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Alzheimer’s disease (AD) is the most common form of neurological dementia,

specified by extracellular β-amyloid plaque deposition, neurofibrillary tangles,

and cognitive impairment. AD-associated pathologies like cerebral amyloid

angiopathy (CAA) are also affiliated with cognitive impairment and have

overlapping molecular drivers, including amyloid buildup. Discerning the

complexity of these neurological disorders remains a significant challenge,

and the spatiomolecular relationships between pathogenic features of AD and

AD-associated pathologies remain poorly understood. This review highlights

recent developments in spatial omics, including profiling and molecular imaging

methods, and how they are applied to AD. These emerging technologies aim

to characterize the relationship between how specific cell types and tissue

features are organized in combination with mapping molecular distributions to

provide a systems biology view of the tissue microenvironment around these

neuropathologies. As spatial omics methods achieve greater resolution and

improved molecular coverage, they are enabling deeper characterization of the

molecular drivers of AD, leading to new possibilities for the prediction, diagnosis,

and mitigation of this debilitating disease.
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electrospray ionization; DNA, deoxyribonucleic acid; FDA, food and drug administration;
IHC, immunohistochemistry; IF, immunofluorescence; immuno-SABER, immunostaining with
signal amplification by exchange reaction; IMS, imaging mass spectrometry; LC-MS, liquid
chromatography–mass spectrometry; LCM, laser capture microdissection; MALDI, matrix-assisted
laser desorption/ionization; merfish, multiplexed error-robust fluorescence in situ hybridization; MIBI,
multiplex ion beam imaging; microLESA, micro liquid extraction surface analysis; MRI, magnetic
resonance imaging; mRNA, messenger ribonucleic acid; MS, mass spectrometry; NFT, neurofibrillary
tangle; pciSeq, probabilistic cell typing by in Situ sequencing; PET, positron emission tomography;
PTM, post translational modification; RNA, ribonucleic acid; scRNA-seq, single-cell ribonucleic acid
sequencing; SIMS, secondary ion mass spectrometry; SiT, spatial isoform transcriptomics; snRNA-
seq, single-nucleus ribonucleic acid sequencing; STRING, search tool for retrieval of interacting
genes/proteins; timsTOF, trapped ion mobility spectrometry time-of-flight.
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Introduction

Alzheimer’s disease (AD) is the most common form of
neurological dementia, with an estimated 6.07 million adults in the
United States diagnosed with the disease by 2020 and a predicted
13.85 million adults by 2060 (Rajan et al., 2021). A progressive
disability, initial symptoms of AD include mild memory loss,
followed by gradually increasing symptoms of disorientation,
mood and behavior change, and deepening confusion while the
disease spreads throughout regions of the brain (Rajan et al.,
2021). The characteristic neuropathologies associated with AD
include neuritic plaques consisting of extracellular β-amyloid
deposits and neurofibrillary tangles (NFTs) composed of aggregated
hyperphosphorylated tau protein (p-tau) (Long and Holtzman,
2019). Unfortunately, most drug candidates in the last few decades
targeting β-amyloid and p-tau failed to show clinical efficacy. One
exception is lecanemab, a monoclonal antibody that targets β-
amyloid and modestly slows AD progression, which was recently
approved by the FDA. However, there are still no preventative
treatments for AD (van Dyck et al., 2022). The failure of many
of these putative therapeutic candidates coincides with the lack
of understanding of the molecular underpinnings of AD onset
and progression. Therefore, more research into the complex and
heterogeneous nature of AD is necessary to better treat this disease.

