs also 
localize to mitochondria and can influence metabolism in neurons 
and glial cells, as observed in primary cell cultures and in mice 
(Bénard et al., 2012; Jimenez-Blasco et al., 2020).

However, the majority of neuronal CB1Rs are found on 
pre-synaptic terminals, where their primary function is to suppress 
the release of neurotransmitters, altering the activation of post-
synaptic channels and, therefore, modulating synaptic activity and 
plasticity (Mackie and Hille, 1992; Di Marzo et al., 2015; Zou and 
Kumar, 2018). The cannabinoid-mediated reduction in 
neurotransmitter release is achieved by the reduced influx of 
presynaptic Ca2+ due to the inhibition of voltage gated Ca2+ channels 
and of adenylyl cyclase, which downregulates cyclic adenosine 
monophosphate and protein kinase A, two cellular constituents 
involved in increasing the influx of Ca2+ (Castillo et al., 2012). CB1R 
activation in pre-synaptic terminals is mainly facilitated through 
retrograde signaling of endocannabinoids released from the post-
synapse (Kano et al., 2009; Castillo et al., 2012; Njoo et al., 2015).

CB2Rs have much lower levels of expression in the CNS of humans 
and rodents (Lu and Mackie, 2016; Jordan and Xi, 2019). Interestingly, 
CB2R mRNA expression can vastly increase during an inflammatory 
insult, with microglia from mice displaying as much as a 10-fold 
increase (Maresz et al., 2005). This finding indicated that the CB2R 
likely plays a substantial role in CNS immune function, which has 
been subsequently supported in the literature (Turcotte et al., 2016; 
Komorowska-Müller and Schmöle, 2020). CBRs may attenuate 
pro-inflammatory cytokine secretion by interfering with the 
phosphorylation of mitogen activated protein kinases (MAPK), such 
as extracellular signal-regulated kinase (ERK), which is known to 
participate in pro-inflammatory pathways, as shown in microglial cell 
line cultures (Eljaschewitsch et al., 2006; Young and Denovan-Wright, 
2022a,b). Furthermore, activation of CB2Rs promotes IL-10 (an anti-
inflammatory cytokine) secretion from primary microglia cells from 
mice by reducing the translocation of the transcription factor nuclear 
factor-κB (NF-κB) to the nucleus via reduced phosphorylation of IκB 
Kinase-α (IKKα)—a subunit of the IKK complex that is essential for 
NF-κB signaling—which subsequently prevents NF-κB formation 
(Solt and May, 2008; Correa et al., 2010). Of note, NF-κB-mediated 
inflammation is often via the inflammasome and is associated with 
many white matter associated diseases and is upregulated in the aged 
brain (Tilstra et al., 2011; Youm et al., 2013; Blank and Prinz, 2014; 
Rea et al., 2018). Evidence also suggests that CB2Rs are present on 
post-synaptic terminals of neurons in rodents and non-human 
primates, although expression levels are relatively low and may depend 
on brain region (Brusco et al., 2008; Lanciego et al., 2011; Li and Kim, 
2015; Stempel et al., 2016).

Importantly, astrocytes, oligodendrocytes, and OPCs possess 
CB1Rs and CB2Rs, highlighting the wide range of functions performed 
by this system (Navarrete et al., 2014; Ilyasov et al., 2018; Martinez 
Ramirez et al., 2023). The impact these receptors have with respect to 
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their activation by cannabinoids on individual cell-types will 
be discussed in more detail below (Figure 2B).

1.5.1. The endocannabinoid system in aging
The endocannabinoid system undergoes an unequivocal 

transition during aging across species (Bilkei-Gorzo, 2012; Bishay 
et al., 2013; Pascual et al., 2013; Di Marzo et al., 2015; Piyanova 
et  al., 2015). The direction of this change relies on the region 
investigated and, therefore, its impact on brain function differs 
based on the affected region and the context in which it 
is examined.

A general trend in the literature suggests that CB1R density 
decreases throughout the brain with aging, however, receptor 
function seems to differentially change depending on the region 
and cell type (Mato and Pazos, 2004; Bilkei-Gorzo, 2012; Di Marzo 
et al., 2015; Ginsburg and Hensler, 2022). Interestingly, Gi/o-coupled 
protein receptors decline in the aged brain as a whole (de Oliveira 
et al., 2019).

The CB2R is less well characterized due to methodological 
difficulties and, therefore, the change in CB2R expression with age 
is less well-known (Zhang et al., 2019). One study did not find any 
reductions in CB2R density in any region analyzed from aged mice 
(22-months-old), while an earlier study found a significantly 
declined receptor density in synaptosomes, but not in overall 
membrane fractions from aged rats (24–28-months-old; Pascual 
et al., 2014; Hodges et al., 2020). This discrepancy could be a result 
of different rodent species and/or differential CB2R expression 
based on cell type. It could be speculated that neuronal synaptic 
expression of CB2Rs decline with age, whereas glial expression 
remains constant or potentially increases, which would warrant 
further investigation.

Sex differences are a common feature of the endocannabinoid 
system, although this depends on the type of measurement and 
regions analyzed (Laurikainen et al., 2019; Van Ryzin et al., 2019; De 
Meij et al., 2021; Levine et al., 2021; Vecchiarelli et al., 2022). For 
example, in the human brain, females exhibited increased binding of 
the CB1R with age, whereas males did not show any change (Van Laere 
et  al., 2008). Similarly, adult female CB2R-knockout (KO) mice 
displayed larger alterations in synaptic markers compared to male 
mice, although both sexes exhibited deficits in social memory 
(Komorowska-Müller et al., 2021b).

