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Background: An optimized anesthesia monitoring using electroencephalographic

(EEG) information in the elderly could help to reduce the incidence of

postoperative complications. Processed EEG information that is available to

the anesthesiologist is affected by the age-induced changes of the raw EEG.

While most of these methods indicate a “more awake” patient with age, the

permutation entropy (PeEn) has been proposed as an age-independent measure.

In this article, we show that PeEn is also influenced by age, independent of

parameter settings.

Methods: We retrospectively analyzed the EEG of more than 300 patients,

recorded during steady state anesthesia without stimulation, and calculated the

PeEn for different embedding dimensions m that was applied to the EEG filtered to

a wide variety of frequency ranges. We constructed linear models to evaluate the

relationship between age and PeEn. To compare our results to published studies,

we also performed a stepwise dichotomization and used non-parametric tests

and effect sizes for pairwise comparisons.

Results: We found a significant influence of age on PeEn for all settings except

for narrow band EEG activity. The analysis of the dichotomized data also revealed

significant differences between old and young patients for the PeEn settings used

in published studies.

Conclusion: Based on our findings, we could show the influence of age on PeEn.

This result was independent of parameter, sample rate, and filter settings. Hence,

age should be taken into consideration when using PeEn to monitor patient EEG.
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Introduction

Monitoring the patient under general anesthesia using the
electroencephalogram (EEG) has become a standard procedure
in many hospitals. All commercially available monitoring systems
exploit information from the EEG in the frequency domain. The
algorithms are proprietary, so the way the index is generated
remains largely unknown. For the bispectral index (BIS, Medtronic,
Dublin, Ireland) a reverse engineering approach has identified
the higher frequencies in the EEG as a main contributor to the
index. What all indices have in common, is their “one-size-fits-all”
approach for adult patients, in that no patient demographic factors
or substance information are considered when the processed EEG
index is calculated. This “one-size-fits-all” approach is vulnerable to
age-related changes in the EEG (Ni et al., 2019; Obert et al., 2021,
2023). The indices of most systems increase with age (Ni et al., 2019;
Obert et al., 2021, 2023) as do their included frequency bands or
sub-parameters (Schultz et al., 2004; Purdon et al., 2015; Kreuzer
et al., 2020). Other, entropic approaches applied to the EEG in the
time domain also seem affected by age (Kreuzer et al., 2020).

In contrast to these findings, a more recent publication found
no significant impact of age on the permutation entropy (PeEn)
and the authors concluded that in contrast to other investigated
parameters, PeEn seems to be a promising candidate for an “age-
independent” measure (Biggs et al., 2022). In that study, these
contradictory findings (Kreuzer et al., 2020) were explained by
different settings of the PeEn embedding dimension as well as time
point and sampling issues. To shed some light into this issue, we
reanalyzed some of our previously collected data used to show the
age-dependency of EEG parameters. We show that PeEn is indeed
affected by age, and that the reported findings of Biggs et al. (2022),
showing no significant age-related effect, can be attributed to small
sample sizes and dichotomization of the age groups.

Materials and methods

We reanalyzed data from two studies used previously for
evaluation of age-induced effects of processed EEG parameters
(Kreuzer et al., 2020; Obert et al., 2023). Therefore, we decided
to use EEG segments that were recorded during a state of
unstimulated anesthesia right before incision.

Reanalyzed EEG data

The data of the first study (study 1) was initially published
in the British Journal of Anaesthesia (Hesse et al., 2019). As
in our initial analysis investigating the impact of age on PeEn
(Kreuzer et al., 2020), we used data from patients that received
propofol for anesthesia induction and sevoflurane for anesthesia
maintenance. In short, single channel EEG was recorded with either
a bispectral index or an entropy module. To align sample rates, we
resampled the BIS data to a sampling frequency of 100 Hz. The
EEG segment that was used to evaluate the impact of age was 20 s
in length (2000 data points) and obtained between the 5th and
2nd minute before incision, i.e., at a state of general anesthesia
without surgical stimulation. Details can be found in the initial

FIGURE 1

Linear regression models describing the relationship between age
and normalized PeEn for the previously used settings, i.e., an
embedding dimension of m = 3 or m = 5, and a low-pass filter set
to 25 or 30 Hz. (A) Results from patients from study 1. The
normalized PeEn significantly increased with age for m = 3.
(B) Results from patients from study 1. The normalized PeEn
significantly increased with age for m = 5. (C) Results from patients
from study 2. The normalized PeEn significantly increased with age
for m = 3. (D) Results from patients from study 2. The normalized
PeEn significantly increased with age for m = 5.

paper explaining age-induced changes on entropic parameters
(Kreuzer et al., 2020).