There are several emerging but less-understood AD-
associated pathologies, including cerebral amyloid angiopathy
(CAA), dystrophic neurites, neuropil threads, granulovacuolar
degenerating bodies, and gliosis (Long and Holtzman, 2019).
CAA occurs when toxic β-amyloid deposits form within cerebral
arterioles and capillaries in the central nervous system leading
to cognitive impairment and intracerebral hemorrhage (Biffi
and Greenberg, 2011; van Etten et al., 2014; Boyle et al., 2015).
Dystrophic neurites contain an accumulation of dysfunctional
lysosomes within distending axons that surround β-amyloid
plaques, while granulovacuolar degenerating bodies are pathologic
neuronal organelles with lysosome-related proteins thought to
be clogged autophagosomes (Schrag et al., 2020). In addition,
astrocytes and microglia surrounding neural tissue demonstrate
forms of gliosis in AD. Despite the varied molecular and cellular
drivers of these localized sites of dysfunction, each is highly
correlated with AD. For example, CAA is reported to occur
in 82 to 98% of AD patients (Attems and Jellinger, 2014).
Additional studies have demonstrated that CAA correlates to
neurodegenerative disease and cognitive impairments, more
generally (Debette and Markus, 2010; Schrag et al., 2010;
Carare et al., 2014; Lee et al., 2018). Researchers also suggest
that defective neuronal endolysosomes accumulating within
dystrophic neurites surrounding β-amyloid plaques might
have a molecular interaction with the autophagic organelles
in granulovacuolar degenerating bodies (Schrag et al., 2020).
While these contributory pathologies are observed frequently
among patients with AD, the heterogeneous nature and
interactions between them remain unclear. Traditional multi-
omic strategies, which include integrated genomics, epigenomics,
transcriptomics, proteomics, and metabolomics/lipidomics studies,
have identified AD-associated molecular drivers and biomarkers
of the neuropathologies mentioned above (Badhwar et al., 2020;
Johnson et al., 2020; Clark et al., 2021, 2022; François et al., 2022;

Gao et al., 2022; Kodam et al., 2023). Still, future analyses must
discern the spatial relationship and interconnectedness between
AD biomarkers, cell types, and contributing pathologies in order to
develop more precise therapeutics. Recent technological advances
in spatial omics can illuminate these meaningful relationships
across time and space. This review will focus on novel spatial
multi-omics technologies, comparing spatial molecular profiling
strategies with molecular imaging (See Table 1). Close attention
will be paid to imaging mass spectrometry (IMS) as a modality
primed to help untangle the spatial complexity of Alzheimer’s
disease.

Tools for spatial omics I: spatial
profiling

Understanding the complex and concerted molecular drivers
of diseases such as AD requires insight into how cellular
neighborhoods and molecular distributions are altered near
sites of dysfunction. Spatial profiling experiments achieve this
by performing omics measurements on specific tissue structures,
cell types, and/or single cells through discrete surface sampling
approaches (Moffitt et al., 2022). These spatially derived samples
are then analyzed using advanced omics technologies, including
next-generation sequencing or liquid chromatography-mass
spectrometry (LC-MS), Moffitt et al. (2022) producing generate
deep molecular profiles (i.e., hundreds to thousands of molecular
species) that span a wide range of molecular classes. Profiling
experiments often sacrifice spatial information by collecting data
from larger tissue areas (>100 µm2) or from dispersed cells
to allow for enough material to maximize molecular coverage,
sensitivity, and dynamic range. This contrasts with imaging
approaches that provide more complete spatial distributions at
higher resolution, often with diminished molecular coverage and
sensitivity. For Alzheimer’s disease, this approach can be used
target neuropathological foci such as neuritic plaques or NFTs to
understand better how these features change cellular interactions
and biomolecular mechanisms in situ.