Aging impacts the endocannabinoid system on multiple levels, 
and myelination relies on support from numerous cell types and is 
moderately guided by neuronal activity, two processes which are 
partly controlled by the endocannabinoid system. Therefore, any 
modification to endocannabinoid signaling will likely have an impact 
on myelination, one of the most important structural and functional 
aspects of the CNS.

1.6. Cannabis and the endocannabinoid 
system

Cannabinoids exert their influence over the endocannabinoid 
system mainly through CB1Rs and CB2Rs, which contribute to the 
sought after medicinal and recreational qualities of cannabis. The 
most common psychoactive cannabinoid, Δ-9-tetrahydrocannabinol 
(THC), has a relatively high affinity for the two cannabinoid 

receptors (Pertwee, 2008). THC is generally considered to be  a 
partial agonist for both CBRs, although its inhibitory effect on 
synapses can be comparable to that of a full agonist (Laaris et al., 
2010). By contrast, cannabidiol (CBD)—the most common 
non-psychoactive cannabinoid—does not have a particularly high 
affinity for either CBR, but was shown to antagonize CBR agonists 
(Thomas et al., 2007). CBD is a negative allosteric modulator of 
CB1Rs, and is suggested to act as an inverse agonist of CB2Rs 
(Thomas et al., 2007; Laprairie et al., 2015). The anti-inflammatory 
effects attributed to CBD may be  exerted through this inverse 
agonism of CB2Rs (Thomas et al., 2007; Pertwee, 2008; Yu et al., 
2020). However, it is important to note that both THC and CBD 
have many CBR-independent or indirect signaling mechanisms that 
also contribute to their overall outcomes (Pertwee, 2008; Stella, 
2010). Interestingly, one indirect mechanism is the ability for CBD 
to inhibit fatty acid amide hydrolase (FAAH)—the enzyme required 
for the degradation of N-arachidonoylethanolamine (anandamide; 
AEA), an endocannabinoid—which results in an increase in AEA 
(Watanabe et al., 1996; Bisogno et al., 2001; De Petrocellis et al., 
2011). Of note, there is a large body of research looking at the 
potential benefits of inhibiting endocannabinoid metabolizing 
enzymes; with studies showing that increases in AEA have an 
immunomodulatory effect, and can potentially aid in MS, as shown 
in mice (Rossi et  al., 2010; Vázquez et  al., 2015a; Vecchiarelli 
et al., 2021).

The changes observed in the endocannabinoid system in the aging 
brain are mostly similar to those observed after chronic THC exposure 
(Yoo et al., 2020). The most noticeable effect observed after chronic 
THC exposure is the significant but reversible reduction in CB1Rs, 
with cortical regions showing more extensive decreases in expression 
(Hirvonen et al., 2012; D’Souza et al., 2016; Augustin and Lovinger, 
2022). However, it should be noted that these studies used exclusively 
male participants. Studies including females are lacking, which is a 
significant gap since sex differences with respect to the 
endocannabinoid system are well-described (Laurikainen et al., 2019; 
Levine et al., 2021).

Importantly, THC does not interact with the brain in equal 
measure, as found by Leishman et  al. (2018). In this study, acute 
administration of THC [3 mg/kg; intraperitoneal injection (i.p)] 
differentially impacted the lipidome and transcriptome depending on 
the brain region and age of the subject, 2 h after administration. THC 
is distributed and metabolized in a region-specific manner, with 
highest levels in the hippocampus. Another interesting finding of this 
study was that adult mice (~4-months-old) displayed the largest 
changes after acute THC exposure compared to exposed ~1 and 
~2-month-old mice, with a general downregulation of the 
endocannabinoid system. The effect of THC in the aged brain was not 
examined in this study, but the observed changes would likely 
be different than other time points.

Although THC and CBD are the main cannabinoids found in 
cannabis, it is important to note that 100 s of different cannabinoids 
and other biologically active compounds exist in the plant, such as 
terpenes, including β-caryophyllene (Kopustinskiene et al., 2022). 
These compounds likely work synergistically to produce the effects of 
cannabis through multiple different signaling pathways, creating what 
is called the “entourage effect” (Ferber et al., 2020; Finlay et al., 2020). 
However, due to a lack of literature, the next sections will focus on 
THC, CBD, and some synthetic cannabinoids.
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1.7. The impact of cannabis on microglia