The data of the second study (study 2) was initially published
in the Journal of Clinical Anesthesia (Lutz et al., 2022). Again, the
extracted data was of 30 s length (7500 data points) and stems
from the 2 – 10 min before immediately incision, when the patients
were either maintained with propofol, sevoflurane or desflurane,
to analyze the EEG obtained during a general anesthesia without
surgical stimulation situation. EEG was recorded with a 10-channel
montage and at a sampling rate of 250 Hz. Details can be found
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in the paper explaining age-induced changes on the processed EEG
index of the SEDLine monitor (Obert et al., 2023).

The use of both data sets allows for analyses independent of
sample rate, anesthetic agent, or EEG setup.

For both data sets we could show that the age-adjusted MAC
did not significantly change with age and that the propofol
concentration significantly decreased with age.

EEG analysis

All included EEG episodes were free of artifacts and showed
no burst suppression activity. In this analysis we wanted to test
the effect of different high- and low-pass filter settings as well
as different embedding dimensions of PeEn on the relationship
between PeEn and age. The algorithm of PeEn was introduced
by Bandt and Pompe (2002) and calculates the Shannon entropy
of rank order patterns of length m. In general, PeEn has been
proposed to reflect the complexity and the information content of
a signal, but some results suggest that this may overestimate the
interpretability of PeEn, at least for a m = 3 (Berger et al., 2017).
The main differences in parameter settings between the Biggs article
(Biggs et al., 2022) and our own earlier findings (Kreuzer et al.,
2020; Obert et al., 2021) were the sample rate (89 Hz vs. 100 Hz),
the embedding dimension (m = 5 vs. m = 3), the low pass cut-off
(25 Hz vs. 30 Hz), and the maintenance anesthetic (propofol vs.
sevoflurane). Different time points were also used. Nonetheless, if
PeEn is truly an age-independent parameter, it should work at all
anesthetic levels in general. In the following analysis we calculated
the PeEn using m from 3 to 5 and for all frequencies from 1 to 30 Hz
with a minimal bandwidth of 1 Hz, using a 4th order forward-
backward filter routine (filtfilt in Matlab). For the evaluation of
dichotomized data, we calculated PeEn for the EEG low pass filtered
at 30 or at 25 Hz. We did not change the time delay tau in the PeEn
algorithm but kept tau = 1 because higher tau values may lead to
aliasing (Berger et al., 2017). For the results presented in Figure 1,
we used the normalized PeEn for display purposes. Therefore, we
followed the normalization as used by Bandt and Pompe (2002) and
divided PeEn by log2(m!).

Statistical analysis

To evaluate an age-induced effect on PeEn, we calculated linear
regression models (PeEn = k∗age + y, with k being the slope of the

model and y the intercept) for all m values and all filter settings
using the Matlab function fitlm. To evaluate a significant trend of
PeEn with age, this function uses a t-test to test the hypothesis that
the slope of the model equals 0. We have already used this approach
in our earlier publications to avoid dichotomizing the data with an
arbitrary age threshold choice.

But to compare our findings with studies that use dichotomized
data, we also conducted paired tests, by stepwise including younger
and older patients, as well as testing a fixed age threshold of
65 years. This means we started with a pairwise comparison of
the 10 youngest and 10 oldest patients in the cohort and then
added the next youngest or oldest for the next comparison. The
last comparison was then the young half versus the old half in the
group. We performed Mann–Whitney U tests because of varying
sample sizes, and we also calculated the area under the receiver
operating curve (AUC) with 10k-fold bootstrapped 95% confidence
interval using the Matlab-based MES toolbox (Hentschke, 2011). As
a rule of the thumb, AUC > 0.7 or AUC < 0.3 indicates a clinically
relevant effect (Mandrekar, 2010). The effect size and confidence
intervals can also help to prevent drawing wrong conclusions of
“no effect” or “no difference” because of a non-significant result
(Amrhein et al., 2019). We used the AUC as effect size to evaluate
the degree of separation between the old and young patients. Hence,
we were interested in the absolute difference of the AUC from the
AUC = 0.5, indicative of “no effect.” This is why we also present
AUC values below 0.5.

Results

Frequency band analysis

As a first step we evaluated the impact of age on the reported
settings and could show that for a m = 3 and m = 5 and low pass
filter settings of 25 or 30 Hz, the (normalized) PeEn significantly
increased with age as presented in Figure 1 and Table 1.

