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Background: Alzheimer’s disease (AD) is a neurodegenerative disease whose

origins have not been universally accepted. Numerous studies have demonstrated

the relationship between AD and alcohol dependence; however, few studies have

combined the origins of AD, alcohol dependence, and programmed cell death

(PCD) to analyze the mechanistic relationship between the development of this

pair of diseases. We demonstrated in previous studies the relationship between

psychiatric disorders and PCD, and in the same concerning neurodegeneration-

related AD, we found an interesting link with the Ferroptosis pathway. In the

present study, we explored the bioinformatic interactions between AD, alcohol

dependence, and Ferroptosis and tried to elucidate and predict the development

of AD from this aspect.

Methods: We selected the Alzheimer’s disease dataset GSE118553 and alcohol

dependence dataset GSE44456 from the Gene Expression Omnibus (GEO)

database. Ferroptosis-related genes were gathered through Gene Set Enrichment

Analysis (GSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and relevant

literature, resulting in a total of 88 related genes. For the AD and alcohol

dependence datasets, we conducted Limma analysis to identify differentially

expressed genes (DEGs) and performed functional enrichment analysis on the

intersection set. Furthermore, we used ferroptosis-related genes and the DEGs

to perform machine learning crossover analysis, employing Least Absolute

Shrinkage and Selection Operator (LASSO) regression to identify candidate

immune-related central genes. This analysis was also used to construct protein-

protein interaction networks (PPI) and artificial neural networks (ANN), as well

as to plot receiver operating characteristic (ROC) curves for diagnosing AD and

alcohol dependence. We analyzed immune cell infiltration to explore the role

of immune cell dysregulation in AD. Subsequently, we conducted consensus

clustering analysis of AD using three relevant candidate gene models and

examined the immune microenvironment and functional pathways between

different subgroups. Finally, we generated a network of gene-gene interactions

and miRNA-gene interactions using Networkanalyst.

Results: The crossover of AD and alcohol dependence DEG contains 278

genes, and functional enrichment analysis showed that both AD and alcohol

dependence were strongly correlated with Ferroptosis, and then crossed them

with Ferroptosis-related genes to obtain seven genes. Three candidate genes
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were finally identified by machine learning to build a diagnostic prediction model.

After validation by ANN and PPI analysis, ROC curves were plotted to assess

the diagnostic value of AD and alcohol dependence. The results showed a high

diagnostic value of the predictive model. In the immune infiltration analysis,

functional metabolism and immune microenvironment of AD patients were

significantly associated with Ferroptosis. Finally, analysis of target genes and

miRNA-gene interaction networks showed that hsa-mir-34a-5p and has-mir-

106b-5p could simultaneously regulate the expression of both CYBB and ACSL4.

Conclusion: We obtained a diagnostic prediction model with good effect by

comprehensive analysis, and validation of ROC in AD and alcohol dependence

data sets showed good diagnostic, predictive value for both AD (AUC 0. 75, CI

0.91–0.60), and alcohol dependence (AUC 0.81, CI 0.95–0.68). In the consensus

clustering grouping, we identified variability in the metabolic and immune

microenvironment between subgroups as a likely cause of the different prognosis,

which was all related to Ferroptosis function. Finally, we discovered that hsa-mir-

34a-5p and has-mir-106b-5p could simultaneously regulate the expression of

both CYBB and ACSL4.
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1. Introduction

The global incidence of dementia has almost tripled in recent
decades, rising from 20.2 million cases in 1990 to 57.4 million in
2019 (GBD 2019 Dementia Forecasting Collaborators, 2022). It is
projected that by 2050, the number of individuals with dementia
worldwide will reach 152 million (Li, 2018).

Alzheimer’s disease (AD), a neurodegenerative disorder, is
marked by amyloid plaques, tau protein tangles, and brain atrophy
(Ausó et al., 2020). AD, along with vascular dementia, constitutes
the majority of dementia cases. Cognitive decline in later life has
been linked to long-term alcohol consumption, AD, and vascular
dementia (Downs et al., 2023; Marsland et al., 2023).

In 2020, The Lancet Commission’s report identified excessive
or harmful alcohol consumption in midlife as one of the major
modifiable risk factor for dementia (Livingston et al., 2020). This
finding is reinforced by a wealth of evidence demonstrating the
neurotoxic effects of ethanol on the brain, which can lead to
structural and functional alterations that impair cognitive function
(Topiwala and Ebmeier, 2018; Rao and Topiwala, 2020). Notably,
alcohol-induced neurotoxicity can exacerbate the progression of
neurodegenerative diseases like AD and vascular dementia.