Spatial profiling methods can be coupled to proteomics
workflows to determine the abundance of proteins produced or
modified at specific locations in tissue. Often spatial proteomics
experiments are performed in tandem with complementary
transcriptomics experiments allowing for relationships between
gene expression and protein abundance to be better understood
(Gry et al., 2009). Spatial proteomics utilizing mass spectrometry
(MS) is advantageous over other approaches, such as antibody-
based techniques, because it enables untargeted, rapid, highly
specific analysis of thousands of proteins and proteoforms
(Bai et al., 2021). Additionally, it does not require any
a priori information. It is optimal for detecting post-translational
modifications (PTMs) that often cannot be observed with antibody
protein labeling techniques, which bind to a specific epitope
(Bai et al., 2021). These highly specific MS-based methods are
important when assessing molecular heterogeneity associated
with neuropathologies as PTMs have been found to play an
important role in Alzheimer’s disease (Deture and Dickson, 2019).
For example, hyperphosphorylated tau is a hallmark feature of
neuropil threads and neurofibrillary tangles, which correlate to
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TABLE 1 Spatial omics technologies.

Technique Resolution Molecular class Molecular
coverage

References

Spatial Profiling LCM-MS 10–50 µm Proteins, lipids,
metabolites

1,000s Datta et al., 2015; Knittelfelder et al.,
2018

NanoPOTS 50 µm Proteins, metabolites 100s Xu et al., 2019

microLESA 80 µm Proteins, metabolites 100s Ryan et al., 2019; Guiberson et al., 2021

LCM-seq 10–50 µm RNA Transcriptome wide Nichterwitz et al., 2018

GeoMx 0.5–2 µm Proteins, RNA 100s, Transcriptome
wide

Merritt et al., 2020

Molecular Imaging CycIF 0.5-2 µm Proteins 10s Muñoz-Castro et al., 2022

MP-IHC 0.5–2 µm Proteins 100s Murray et al., 2022

Immuno-SABER 0.5–2 µm Proteins 10s Saka et al., 2019

CODEX 0.5–2 µm Proteins 10s Goltsev et al., 2018; Black et al., 2021;
Hickey et al., 2022; Neumann et al.,

2022

MIBI-TOF 0.5–1 µm Proteins 10s Vijayaragavan et al., 2022

MALDI IMS 5–40 µm Proteins, lipids,
metabolites

100s Spengler and Hubert, 2002; Norris and
Caprioli, 2013; Michno et al., 2018;
Spraggins et al., 2019; Michno et al.,

2022

DESI IMS 30–75 µm Proteins, lipids,
metabolites

100s Ifa et al., 2010; Eberlin et al., 2011;
Chew et al., 2020; Qi et al., 2021

Nano-DESI IMS 12–75 µm Proteins, lipids,
metabolites

100s Roach et al., 2010

SIMS 0.1–10 µm Proteins, lipids,
metabolites

100s Wu and Odom, 1996; Heeren et al.,
2006; McDonnell et al., 2006; Lazar

et al., 2013

Slide-seqV2 10 µm RNA Transcriptome wide Rodriques et al., 2019; Stickels et al.,
2021

MERFISH 0.5–2 µm RNA Transcriptome wide Chen et al., 2015

Visium 10–50 µm RNA Transcriptome wide Lebrigand et al., 2023

disease severity (Giannakopoulos et al., 2003). One strategy for
producing spatially resolved LC-MS results is to utilize laser capture
microdissection (LCM). This is a standard method that uses a
cutting laser to isolate discrete tissue regions (>10 µm in diameter)
for MS analysis (Datta et al., 2015). Isolated tissue regions are
then prepared and analyzed using of proteomics, lipidomics, and
metabolomics (Drummond et al., 2018; Knittelfelder et al., 2018).
In one study, researchers quantified ∼900 proteins in plaques
and ∼500 proteins in NFTs in human Alzheimer’s tissue using
LCM followed by LC-MS (Hughes et al., 2014). Recent advances
have been made to maximize tissue collection efficiency for
LCM experiments, improving the overall sensitivity and molecular
coverage of the workflow. Many of these new methods utilize
single tubes or droplets for sample collection and processing,
which minimizes sample loss and reduces the total amount
of tissue needed for the subsequent analyses (Hughes et al.,
2014; Kulak et al., 2014; Moggridge et al., 2018). Techniques
like NanoPOTS (Nanodroplet Processing in One pot for Trace
Samples) employ a robotic/microfluidic platform that collects
tissue and performs processing steps in ∼200 nL droplets in
order to improve overall sensitivity and map protein expression
at higher spatial resolutions resolution (Xu et al., 2019). Another