One of the most essential microglial functions that promotes 
myelination is the clearance of myelin debris (Kotter, 2006; Lampron 
et  al., 2015). The CB2R has been shown to be  important for 
phagocytosis in microglia. For instance, in CB2R-KO primary 
microglia from mice, phagocytosis was significantly reduced in both 
steady-state conditions and following an inflammatory stimulus (i.e., 
TGF-β) compared to controls (Mecha et al., 2015). Similarly, activation 
of the CB2R increased phagocytosis in primary cell cultures and 
improved the removal of amyloid-β40 peptides in a mouse model of 
Alzheimer’s disease pathology (Ehrhart et al., 2005; Aso et al., 2016). 
Additionally, microglia from CB2R-KO mice (18-months-old) had an 
age-dependent increase in lipofuscin granules compared to the control 
group, signifying reduced lysosomal degradation (Komorowska-
Müller et al., 2021a). These findings indicate a significant role played 
by CB2Rs in the proper removal and degradation of debris, and in the 
microglial response to environmental stimuli. However, other 
receptors likely also contribute, as CBD has been shown to promote 
phagocytosis through TRPs in primary microglial cell cultures from 
mice (Hassan et al., 2014; Yang et al., 2022). Briefly, TRPs are Ca2+-
permeable channels known for their role in temperature sensation, but 
interestingly, have also been shown to play a role in the release of 
pro-inflammatory cytokines from microglia in mice exposed to 
immunogenic agents [i.e., lipopolysaccharide (LPS)] (Zhang Y. et al., 
2021). The observed increase in phagocytosis due to CBD is thought 
to be  related to the TRP-mediated increase in the influx of Ca2+ 
(Hassan et al., 2014).

Increased microglial phagocytosis of myelin debris following the 
application of 2-AG subcutaneously via an osmotic pump 
subsequently promoted remyelination in an adult mouse model of 
experimental demyelination (Mecha et  al., 2019). This study also 
observed an altered secretory profile, with increases in IL-1β, TNF-α, 
and IL-10 in the brain after 2-AG application. This is an example of an 
augmented immune response, where the benefits of pro-inflammatory 
cytokines in tandem with anti-inflammatory cytokines work 
synergistically to promote remyelination. However, microglia in the 
aged brain are responding to chronically elevated levels of 
pro-inflammatory factors resulting in reduced functional capacity.

Activation of the CB2R by AEA in primary microglial cells from 
mice has been shown to reduce NF-κB signaling and increase 
expression of IL-10 (Correa et al., 2010). The anti-inflammatory effect 
produced by IL-10 is partly through a negative feedback loop with 
astrocytes, where the binding of IL-10 causes the release of TGF-β 
from astrocytes, which subsequently attenuates pro-inflammatory 
cytokine production in primary microglia cells (Norden et al., 2014). 
However, astrocytes have reduced expression of IL-10 receptor-1 in 
aged mice (≥18-months-old), and fail to effectively diminish 
microglia-mediated inflammation (Norden et al., 2016; O’Neil et al., 
2022). Therefore, compounds that can act directly on microglia to 
reduce pro-inflammatory cytokine production are of 
particular interest.

Selective CB2R agonists (i.e., JWH-133; i.p.) reduce the release of 
pro-inflammatory cytokines from microglia in a mouse model of 
Alzheimer’s disease pathology (Aso et al., 2013). Similarly, activation 
of CB1Rs and CB2Rs by synthetic cannabinoids [i.e., arachidonyl-2′-
chloroethylamide (ACEA) and HU-308, respectively] reduced nitric 
oxide, TNF-⍺, IL-1β and IL-6 release from spontaneous immortalized 

microglia (SIM)-A9 cells in culture (Young and Denovan-
Wright, 2022a).

CBD also has the ability to beneficially regulate the oxidative 
status in microglia by acting as an antioxidant, where it may directly 
scavenge ROS and/or inhibit the phosphorylation of upstream kinases 
needed for NF-κB signaling in primary microglia cells cultured from 
mice (van den Berg et al., 2001; dos-Santos-Pereira et al., 2020; Atalay 
Ekiner et al., 2022). This results in reduced levels of IL-1β and TNF-α 
independently of CB1R, CB2R or PPARγ, as tested using receptor 
antagonists. These effects could also be partly regulated by increased 
levels of endocannabinoids or through TRP channels, since CBD has 
a relatively high affinity for TRP vanilloid receptor 1 (TRPV1), which 
has been shown to modulate cytokine production in microglia 
(Stampanoni Bassi et  al., 2019). Furthermore, in a mouse 
(1-month-old) model of viral-induced demyelination, CBD (5 mg/kg; 
i.p) attenuated morphological alterations in microglia, and reduced 
production of IL-1β, chemokines, and vascular cell adhesion 
molecule-1 (VCAM-1) through adenosine A2A receptors (Mecha et al., 
2013). Interestingly, VCAM-1—a protein expressed by endothelial 
cells in the BBB that is involved in peripheral immune cell 
recruitment—expression increases in the aged brain, and the 
application of anti-VCAM-1 antibodies reduces microglial reactivity 
and improves memory and learning in aged (19-month-old) mice 
(Yousef et  al., 2019). Overall, it is clear that CBD acts through a 
number of vastly different pathways that have overlapping effects on 
the brain.

Although the anti-inflammatory effects of the CB2R are well-
characterized, it is also important to note that the CB2R seems essential 
for many environmental-induced immune responses in microglia. 
Primary microglia cell and organotypic hippocampal slice cultures 
generated from CB2R-KO mice showed attenuation of the microglial 
immune response to toll-like receptor (TLR) ligands (e.g., TLR4/3/9), 
preventing the pro-inflammatory cascade usually associated with TLR 
ligands (Reusch et  al., 2022). Therefore, although the CB2R can 
function to suppress inflammation, it also contributes to its initiation. 
These studies highlight how complex the interaction between the 
endocannabinoid system and microglia is.