For a more generalized picture, we calculated the linear
regression models for different m and different EEG frequency
bands. For the majority of the band pass filter settings we found
a significant relationship between age and PeEn irrespective of
the embedding dimension m. The steepest slopes of the model,
i.e., the strongest age-PeEn associations, could be found for the
wide frequency bands, and when beta activity (around 15–30 Hz)
was retained in the EEG signal. Non-significant trends between

TABLE 1 Parameters for the linear models (PeEn = slope*age + intercept) using the normalized PeEn for the settings of m = 3 or m = 5 and the low pass
set to either 25 or 30 Hz.

Slope Intercept t-stat p-value R2

Study 1:

PeEn m = 3 (25 Hz) 0.001 0.755 6.60 <0.001 0.20

PeEn m = 3 (30 Hz) 0.001 0.762 7.17 <0.001 0.22

PeEn m = 5 (25 Hz) 0.001 0.596 6.82 <0.001 0.21

PeEn m = 5 (30 Hz) 0.001 0.608 7.24 <0.001 0.23

Study 2:

PeEn m = 3 (25 Hz) 0.001 0.755 6.60 <0.001 0.20

PeEn m = 3 (30 Hz) 0.001 0.762 7.17 <0.001 0.22

PeEn m = 5 (25 Hz) 0.001 0.596 6.82 <0.001 0.21

PeEn m = 5 (30 Hz) 0.001 0.608 7.24 <0.001 0.23
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FIGURE 2

Matrices showing the slopes of the calculated linear regression models describing the relationship between PeEn and age for different frequency
bands. The filter settings are indicated on the x-axis (low-pass) and on the y-axis (high-pass). If the regression model for the PeEn of the EEG filtered
to the indicated range showed a significant change with age, the corresponding pixel in the matrix is colored. The darker the color, the steeper is the
slope, i.e., the stronger PeEn was affected by age for that filter setting. White pixels below the diagonal indicate no significant change in PeEn with
age. The area above the diagonal remains white because of invalid filter settings, i.e., the high-pass cutoff frequency would be higher than the
low-pass cutoff frequency. Significant relationships between age and PeEn also shown for different embedding dimensions for the bandpass filtered
EEG. Age affected PeEn most strongly for the wide frequency ranges (e.g., high-pass filters below 5 Hz with a low-pass above 20 Hz). (A) Results
from patients from study 1. All received propofol induction and maintenance with sevoflurane. (B) Results from all patients from study 2. All received
propofol induction and maintenance with sevoflurane, desflurane, or propofol. (C) Results from patients from study 2 that received an inhalational
anesthetic for anesthesia maintenance. (D) Results from patients from study 2 that received propofol for anesthesia maintenance.
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TABLE 2 Parameters of the linear regression model (PeEn = slope*age + intercept).

Intercept Slope p R2

Study 1:

PeEn m = 3 (25 Hz) 1.9594 0.0002 <0.001 0.17

PeEn m = 4 (25 Hz) 3.0061 0.0005 <0.001 0.18

PeEn m = 5 (25 Hz) 4.1309 0.0008 <0.001 0.19

PeEn m = 3 (30 Hz) 1.9713 0.0003 <0.001 0.21

PeEn m = 4 (30 Hz) 3.0409 0.0006 <0.001 0.22

PeEn m = 5 (30 Hz) 4.1957 0.0009 <0.001 0.22

Study 2:

PeEn m = 3 (25 Hz) 1.5338 0.0002 <0.001 0.09

PeEn m = 4 (25 Hz) 2.0887 0.0004 <0.001 0.10

PeEn m = 5 (25 Hz) 2.6715 0.0007 <0.001 0.11

PeEn m = 3 (30 Hz) 1.5524 0.0002 <0.001 0.12

PeEn m = 4 (30 Hz) 2.1334 0.0005 <0.001 0.13

PeEn m = 5 (30 Hz) 2.7469 0.0008 <0.001 0.13

PeEn and age were generally observed when low-frequency low-
pass filters were applied or when the band-pass filter was narrow.
This means that the typical settings used to investigate age-related
changes (Kreuzer et al., 2020; Biggs et al., 2022) and the settings
used to investigate the performance of PeEn to monitor anesthesia
(Jordan et al., 2008; Olofsen et al., 2008; Schneider et al., 2014) were
affected the strongest by age. This is seen as the dark gray regions
in Figure 2 (showing the results from study 1 and 2). Table 2
complements this figure with the presentation of the parameter of
the linear models.