profiling approach used to identify proteins in a particular tissue
region while maintaining spatial integrity is micro-liquid extraction
surface analysis (microLESA) (Ryan et al., 2019; Guiberson et al.,
2021). This technique utilizes a piezo-electric spotter to deposit
nanoliter droplets of trypsin onto defined tissue regions, allowing
for bottom-up proteomics to be performed from foci as small as
80 µm (Ryan et al., 2019; Guiberson et al., 2021). MicroLESA can
be performed more rapidly than LCM but with reduced spatial
resolution. The trajectory of spatial molecular profiling toward
smaller detection areas puts these technologies in a unique position
to discover altered pathways and signaling networks associated with
neuropathogenic structures like neuritic plaques and NFTs, which
require cell-type or even single-cell differentiation.

There are also emerging profiling-based spatial transcriptomics
technologies that provide insights into localized gene expression in
targeted cells and tissue features (Lovatt et al., 2014; Nichterwitz
et al., 2018; Chen et al., 2020; Merritt et al., 2020; Qian
et al., 2020; Rao et al., 2021; Walker et al., 2022). Traditional
single-cell and single-nuclei RNA sequencing approaches (scRNA-
seq/snRNA-seq) enable cell phenotyping by generating deep
molecular information for individual cells but do not provide
spatial context (Rao et al., 2021). LCM coupled with sequencing

Frontiers in Aging Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1150512
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1150512 July 11, 2023 Time: 15:10 # 4

Marshall et al. 10.3389/fnagi.2023.1150512

FIGURE 1

Spatial profiling and imaging technologies used in brain studies. (A,B) The GeoMx platform allows for highly multiplexed analysis of gene and protein
expression [modified from Walker et al. (2022)]. (A) The Hippocampal CA1 subregion labeled with morphology markers (AT8, green; β-amyloid, aqua;
IBA-1, red; nuclear marker SYTO13, blue) to highlight targeted NFTs and surrounding areas. (B) Heatmap of differentially expressed proteins when
comparing NFTs to normal neurons (p < 0.01). (C) Representative highly multiplexed CycIF images of astroscytes from a AD donor highlighting
ALDH1L1, EAAT2, GFAP, and Aβ [modified from Muñoz-Castro et al. (2022)]. (D) MALDI imaging mass spectrometry lipid data from murine brain
collected at 10 µm spatial resolution. Selected images include m/z 834.5437 ([PS(40:6)-H]−, –0.12 ppm error), m/z 883.5683 ([PI(38:5)-H]−,
–0.45 ppm error), m/z 885.5498 ([PI(38:4)-H]−, –0.23 ppm error), and m/z 906.6431 ([SHexCer(t42:1)-H]−, –1.9 ppm error) [modified from
Spraggins et al. (2019)].

workflows (LCM-seq) offers the ability to target tissue regions while
allowing for the flexibility to perform most sequencing approaches.
For example, LCM-seq has been used to perform polyA-based
RNA sequencing on individual neurons, preserving information
regarding the location of each cell relative to the tissue environment
(Nichterwitz et al., 2018). Similar to proteomics, this approach
has challenges associated with tissue loss and collection efficiency
during the LCM process. A different tissue profiling approach
has been commercialized by NanoString using a platform called
the GeoMx digital spatial profiler (Merritt et al., 2020). This
technology uses RNA probes bound to oligo barcodes using a
UV-cleavable linker. Probes are hybridized to endogenous RNA
in tissue sections, the barcodes are released from targeted tissue
regions using focused UV light, and those barcodes are aspirated
and sequenced using next-generation sequencing. When coupled
with immunohistochemistry, this technology allows for highly
precise and accurate targeting of specific cell types and tissue
features while assessing expression for >18,000 genes in human
and murine tissues. The GeoMx digital spatial profiler is already
being employed in the study of AD. For example, Walker et al.
(2022) used a cocktail of 86 antibodies conjugated to unique
UV-photocleavable oligonucleotide tags, allowing researchers to
determine differential gene expression in hippocampal regions