The CB1R is also important for the inflammatory response, as a 
recent study found that inflammation was dependent on microglial 
CB1Rs (De Meij et al., 2021). They found decreased pro-inflammatory 
cytokines in mice (2–5-months-old) with CB1R-KO microglia exposed 
to LPS. However, it also increased sickness behavior in male, but not 
female mice (De Meij et al., 2021). Similarly, ablation of the CB1R 
resulted in early age-related cognitive deficits in mice (Bilkei-Gorzo 
et al., 2005; Albayram et al., 2011). Therefore, the activation of CB1Rs 
may be beneficial for preventing sickness behavior and age-related 
cognitive decline. This is true with respect to THC, but only with 
certain doses (Sarne, 2019). Ultra-low (0.002 mg/kg; i.p) and low 
(3 mg/kg; i.p) doses of THC resulted in improved cognitive function 
in old mice (24 and 18-month-old, respectively), whereas the same 
dose induced cognitive impairments in adult mice (2-months-old; 
Bilkei-Gorzo et al., 2017; Sarne et al., 2018). However, higher doses of 
THC have the reverse effect (Calabrese and Rubio-Casillas, 2018). 
This dose-dependent alteration was also observed in microglia in the 
2-month-old mouse brain, where higher doses (20 mg/kg; i.p) of THC 
resulted in the increased release of pro-inflammatory cytokines 
compared to lower doses (Cutando et al., 2013). In line with this, a 
recent study found that adolescent mice exposed to daily low-doses of 
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THC (5 mg/kg; i.p) resulted in the downregulation of genes 
responsible for the microglial response to an immune insult (e.g., 
IL-1β, IL-6), which carried over into young adulthood 
(~1.5-months-old) but not maturity (~4-months-old; Lee et al., 2022). 
This blunting of the microglial response attenuated reactivity to LPS 
and, furthermore, altered behavior in mice, where exposed mice 
showed an inability to react appropriately to psychosocial stress (Lee 
et al., 2022). These impacts were mediated through the CB1R, as tested 
using receptor antagonists. These studies highlight the differential 
impact cannabis can have on the developing brain and the aged brain, 
where low doses may be detrimental to young animals, yet beneficial 
to aged animals.

The reduced production of pro-inflammatory cytokines with 
THC administration may occur through the inhibition of NF-κB 
signaling in microglia and astrocytes, as observed in cell culture 
experiments (Kozela et al., 2010; Rizzo et al., 2019). Interestingly, the 
overexpression of CB1Rs in adult mice undergoing experimental 
demyelination resulted in delayed onset and reduced severity of 
symptoms, whereas CB1R antagonism quickened symptom onset and 
increased the expression of inflammatory cytokines and NF-κB 
proteins (Lou et al., 2016, 2018). Furthermore, an alteration in cell 
state and expression profile (i.e., increase in pro-inflammatory 
cytokines and nitric oxide) was observed in cultured BV-2 cells treated 
with a CB1R antagonist (Lou et al., 2018).

It is clear that cannabinoids are involved in the microglial response 
to inflammation with respect to secretory profile and phagocytosis. 
This is the major way in which microglia may modulate myelination. 
However, it is important to note that there is still a paucity in in vivo 
experiments conducted with aged mice, emphasizing the need for 
increased research (Scipioni et al., 2022).

1.8. The impact of cannabis on astrocytes

The crosstalk that exists between microglia and astrocytes is 
essential for proper function and plasticity of the brain and 
maintenance of homeostasis (Jha et al., 2019; Matejuk and Ransohoff, 
2020). However, in aging, certain aspects of this communication 
network become exacerbated. As discussed, the aged brain 
environment alters microglial state including their release of soluble 
factors. The concomitant impact aging has on astrocytes also induces 
a phenotypic switch that results in altered gene expression, 
perpetuation of inflammation, and recruitment of peripheral immune 
cells, which further exacerbates inflammation (Palmer and Ousman, 
2018; Jha et al., 2019).

The ability for THC to inhibit NF-κB and reduce the release of 
IL-1β and TNF-α from microglia also extends to monocytes/
macrophages and lymphocytes in human and rodent cell lines and 
primary cell cultures (Shivers et al., 1994; Kozela et al., 2010; Rizzo 
et al., 2019; Henriquez et al., 2020). This inhibition then translates 
into an observed reduction in the astrocytic release of IL-6 and 
monocyte chemoattractant protein-1 (MCP-1) in primary human 
cell cultures, thereby reducing inflammatory signaling and 
peripheral immune cell recruitment, respectively (Rizzo et al., 2019; 
Henriquez et al., 2020). Although IL-6 can be beneficial for many 
aspects of development including myelination, the chronically 
increased levels that are seen in aged humans and rodents are 
damaging and pro-inflammatory in nature (Ferrucci et al., 1999; 

Godbout and Johnson, 2004; Kimura and Kishimoto, 2010; Ritzel 
et al., 2016; Porcher et al., 2021).