Dichotomized data

For our stepwise approach, where we started with the
comparisons of the mean PeEn values in the youngest ten versus the
oldest ten patients for each study and finished with the comparison
of the “young” half versus the “old” half of the patients, we
found significant differences for each comparison as indicated by
a p < 0.05 with the Mann–Whitney U test and by the AUC
confidence intervals not containing 0.5 for study 1 (Figures 3, 4).
In these figures, PeEn values are shown for each patient (color of
the vertical lines), and can be seen to generally increase (becoming
darker) with increasing patient age. The analysis of the data from
study 2, confirmed this result. Only at the first steps (with the 25 Hz
cutoff: first 9 steps for m = 3; first 7 steps for m = 4 and m = 5;
with the 30 Hz cutoff: first 5 steps for all m), when comparing
the small samples of the “youngest” versus the ”oldest” we found
non-significant differences (Figures 3, 4). For both studies the age
cutoff for the equal sized groups (i.e., 89 vs. 89 patients in study
1, and 69 vs. 69 patients in study 2) was 59 years for the “young”
group and 60 years for the “older” group. Because the threshold of
65 years is often used and suggested for a person to be defined as
“older” (Roberts et al., 2018), as it also was in the aforementioned
publication (Biggs et al., 2022), we calculated the statistics for these
comparisons and found a significant difference for all groups tested
as presented in Table 3. We also present supplemental boxplots
dichotomizing the patients at an age of 65 years. For the m = 3 and
m = 5 settings with a 25 or 30 Hz low pass filter, the differences in

PeEn were significant (p < 0.001) and the AUC indicated a relevant
effect (AUC < 0.3). The plots and statistical information can be
found in Supplementary Figures 1, 2 for study 1 and study 2.

Discussion

With our analyses we increase the knowledge regarding the
effect of age-induced EEG changes on PeEn. It is well described
that the EEG of an older patient under anesthesia shows lower
amplitudes and faster oscillatory activity (Purdon et al., 2015;
Kreuzer et al., 2020). This is likely the cause of the observed increase
in the processed EEG indices of most monitoring systems (Ni
et al., 2019; Obert et al., 2021, 2023). All these indices derive their
information from the power spectrum of the EEG which is clearly
affected by age (Schultz et al., 2004; Purdon et al., 2015; Kreuzer
et al., 2020). The PeEn is an entropic time-domain measure that
first made its way into anesthesia research because of its good
performance to separate EEG signals recorded during wakefulness,
from those recorded during anesthetic-induced unconsciousness
(Jordan et al., 2008; Olofsen et al., 2008). The high performance
seems to be based on the sensitivity of PeEn to evaluate changes
in the faster frequencies. An in-depth investigation of PeEn with a
m = 3 showed that the PeEn is correlated with the centroid of the
power spectrum and also dependent on the peaks being observed in
the raw signal (Berger et al., 2017). The counting of peaks was used
almost 40 years ago in the parameter proposed by Kedem (1986).
As stated in the introduction, contradictory results regarding the
influence of age on PeEn have been published (Kreuzer et al.,
2020; Biggs et al., 2022). As an explanation several factors were
listed. With our results we could show that the embedding
dimension and the choice of the low pass filter are not factors that
could lead to PeEn being considered to be an age-independent
parameter. We found that PeEn differed with age for the 30 Hz
as well as the 25 Hz cut off, and for all the selected m values
ranging from 3 to 5. Previous research into PeEn, dealing with
the detection of different levels of anesthesia, showed that PeEn
functions for different m and filter settings (Jordan et al., 2008;
Olofsen et al., 2008; Liang et al., 2015). The difference in signal
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FIGURE 3

Dichotomous comparisons between the “young” and “old” patients for PeEn with different embedding dimensions for the EEG bandpass filtered to
either 1–25 or 1–30 Hz for all patients from study 1 (n = 180). Patients are sorted by age on the x-axis. Darker colors indicate a higher PeEn. The
comparisons started with the youngest 10 vs. the oldest 10 patients (at the bottom of the plot) and then one young and older patient was included in
a stepwise manner up to the 89 youngest vs. the 89 oldest, a dichotomization around the median. For all comparisons we found a significant
difference in PeEn values between young and old as indicated by the AUC with 95% confidence intervals shown next to the comparisons to the
right. The vertical line in these plots indicates AUC = 0.5. If this line is not crossed by the confidence intervals, the difference in PeEn between
“young” and “old” can be considered significant.
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FIGURE 4