between dementia patients with AD neuropathological changes
and cognitively normal patients (termed resilient) with AD
neuropathological changes (Figures 1A, B). Although powerful,
this approach is limited to studies of species of which probe
sets are available. Currently, nanoString only offers probe sets for
the human and mouse genome. Overall, transcriptomic spatial
profiling techniques have advanced significantly over a short
period of time. They will undoubtedly become more prominent in
understanding transcript-level alterations at sites of AD-associated
pathologies. With the ability to analyze a wide range of molecular
classes and link observations to specific tissue features and cell
types, spatial molecular profiling technologies are well-positioned
to help decipher the complexity associated with AD and related
diseases.

Tools for spatial omics II: molecular
imaging

Molecular imaging combines the spatial characteristics of
traditional histology with the molecular specificity of modern
omics technologies. Although imaging approaches provide
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reduced sensitivity and coverage compared to bulk or profiling
measurements, they more completely capture the spatial context
of biomolecular processes in situ. This is critically important for
complex diseases like AD as localized disorder of molecular and
cellular neighborhoods often drive disease pathology (Mrdjen
et al., 2019).

Revealing spatial distributions of proteins in biological tissue
is traditionally driven by antibody-based technologies, including
immunohistochemistry (IHC) and immunofluorescence (IF),
providing the ability to map targeted proteins at high spatial
resolution (Weissleder, 2002; Goltsev et al., 2018; Saka et al., 2019;
Black et al., 2021; Hickey et al., 2022; Murray et al., 2022; Muñoz-
Castro et al., 2022; Neumann et al., 2022; Wang et al., 2022).
IF allows the detection of multiple protein targets, but plexity is
typically limited to ∼4 to 7 markers due to spectral overlap of
the emission spectra for individual fluorochromes (Tsurui et al.,
2000). However, new approaches have been developed that enable
highly multiplexed antibody-based imaging. Cyclic IF (CycIF) uses
cycles of antibody staining and stripping to produce high plexity
molecular images, typically with 3–5 markers in each cycle. An
8-cylce cyclic IF workflow allowed researchers to discover a new
third state of glial cells found near plaques and tangles (Muñoz-
Castro et al., 2022; Figure 1C). This state was hypothesized to be
an “intermediate” cell population between homeostatic and reactive
microglia. Murray et al. (2022) have developed an optimized CycIF
workflow for brain tissue using commercially available primary
and secondary antibodies termed multiplexed fluorescence-based
immunohistochemistry (MP-IHC). They used this approach to
screen 100 markers in the olfactory bulb from post-mortem
tissues of Alzheimer’s disease and Parkinson’s disease patients.
Leveraging pixel-wise unsupervised machine learning, the resulting
multiplexed imaging data were used to segment anatomical features
and group samples based on disease type (Murray et al., 2022). The
ability to distinguish specific cell types and states is essential for
understanding how cellular neighborhoods are altered at sites of
AD neuropathology. However, most CycIF strategies are performed
manually and are prone to tissue loss during the cycling steps.