This protective effect offered by THC is thought to be facilitated 
by the activation of CB2Rs, which is elevated in microglia and 
astrocytes within an inflammatory environment (Benito et al., 2008; 
Di Marzo et al., 2015; Cassano et al., 2017). However, other receptors 
may also play a role. Indeed, a recent study observed a marked 
inhibition of pro-inflammatory cytokines produced by IL-1β-
stimulated primary cell cultured human astrocytes when pre−/
co-treated with WIN55,212-2—a synthetic cannabinoid that displays 
similar effects to THC (Compton et al., 1992; Fields et al., 2022). This 
effect was independent of the CB1R and PPARs (Fields et al., 2022). 
Conversely, through PPARγ, CBD reduced pro-inflammatory 
cytokine release, inhibited NF-κB, and reduced GFAP expression in 
primary astrocyte cells stimulated with amyloid-β1-42 peptides, while 
also promoting neurogenesis in adult rats (Esposito et  al., 2011). 
Furthermore, as discussed, CBD has the ability to diminish microglial 
cytokine production by scavenging ROS, diminishing NF-κB activity, 
reducing VCAM-1 levels and increasing the availability of 
endocannabinoid ligands. This may also lessen the extent to which 
astrocytes participate in peripheral immune cell recruitment and 
inflammation (Mecha et al., 2013). Indeed, a recent study found an 
association between CBD administration, reduced phosphorylation 
of NF-κB and reduced release of IL-6 from mouse primary cultured 
astrocytes stimulated with LPS (Wu et al., 2021).

However, cannabis includes both THC and CBD. Administration 
of Sativex®—an approved oromucosal spray (Health Canada and 
various European health agencies) containing THC (5 mg/kg) and 
CBD (5 mg/kg) for the treatment of symptoms associated with MS—
reduced astrocyte reactivity and decreased the expression of 
pro-inflammatory cytokines released by microglia in a mouse model 
of MS (Feliú et al., 2015). Sativex® also preserved myelin morphology 
in mice exposed to virus-induced demyelination.

Inflammation can also be  induced by disrupting the proper 
communication between astrocytes and neurons. The deletion of 
CB1Rs from GABAergic neurons enhanced a phenotypic switch in 
astrocytes already associated with aging, including increased GFAP 
expression and amplified pro-inflammatory cytokine secretion in 
mice (Bilkei-Gorzo et  al., 2018). Therefore, disruption of 
endocannabinoid signaling between neurons and astrocytes—which 
naturally occurs during aging—causes a deleterious transition in 
astrocytes that perpetuates cytokine-mediated damage. The 
application of cannabinoids may help since they directly act on 
astrocytes to diminish cytokine release (Sheng et al., 2005; Aguirre-
Rueda et al., 2015; Rizzo et al., 2019; Fields et al., 2022).

Chronic inflammation was also identified as a major influencer of 
astrocytic gap junctions and hemichannels in rodents and humans 
(Bronzuoli et al., 2019; Peng et al., 2022). Typically, hemichannels 
remain mostly closed under “normal” conditions, but can be opened 
during pathological conditions; whereas the reverse is true for gap 
junctions (Peng et al., 2022). IL-1β and TNF-α released from microglia 
can open astrocytic hemichannels and reduce coupling between 
astrocytes in primary cell/slice cultures and in vivo in mice (Même 
et al., 2006; Retamal et al., 2007; Abudara et al., 2015; Vázquez et al., 
2015b). The application of synthetic cannabinoids (e.g., WIN55,212-2) 
were able to reduce the microglial release of these factors and directly 
act on primary astrocyte cells from mice to reduce hemichannel 
activation, preventing astrocytic uncoupling and maintaining gap 
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junctions (Froger et  al., 2009; Gajardo-Gómez et  al., 2017). 
Furthermore, direct activation of astrocytic CB1Rs was found to 
be required for the observed decrease in hemichannel activation, as 
determined by CB1R antagonism (Froger et al., 2009; Gajardo-Gómez 
et al., 2017). On the contrary, AEA (1 μM; topical application through 
a cortical cranial window) was shown to increase hemichannel activity 
in adult mice in vivo, resulting in a release of ATP that caused 
microglial process extension and migration toward the injury site 
(Vázquez et al., 2015b). Similarly, THC (5 mg/kg; i.p) has been shown 
to result in an increase in glutamate in the extracellular space by 
binding to astrocytic CB1Rs in mice, contributing to long term 
depression at synapses and impairments in working memory 
(Navarrete and Araque, 2010; Han et al., 2012).

During acute inflammatory conditions, this increase in 
hemichannel activity may be  beneficial for mounting an immune 
response to an insult, however, the prolonged release of many factors 
(i.e., glutamate) from astrocytes in chronic conditions may 
be associated with altered synaptic plasticity and memory impairments 
(Navarrete and Araque, 2010; Han et al., 2012; Vázquez et al., 2015b; 
Labra et al., 2018). Alternatively, if cannabinoids are able to reduce the 
opening of hemichannels during a chronic inflammatory event, it may 
subsequently prevent excitotoxicity caused by excess glutamate and 
reduce the release of pro-inflammatory cytokines, thus maintaining 
neuronal and astrocyte viability (Froger et al., 2009; Gajardo-Gómez 
et al., 2017). Indeed, a recent review highlights a potential signaling 
cascade involving NF-κB, p38 and nitric oxide in which cannabinoids 
prevent the release of glutamate from hemichannels (Labra et al., 2018). 
It can also be hypothesized that the conserved function of gap junctions 
would facilitate proper communication between astrocytes and 
oligodendrocytes, promoting myelination (Papaneophytou et al., 2019).