Dichotomous comparisons between the “young” and “old” patients for PeEn with different embedding dimensions for the EEG bandpass filtered to
either 1–25 or 1–30 Hz for all patients from study 2 (n = 141). The comparisons started with the youngest 10 vs. the oldest 10 patients and then one
young and old was included in a stepwise manner up to the 69 youngest vs. the 69 oldest. For most comparisons, we found a significant difference
between young and old as indicated by the AUC with 95% confidence intervals. If this line is not crossed by the confidence intervals, the difference
in PeEn between “young” and “old” can be considered significant.

length is unlikely to be a factor, because as long as the signal
remains stationary, the PeEn should not change for different
lengths (Kreuzer et al., 2014). Furthermore, the longer the selected
episodes, the slower the PeEn can react to sudden changes in
the EEG. For instance in a case of intraoperative awareness even
undetected episodes of more than 30 s may lead to an increased risk
of memory formation (Dutton et al., 1995a,b). The longer the EEG

segment used for PeEn calculation, the higher the risk of a delayed
detection of sudden changes in the EEG. Especially during dynamic
episodes like anesthesia induction and emergence, an EEG length
of 30 s or more used for PeEn calculation could lead to a parameter
lagging behind. Our findings were also independent of sample rate
and type of maintenance anesthetic. Hence one main factor may
be the anesthesia episode. We evaluated PeEn during unstimulated
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TABLE 3 Area under the receiving operating characteristic values for the group comparison of old (>65 years) vs. young patients for different filter
settings and embedding dimensions.

Data set 1
(n = 180)

Low pass m p (MWU) AUC [95% CI] PeEn old PeEn young

n(old) = 76,
n(young) = 104

25 Hz 3 <0.001 0.68 [0.60, 0.75] 2.06 (0.09) 2.02 (0.08)

25 Hz 4 <0.001 0.68 [0.59, 0.75] 3.24 (0.20) 3.15 (0.18)

25 Hz 5 <0.001 0.68 [0.60, 0.75] 4.54 (0.28) 4.36 (0.31)

30 Hz 3 <0.001 0.70 [0.62, 0.77] 2.10 (0.10) 2.05 (0.09)

30 Hz 4 <0.001 0.70 [0.62, 0.77] 3.33 (0.18) 3.21 (0.20)

30 Hz 5 <0.001 0.70 [0.62, 0.78] 4.67 (0.29) 4.51 (0.34)

Data set 2 (n = 141) 25 Hz 3 <0.001 0.71 [0.62, 0.80] 1.61 (0.06) 1.57 (0.05)

n(old) = 55,
n(young) = 86

25 Hz 4 <0.001 0.71 [0.62, 0.80] 2.23 (0.11) 2.17 (0.10)

25 Hz 5 <0.001 0.72 [0.63, 0.81] 2.91 (0.16) 2.80 (0.15)

30 Hz 3 <0.001 0.73 [0.63, 0.81] 1.64 (0.07) 1.60 (0.06)

30 Hz 4 <0.001 0.73 [0.64, 0.81] 2.32 (0.13) 2.23 (0.11)

30 Hz 5 <0.001 0.73 [0.64, 0.81] 3.04 (0.20) 2.91 (0.17)

Inhalational (n = 76) 25 Hz 3 0.001 0.72 [0.60, 0.84] 1.59 (0.07) 1.55 (0.05)

n(old) = 33,
n(young) = 43

25 Hz 4 0.001 0.72 [0.60, 0.83] 2.87 (0.22) 2.74 (0.17)

25 Hz 5 0.001 0.72 [0.60, 0.83] 2.87 (0.22) 2.74 (0.17)

30 Hz 3 0.001 0.72 [0.60, 0.83] 1.62 (0.07) 1.58 (0.06)

30 Hz 4 0.001 0.72 [0.60, 0.83] 2.98 (0.21) 2.85 (0.22)

30 Hz 5 0.001 0.72 [0.60, 0.83] 2.98 (0.21) 2.85 (0.22)

Propofol (n = 65) 25 Hz 3 <0.001 0.82 [0.71, 0.92] 1.63 (0.04) 1.59 (0.03)

n(old) = 22,
n(young) = 43

25 Hz 4 <0.001 0.85 [0.75, 0.93] 2.97 (0.13) 2.85 (0.12)

25 Hz 5 <0.001 0.85 [0.75, 0.93] 2.97 (0.13) 2.85 (0.12)

30 Hz 3 <0.001 0.85 [0.76, 0.94] 1.66 (0.04) 1.61 (0.05)

30 Hz 4 <0.001 0.85 [0.75, 0.93] 3.11 (0.12) 2.95 (0.15)

30 Hz 5 <0.001 0.85 [0.75, 0.93] 3.11 (0.12) 2.95 (0.15)

For each comparison the PeEn was significantly higher (indicated by AUC < 0.5 and the confidence interval excluding 0.5 as well as by p < 0.05), highlighting the consistent impact of age on
PeEn. The PeEn values for the old and young are presented as median (interquartile range).