Researchers are also working to improve robustness and
throughput for multiplexed protein imaging. Although yet to be
applied to the study of AD, one approach that is gaining traction
is co-detection by indexing (CODEX) IF microsocopy (Goltsev
et al., 2018; Saka et al., 2019; Black et al., 2021; Hickey et al.,
2022; Neumann et al., 2022). CODEX is performed using DNA-
conjugated antibodies and then cycling the fluorescently labeled
complementary oligo barcodes allowing for >50 markers to be
imaged from a single tissue section. One drawback of CODEX
is the preparation and validation required to conjugate primary
antibodies. However, the process is less prone to tissue loss and
more amenable to cycling, increasing the number of markers that
can be imaged reproducibly. There are also MS-based approaches
that use antibodies labeled with elemental mass reporters, such
as cytometry time-of-flight (CyTOF) (Wang et al., 2022) imaging
and multiplexed ion beam imaging by time-of-flight (MIBI-TOF)
(Vijayaragavan et al., 2022). With MIBI, a high-energy ion beam is
used to sample the tissue surface, sputtering elemental reporters,
and detecting the reporters using a TOF mass spectrometer at each
pixel location. Using MIBI, authors validated and imaged 36 brain-
abundant targets while comparing healthy and AD hippocampus
tissue regions (Vijayaragavan et al., 2022). The results of this study

identified persistent neurons expressing MFN2 that were adjacent
to NFTs, suggesting that this mitochondrial membrane protein
carries a survival advantage for neurons evading tau-induced
pathology (Vijayaragavan et al., 2022). MS-based technologies allow
for higher plexity within a single scan without the challenges of
overcoming overlapping fluorescence emission bands. However,
these approaches are typically lower throughput, limited to only
imaging small tissue areas, and completely ablate the tissue
eliminating the ability for subsequent experiments. On the other
hand, fluorescence microscopy-based approaches require complex
cycling methods to achieve high plexity but allow for whole-slide
imaging.

Imaging mass spectrometry (IMS) is another multiplexed
molecular imaging technology that enables untargeted mapping
of proteins, glycans, lipids, and metabolites (Caprioli et al., 1997;
Spengler and Hubert, 2002; Gode and Volmer, 2013; Norris and
Caprioli, 2013; Wu et al., 2013; Nilsson et al., 2015; Spraggins
et al., 2019; Djambazova et al., 2020, 2023). This label-free
approach can simultaneously detect 100s to 1,000s of endogenous
biomolecules in a pixel-wise manner, generating molecular tissue
maps (Caprioli et al., 1997). Although numerous IMS technologies
exist, matrix-assisted laser desorption/ionization (MALDI) and
desorption electrospray ionization (DESI) have most extensively
been applied to AD. MALDI IMS utilizes an applied chemical
matrix and laser ablation to desorb and ionize analyte molecules
from tissue (Norris and Caprioli, 2013; Figure 1D). Significant
advances in laser and stage technologies have allowed for higher
spatial resolution (≤10 µm pixel size) (Spraggins et al., 2019),
in some cases ablating tissue areas of less than 1 µm (Spengler
and Hubert, 2002). This makes MALDI IMS a powerful tool for
studying changes associated with Alzheimer’s disease at cellular
resolution. Recent studies targeting the tissue microenvironment
of amyloid plaques have observed various molecular signatures,
distinct lipid accumulations, and even monitored Aβ-peptide
content within and around β-amyloid plaques (Casadonte et al.,
2015; Kaya et al., 2018; Michno et al., 2018, 2021, 2022; Kelley et al.,
2020; Koutarapu et al., 2022). The Hanreider group used MALDI
combined with plaque staining to identify molecular heterogeneous
plaques in a mouse model of AD and identified differential
lipid signatures across multiple stages of plaque development
(Michno et al., 2022). For example, the data revealed inositol
phospholipids, lyso-phosphatidylinositols, and ganglioside (i.e.,
GM2 and GM3) lipids localized to immature AD plaques. Whereas
phosphatidylethanolamines and phosphatidic acids were found in
higher abundance in the core regions of mature plaques. Their
research has revealed the vast molecular heterogeneity during
plaque development. DESI IMS is another common ionization
source for performing IMS experiments. DESI is performed by
spraying charged droplets onto the tissue surface, which dissolve
endogenous molecules and are deflected into the mass spectrometer
inlet (Ifa et al., 2010; Eberlin et al., 2011). This approach allows for
rapid analysis due to not requiring specific sample preparations;
however, spatial resolution is typically limited to 30–50 µm pixel
sizes (Qi et al., 2021). DESI IMS is especially effective for imaging
lipids (Roach et al., 2010; Chew et al., 2020; Zhang et al., 2021),
which are implicated in the progression of Alzheimer’s disease.
One study incorporating DESI IMS detected significant changes
in glycerophospholipid metabolism in correlation with the early
stages of AD (Zhang et al., 2021). Finally, secondary ion mass
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spectrometry (SIMS) (Wu and Odom, 1996) is being utilized for
high resolution molecular imaging studies of AD (Lazar et al.,
2013). SIMS utilizes a focused ion beam allowing for pixel sizes
of 100 nm–1 µm (Wu and Odom, 1996). However, depending on
the ion beam used, fragmentation of endogenous molecules can
occur during desorption and ionization, typically limiting SIMS
analysis to low molecular weight species (Heeren et al., 2006).
One example application of SIMS to AD found heterogeneous
distributions of cholesterol in the cerebral cortex (Lazar et al.,
2013). They found a significant increase in cholesterol signal in the
external granular layer/external pyramidal layer and the internal
granular layer (Lazar et al., 2013). Advances to SIMS, such as
surface modification, matrix-enhanced SIMS and metal-assisted
SIMS, and polyatomic ions, are helping to expand the applicability
of SIMS to a broader range of molecular classes (Wu and Odom,
1996; Heeren et al., 2006; McDonnell et al., 2006).