In summary, elevated levels of inflammatory factors partly 
initiated by microglia and other recruited immune cells causes a 
phenotypic switch in astrocytes that contributes to functionally 
perpetuating inflammation via the release of pro-inflammatory 
cytokines and recruitment of peripheral immune cells. Cannabinoids 
can inhibit the release of these compounds (i.e., TNF-α, IL-6, MCP-1) 
by reducing the activity of pro-inflammatory pathways (e.g., NF-κB) 
in immune cells and astrocytes and increasing the availability of 
endocannabinoids. The subsequent decrease in pro-inflammatory 
factors and direct action of (endo)cannabinoids may also modulate 
hemichannel activity, thereby contributing to changes in extracellular 
homeostasis, synaptic activity and plasticity, as well as glial support 
functions. Although these results from studies using younger animals 
can provide information on how cannabinoids impact astrocytes and 
what this could mean for the process of myelination, the unique 
environment present in the aged brain makes extrapolation conjectural.

1.9. The impact of cannabis on 
oligodendrocytes and OPCs

As discussed, oligodendrocytes and OPCs are both essential for 
proper myelination and maintenance of myelin. Chronic increases in 
ROS, pro-inflammatory cytokines and other damaging compounds 
released from immune cells and astrocytes have the ability to damage 
mature oligodendrocytes and OPCs, resulting in myelination 
impairments (Pang et al., 2003; Jurewicz et al., 2005; French et al., 
2009; Peferoen et al., 2014; Guttenplan et al., 2021; Sams, 2021). The 
ability for cannabinoids to reduce the release of pro-inflammatory 

cytokines from immune cells and astrocytes could therefore aid in the 
preservation of oligodendrocytes and OPCs. Furthermore, the 
antioxidant capacities offered by CBD could also protect these cells 
from oxidative stress.

However, in primary oligodendrocyte cell cultures from 12-day-
old rats, CBD (100 nM–1 μM) resulted in mitochondrial dysfunction 
that led to increases in intracellular cytotoxic Ca2+ and ROS, which 
negatively impacted oligodendrocyte viability (Mato et  al., 2010). 
Conversely, Mecha et al. (2012) found that CBD (1 μM) administered 
to inflammatory-induced primary oligodendrocyte cell cultures from 
the cortex of 2-day-old rats protected OPCs from oxidative stress and 
apoptosis. These studies found that these effects were independent of 
CB1R, CB2R, or PPARγ. The apparent discrepancy between studies is 
likely due to dosage and differences in age, region, and maturation of 
oligodendrocyte cells (Molina-Holgado et al., 2022).

Interestingly, CBD was also found to influence genes related to 
glycolysis—the major energy source for mature oligodendrocytes—
and carbohydrate metabolism in oligodendrocytes (Rao et al., 2017; 
de Almeida et al., 2022). The data presented by de Almeida et al. 
(2022) suggests a slight downregulation of glycolysis in OPC and 
mature oligodendrocyte cell cultures (MO3.13). This finding is 
important because glycolysis produces lactate, an important energy 
metabolite transferred to neurons from oligodendrocytes, which has 
been shown to be essential for proper neuronal function in aged mice 
(12–24-months-old; Fünfschilling et al., 2012; Lee et al., 2012; Philips 
et al., 2021). Interestingly, the ablation of monocarboxylate transporter 
1 (MCT1)—a lactate transporter—from OPCs resulted in 
hypomyelination and axonal degeneration in mature and older 
(18–24-months-old) mice, highlighting the understudied role played 
by OPCs in myelination among the adult brain (Philips et al., 2021). 
MCT1 expression naturally declines in the aging mouse brain, 
especially after 15-months of age (Ding et al., 2013; Philips et al., 
2021). Therefore, further reductions in glycolysis due to CBD 
administration may prevent the beneficial support to neurons offered 
by oligodendrocytes and OPCs. Similarly, activation of mitochondrial 
CB1Rs with THC resulted in reduced glycolytic activity and lactate 
production in primary cultured astrocytes (0–1-days-old), which was 
hypothesized to contribute to the subsequent impaired neuronal 
function and altered behavior (e.g., social interaction deficit) in young 
adult (8–12-weeks-old) mice (Jimenez-Blasco et  al., 2020). This 
reduction in astrocytic lactate would also likely have an impact on the 
oligodendrocyte lineage cells. For example, global inhibition of lactate 
production prevented remyelination in the corpus callosum after 
experimental demyelination in mice (~3-months-old), while 
OPC-rich primary cell cultures displayed heightened differentiation 
when lactate was added to the glucose medium (Ichihara et al., 2017). 
Perhaps this increase in OPC differentiation due to the presence of 
lactate can aid in remyelination by replacing the oligodendrocyte pool, 
which would warrant further investigation.

Although the literature is split with respect to OPC number in the 
aged brain, their ability to differentiate is severely impaired in humans 
and rodents (Sim et al., 2002; Yeung et al., 2014; Segel et al., 2019; Luan 
et al., 2021; Rivera et al., 2021; Zhang X. et al., 2021). Therefore, the 
encouragement of differentiation and protection of OPC viability 
offered by certain cannabinoids is of particular relevance (Ilyasov 
et al., 2018; Molina-Holgado et al., 2022). 2-AG was shown to promote 
the differentiation of OPCs into mature myelinating oligodendrocytes 
in primary mixed glial cell cultures from rats through the activation 
of CB1Rs and CB2Rs (Gomez et al., 2010). OPCs also have the ability 

https://doi.org/10.3389/fnagi.2023.1119552
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Murray et al. 10.3389/fnagi.2023.1119552

Frontiers in Aging Neuroscience 13 frontiersin.org

to produce and release 2-AG themselves, indicating a potential 
autocrine and paracrine signaling mechanism that can further 
promote differentiation (Gomez et al., 2010, 2011). Pathways of note 
that have been shown to promote OPC differentiation through 
cannabinoid receptors are the phosphatidylinositol 3-kinase/Akt 
(PI3K/Akt) and mammalian target of rapamycin (mTOR), ERK/
MAPK, and Rat sarcoma (Ras) homolog family member A/
Rho-associated protein kinase (RhoA/ROCK; Molina-Holgado et al., 
2002; Narayanan et al., 2009; Tyler et al., 2009; Gomez et al., 2010, 
2011; Giacoppo et al., 2017; Sánchez-de la Torre et al., 2022; Wang 
et al., 2022).