anesthesia maintenance. But an age-independent parameter should
show this independent behavior for the entire anesthesia period.
Another major difference was the sample size in the studies as
well as the statistical approach. In the studies that were used
here, more than 100 patients were included per study whereas
there were 30 patients in the earlier study (Biggs et al., 2022).
We evaluated the impact of age longitudinally by creating linear
models, in contrast to the dichotomized approach with a cutoff of
65 years. Dichotomization of continuous data may come at a cost.
The robustness of analysis and the conclusions drawn may suffer
(Nafiu et al., 2015). Hence, we present the analysis of the continuous
variable age using linear regression models as suggested in the
literature (Altman and Royston, 2006). Further, with a small sample
size, significant results will only be observed at large effect sizes.
Hence we added the AUC to the dichotomized comparisons which
we performed in order to reproduce the findings from Biggs et al.
(2022). As can be clearly seen, the AUC decreased as more middle
aged patients were included but because of our larger sample
size, there was a significant difference even when the middle aged
patients were included. The results were also largely independent of

the maintenance anesthetic used as presented in Table 2. Hence, we
cannot confirm the conclusion of PeEn being an age-independent
parameter for anesthesia monitoring.

Limitations

One difficulty in comparing these types of studies is that
when very high induction rates are used the time course of
the effect is very fast and does not generate stable conditions
for analysis. In our opinion, propofol perfusions above
10 mg/kg/h lead to an overprediction of the Ce calculated
by pharmacokinetic/pharmacodynamic models during the
distributive phase (end front kinetics) resulting in very high Ce at
LOC. Target controlled infusion does not correct the problem with
inductions that include fast loading boluses, generating excessive
cortical depression that will impact the results observed in EEG
processing (Purdon et al., 2015; Kreuzer et al., 2020).

Our analyses were limited to one certain episode, but we are
confident that the selected data is sufficient to convey our point
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of PeEn not being age independent. But as stated above, the
PeEn should be calculated from rather short segments and then
embedding dimensions of m > 5 could lead to an increased number
of non-occurring patterns because the number of possible patterns
is m! In our presentation of the linear models, we did not present
“non-statistical” results in our slopes. There may be false negatives
in this group as there may be false positives in the “significant”
results. But in our case the experiments were conducted to present
the general dependency of PeEn on age, which we could show
with our data. Another issue that occurs when evaluating age
induced changes is the dosing of the anesthetic. Older people
require less anesthetic (Dundee et al., 1986; Shafer, 2000) this of
course should be considered when evaluating the effects on the
EEG. Therefore, studies used the age-adjusted MAC according to
Mapleson (1996) for sevoflurane (Purdon et al., 2015; Kreuzer et al.,
2020). For propofol, a linear decrease in propofol concentration was
reported for older patients (Schultz et al., 2004; Purdon et al., 2015;
Kreuzer et al., 2020). Another study just reports the decrease in
drug concentration with age (Obert et al., 2023), since the MAC
refers to a behavioral endpoint and may hence not reflect the
hypnotic effects (Perouansky and Sleigh, 2021). That study did not
show an age-related difference in PeEn (Biggs et al., 2022) when
using target controlled infusion and the Schnider model (Schnider
et al., 1999). While age-adjustment for steady state anesthesia may
seem straightforward, the estimation of the effect site concentration
during dynamic state transitions is another cup of tea. The Schnider
model may overpredict during this stage and could also influence
anesthesia maintenance (Coppens et al., 2010). Hence, at the state
transition the real effect site concentration may not be correctly
estimated and so age-adjustment may be not possible (Demaría,
2019).

Conclusion

Based on our findings, we could show a strong dependency
of permutation entropy (PeEn) on patient age, an effect that
was independent of parameter, sample rate, and filter settings.
Hence, age should be taken into consideration when using PeEn
to monitor patient EEG.
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