Similar to profiling technologies, novel imaging approaches
have been developed for decoding localized gene expression in
relation to cell types and tissue features (Chen et al., 2015;
Rodriques et al., 2019; Stickels et al., 2021; Lebrigand et al.,
2023). Techniques such as Slide-seq and Slide-seqV2 provide
genome-wide expression information at high spatial resolution
by capturing RNA onto a surface covered with DNA-barcoded
microbeads (Rodriques et al., 2019; Stickels et al., 2021). This
approach has been used to map gene expression in the cerebellum
and hippocampus from murine brain tissues (Rodriques et al.,
2019; Stickels et al., 2021). Another useful method for imaging
RNAs is multiplexed error-robust fluorescence in situ hybridization
(MERFISH), which detected ∼1,000 RNA species within a single
cell (Chen et al., 2015). Sequential imaging details genes that
are co-expressed and co-regulated in various tissue features. This
technique was applied to the primary motor cortex of a mouse,
encompassing the transcriptomic information of 300,000 cells
and their spatial orientations. Furthermore, in situ sequencing
technologies are being advanced by commercial vendors like
10x genomics, whose Visium platform performs Spatial Isoform
Transcriptomics (SiT), which was able to collect full-length
transcript sequences from mouse brain tissue while maintaining
spatial context (Lebrigand et al., 2023). Many research groups are
working to improve sensitivity, molecular coverage, and spatial
resolution for transcriptomic imaging. As spatial transcriptomics
technologies advance, these innovative imaging strategies will
undoubtedly be applied to AD and associated pathologies to
better understand how cellular neighborhoods and biomolecular
pathways are altered in normal aging and diseased tissues.