These findings have prompted further research investigating the 
effect of THC on OPC differentiation. A recent study found that the 
application of THC (3 mg/kg; i.p) to young mice (6-days-old) and 
organotypic cerebellar cultures promoted the differentiation of OPCs 
(Huerga-Gómez et al., 2021). Furthermore, the same group found that 
THC (3 mg/kg; i.p) induced OPC differentiation and remyelination 
after experimentally-induced demyelination in the corpus callosum 
of adult (6–8-weeks-old) mice (Aguado et al., 2021). The modulation 
of OPC differentiation by THC is thought to be mediated by both 
CBRs, but mainly CB1Rs, since antagonism of CB1Rs prevented the 
beneficial effects observed. Furthermore, OPC(Ng2/Ai6)-CB1R-KO 
mice displayed impaired OPC differentiation and myelination in the 
corpus callosum throughout the examined lifespan (≤2-months-old; 
Sánchez-de la Torre et al., 2022). The impaired differentiation of OPCs 
lacking CB1Rs is thought to be partly due to an increase in RhoA/
ROCK signaling. For example, THC (3 mg/kg, i.p) administered to 
WT mice resulted in reduced RhoA/ROCK proteins compared to 
vehicle exposed mice, leading to increased myelin-related proteins and 
enhanced OPC differentiation (Sánchez-de la Torre et  al., 2022). 
However, OPC-CB1R-KO mice had increased levels of RhoA/ROCK 
proteins observed with a lower density of mature oligodendrocytes 
and reduced immunofluorescence against myelin-related proteins, 
which did not significantly change with THC administration 
(Sánchez-de la Torre et  al., 2022). These findings highlight the 
importance of the CB1R in OPC differentiation, and its relationship 
with the RhoA/ROCK pathway. Furthermore, these findings are 
supported by previous studies that have shown the importance of 
RhoA/ROCK signaling in OPC differentiation (Baer et  al., 2009; 
Pedraza et al., 2014). Similarly, the application of WIN55,212-2 (i.p) 
resulted in improved remyelination after experimentally-induced 
demyelination in mice (6–7-weeks-old) when administered at a dose 
of 0.5 mg/kg; whereas a dose of 1 mg/kg impaired remyelination 
(Tomas-Roig et al., 2020). The negative effects produced by 1 mg/kg 
of WIN55,212-2 are hypothesized to be due to stronger reductions in 
Ca2+ influx, resulting in reduced neuronal activity, which possibly 
hinders activity-dependent myelination (Tomas-Roig et al., 2020). 
Overall, it is evident that at the right dose cannabinoids can alter 
myelination and promote the maturation of oligodendrocyte 
lineage cells.

In summary, cannabinoids at the right doses have the ability to aid 
in remyelination and promote OPC differentiation after pathological 
insults. As outlined throughout this review, cannabinoids act on a 
plethora of different cell types and different targets within those cells, 
which directly and indirectly impact myelination. Although 
cannabinoid-induced alterations to microglia and astrocytes can 
influence OPC differentiation and oligodendrocyte function 
indirectly, it is also important to keep in mind that cannabinoids 

directly act on OPCs to influence maturation and function. However, 
there are a lack of studies regarding the healthy aged brain. Although 
the aged brain does have increases in ROS, pro-inflammatory 
cytokines, and a general reduction in glial cell function, the extent of 
these changes and the dynamics at play are inherently different than 
those observed after the application of LPS or experimentally-induced 
demyelination at younger ages. Furthermore, findings from cell line 
and primary cell cultures need to be validated in in vivo experiments. 
Therefore, although studies outlined here point toward a role played 
by cannabinoids in myelination, more studies specifically looking at 
their impact in the healthy aged brain are required to confirm if these 
findings do indeed translate. Nonetheless, the evidence provided thus 
far suggests that cannabinoids may help promote myelination in the 
aged brain. Neuroimaging studies offer a different approach to 
visualize how cannabinoids impact brain communication and 
myelination, which allows elucidating large-scale changes that may 
result from the impact they have on glial cells and neuronal function.

1.10. The impact of cannabis on the human 
brain

Neuroimaging studies are valuable non-invasive techniques used 
to visualize large-scale changes in activity, connectivity, and structural 
alterations in the brain. DTI is a magnetic resonance imaging (MRI) 
technique that differentiates the degree and direction of water 
diffusion within an allotted space (Pierpaoli and Basser, 1996). Three 
main parameters are given by DTI for white matter: fractional 
anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD; 
Alexander et al., 2007). Generally, as described by Becker et al. (2015), 
increases in FA and decreases in MD and RD reflect increases 
in myelination.