Conclusion and perspective

The rapid development of spatial molecular profiling
and imaging technologies gives scientists a new toolbox for
addressing complex diseases at a systems level. Elucidating
the interconnectedness between the cellular and molecular
organization of neuropathologies associated with Alzheimer’s
disease have the potential to bring about breakthroughs in the
prediction, detection, and treatment of AD. These breakthroughs
are being driven by improvements in the microscopy, mass
spectrometry, and transcriptomics assays described here, but

advancements are being accelerated through the development of
integrated technologies that synergistically combine these assays
into multimodal workflows. Multimodal spatial omics experiments
provide the ability to understand relationships between a broad
range of molecular classes (e.g., RNAs, proteins, lipids, and
metabolites) across a wide range of spatial scales (e.g., whole
organs to single cells). This will enable a deeper understanding
of how cellular neighborhoods and molecular distributions are
reorganized around specific neuropathologies found in different
tissue microenvironments. In addition to advanced analytical
capabilities, this requires novel computational approaches for
processing, integrating, and analyzing data from multiple imaging
modalities. The future of Alzheimer’s disease research will
certainly rely heavily on machine learning to integrate and mine
information-rich molecular imaging technologies in both 2- and
3-dimensional space.

Computational strategies to integrate multi-omic information
are already providing novel insights into the molecular
underpinnings of AD. One study combined transcriptomics,
proteomics, and epigenomics approaches to reveal histone
modifications specific to AD (Nativio et al., 2020). Using STRING
(Search Tool for Retrieval of Interacting Genes/Proteins) analysis,
which draws from a protein-protein interaction database and
is visualized using the Cytoscape software, researchers showed
how epigenetic dysregulation could be a target for early stage
AD prevention (Nativio et al., 2020). Taga et al. (2020) used
regression analysis to integrate immunohistochemistry data from
post-mortem brain tissue with mRNA expression levels. They
discovered that BIN1 protein isoforms are differentially expressed
in neuronal cell types. In particular, decreased expression of
BIN1 isoforms containing exon 7 is associated with a greater
accumulation of tangles and subsequent cognitive decline.
Researchers have also integrated spatial omics to improve spatial
resolution, which is especially important for analyzing smaller
features of AD, like plaques and neurofibrillary tangles. One study
utilizing a supervised machine learning method called deep data
fusion integrated spatial transcriptomics and histology, which
allowed for the characterization of the transcriptome of a mouse
olfactory bulb on a micrometer scale (Bergenstråhle et al., 2022).
Analogous approaches have been applied to IMS data to spatially
“sharpen” ion images through data-driven image fusion with
microscopy using highly multivariate linear regression (Van de
Plas et al., 2015). This method can predict ion distributions with up
to 10× higher spatial resolution and in tissue areas not measured
by IMS. In the context of AD, where pathological features like
plaques and NFTs are on the order of 1–20 um, achieving cellular
resolution with the aid of computational tools like image fusion
will be extremely valuable. Other supervised machine learning
approaches are being used for classification tasks to allow for
data-driven recognition of diseased tissues (Lazova et al., 2012;
Meding et al., 2012; Hanselmann et al., 2013; Casadonte et al.,
2014; Veselkov et al., 2014; Verbeeck et al., 2020). Tideman et al.
(2021) recently have shown that supervised and interpretable
machine learning could be used for biomarker discovery when
applied to untargeted, highly multiplexed MALDI IMS datasets,
including for central nervous system tissue. On the other hand,
unsupervised machine learning with factorization, clustering, and
manifold learning methods are being used for exploratory analysis
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and interpretation of high dimensionality spatial omics datasets
(Verbeeck et al., 2020).

Spatial profiling and imaging is a rapidly expanding field that
will continue to see growth. On one end, assays will see further
developments as techniques such as imaging mass spectrometry
and spatial transcriptomics will achieve greater resolution and
become capable of detecting a wider range of molecules. On the
other end, data integration and mining with machine learning
are now regularly deployed and becoming increasingly necessary
for working with large-scale multimodal molecular imaging data.
The ability to capture relationships between data modalities in
mathematical models and open them for biological interpretation
will offer new opportunities for spatially specific biomarker
discovery. Using the spatial dimension to connect multi-omic
studies will these integrated technologies to be harnessed to reveal
how cellular organization and molecular distributions are altered
during AD. This will be critical for untangling the mechanisms
underlying the diverse array of AD-associated neuropathologies
and informing future therapeutic strategies.
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