The DTI literature encompassing cannabis use and myelin 
integrity is not consistent. Difficulties with respect to accurate 
reporting on usage and concentration of cannabis, and the ratio of 
cannabinoids—not to mention other confounding factors such as 
lifestyle and metabolism—make human cannabis studies increasingly 
difficult to perform. Furthermore, the DTI metrics that are used as 
proxies of myelin integrity do not specifically identify myelin 
abnormalities, but detect differences in water diffusion—a parameter 
that can be altered by axon packing density, axon caliber, and more 
confounding factors (Chang et al., 2017). However, it has been shown 
that FA can correlate with myelination quite accurately (Chang et al., 
2017). With this in mind, some tentative directions can be ascertained.

Studies focusing on adolescent and young adults who heavily use 
cannabis have drawn cautious conclusions. Overall, reductions in FA 
and increases in RD and MD have been observed with chronic 
exposure to cannabis (Arnone et al., 2008; Ashtari et al., 2009; Gruber 
et al., 2014; Becker et al., 2015; Shollenbarger et al., 2015). However, 
Cousijn et al. (2022) did not find any significant differences between 
chronic, sporadic or control groups, while noting an association 
between reduced FA and the onset of regular cannabis use at younger 
ages (<18-years-old). This finding is generally supported in the 
literature, with many studies indicating that an earlier age of onset 
correlates with reduced myelin integrity and cognition (Gruber et al., 
2012, 2014; Lisdahl et al., 2013; Orr et al., 2016).

Other studies with larger age ranges (~22–55-years of age) 
revealed similar results with respect to heavy cannabis use. Jakabek 
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et al. (2016) found reductions in FA in the forceps minor across all age 
ranges (18–55-years of age), but RD differed depending on age, with 
younger users having reduced RD and older users having higher 
RD. Similarly, Manza et  al. (2020) reported compromised myelin 
integrity in heavy cannabis users compared to controls within the 
same age range. However, Filbey et al. (2014) observed an increase in 
FA and a decrease in RD, suggesting improvements in white matter 
integrity, although protracted use did result in a reversal of 
these findings.

On the contrary, a recent DTI study found that adults 
(47.85 ± 17.42-years of age) who use medical cannabis with 
moderate levels of CBD and low levels of THC have significantly 
increased FA and reduced MD in multiple white matter regions—
notably the genu of the corpus callosum—after 6 months of use 
(Dahlgren et al., 2022). An important distinction between this 
study and the previously mentioned studies is that the 
participants were using cannabis for medicinal purposes, not 
recreationally. As stated by Dahlgren et al. (2022), the medicinal 
use of cannabis likely involves drastically different characteristics 
(i.e., age of onset, ratio of cannabinoids), potentially resulting in 
the increases in myelin integrity found in this study. Furthermore, 
the medicinal use of cannabis is likely to help treat symptoms 
associated with increased levels of inflammation, perhaps altering 
cannabinoid function compared to recreational users. These 
findings are supported by the numerous animal studies 
highlighted in this review that show that lower doses of 
cannabinoids administered less frequently are more beneficial 
than the reverse.

Despite indications that the brains response to cannabis 
substantially changes with age, to the best of our knowledge, no 
DTI study looking at the integrity of myelin has yet been 
performed in cannabis using seniors, creating a substantial gap 
in the literature. Through the use of functional MRI, functional 
connectivity—the statistical relationship that exists between 
different regions of the brain that are necessary for cognitive 
processes—can be quantified (Gaudet et al., 2020). Importantly, 
these functional connections are supported by, and significantly 
associated with white matter pathways (Hunt et al., 2016; Meier 
et al., 2016; Huntenburg et al., 2017; Vandewouw et al., 2021). 
Again, few studies are available for adults over the age of 60. 
However, one study found increased functional connectivity 
between the anterior cerebellum and the hippocampus, and with 
the posterior parahippocampal cortex in cannabis users aged 
60–80-years-old (Watson et al., 2022). The authors suggest this 
finding may indicate a potential benefit of cannabis in the aged 
brain, although the extent and appearance of these potential 
benefits are still unclear.

Due to the paucity of studies conducted in older human adults, it 
is difficult to identify the impact cannabis has on myelination in this 
population using neuroimaging techniques at this time. Regardless, 
this evidence forms a basis for future exploration.

2. Conclusion

The studies examined in this review highlight the potential for 
cannabinoids to aid in myelination in the aged brain. At certain doses, 
cannabinoids have the ability to reduce the release of pro-inflammatory 

cytokines from microglia and astrocytes, scavenge ROS, and promote 
OPC differentiation in a cell-autonomous manner, resulting in 
improved myelination after an inflammatory stimulus or 
demyelination. Furthermore, there is evidence suggesting that some 
cannabis use in the adult and older population may improve white 
matter integrity. However, the extreme lack of studies on this topic in 
the healthy aged brain currently prevents any definitive conclusions 
from being drawn. Therefore, future studies looking at the impact 
cannabinoids have on myelination in the aged brain and how this 
alters behavior and cognition should be performed. As a note, the 
myelination process in the peripheral nervous system is vastly 
different than in the CNS and was beyond the scope of this review, but 
cannabinoids may also influence this process. These studies will not 
only shed light onto how cannabinoids impact myelination, but will 
also add vital information as to how the endocannabinoid system 
contributes to modulating cognition in the aged brain.
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