Ferroptosis is an iron- and lipid peroxidation-dependent form
of cell death that has been increasingly linked to a variety of
neurodegenerative diseases, such as AD, motor neuron disease,
Parkinson’s disease, Huntington’s disease, and Friedreich’s ataxia
(FRDA) (Lane et al., 2021).

Abbreviations: AD, Alzheimer’s disease; PCD, programmed cell death; GEO,
gene expression omnibus; GSEA, gene set enrichment analysis; KEGG,
Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed
genes; LASSO, least absolute shrinkage and selection operator; PPI, protein-
protein interaction networks; ANN, artificial neural networks; ROC, receiver
operating characteristic; FRDA, Friedreich’s ataxia; GSH, glutathione.

Dixon et al. (2012) first reported and named the iron-
dependent mode of cell death Ferroptosis. Ferroptosis differs
from apoptosis, necroptosis, and other forms of cell death in
that it is caused by the iron-dependent accumulation of lipid
peroxides (Costa et al., 2023). Biochemically, it is characterized
by glutathione (GSH) depletion, reduced GPX4 activity, and
increased ROS production through the Fenton reaction (Li et al.,
2020). Furthermore, NTN-1 treatment enhanced the expression
of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and
glutathione peroxidase 4 (GPX4), which are essential regulators of
ferroptosis in EBI after SAH (Chen J. et al., 2023).

The studies about whether the Ferroptosis pathway is linked
to alcohol dependence and AD and the exact mechanism of
their relationship were absent. We demonstrated the link between
psychiatric disorders and neurodegenerative changes with PCD
and mitochondrial function in our earlier studies, and the
present study is a tentative exploration of Ferroptosis, AD, and
alcohol dependence from a bioinformatic genetic perspective.
The difference in immunological microenvironment may be one
of the causes of the varied prognoses, which is related to the
function of ferroptosis, finally, we obtained a good diagnostic
prediction model.

2. Materials and methods

2.1. Materials

The AD dataset GSE118553 and alcohol dependence
dataset GSE44456 were chosen from the GEO database1

1 www.ncbi.nlm.nih.gov/geo/
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FIGURE 1

Flow chart.

(Barrett et al., 2013); Ferroptosis-related genes were collected
through the Kyoto Encyclopedia of Genes and Genomes (KEGG),
Gene Set Enrichment Analysis (GSEA), and related literature, and
finally, 88 related genes were obtained, and the specific process is
depicted in Figure 1.

2.2. Determination of DEGs

Linear models for microarray data (Limma) (Sokhansanj et al.,
2004) is a generalized linear regression model that provides
differential expression screening methodology for determinations
of DEGs. In this study, R-package-based limma (version 3.40.6)
was used for differential analysis to obtain DEGs between
various comparison groups and controls. Here we used | log2
fold change (FC)| > 1 and a P-value less than 0.05 as
the condition for determining DEGs by the Limma package.
Further, the heat and volcano maps of DEGs for AD and
alcohol dependence were visualized by sangerBox, respectively
(Shen et al., 2022).

2.3. Gene function enrichment analysis

We cross-screened the above-processed DEGs in AD and those
in alcohol dependence using the Venn diagram to find the genes
related to AD and alcohol dependence for Gene Set Enrichment
Analysis (GSEA). To perform GSEA, the latest gene annotations
of the KEGG Pathway were obtained using the KEGG rest API.2

2 www.kegg.jp

The GO annotations in the R-package3 (v. 3.1.0) were utilized as
the background to plot genes to the background set. R-package,
known as clusterProfiler (v 3.14.3) (Yu et al., 2012), was employed
for enrichment analysis for obtaining the GSEA results. Based on
gene expression profiles and phenotypic groupings, we kept the
minimum gene set at five and the maximum at 5,000. A p-value of
less than 0.05 and an FDR of less than 0.1 were deemed statistically
significant.

2.4. Machine learning identification of
candidate genes associated with
Ferroptosis in Alzheimer’s disease
combined with alcohol dependence

The R-package, glmnet (Zhang et al., 2019), and RandomForest
(Yasir et al., 2022) were used to integrate data related to survival
status, survival time, and gene expression for regression analysis
utilizing lasso-cox and Random Forest methods. Additionally, 10-
fold cross-validation was set up to attain the optimal model. We
cross-screened the results of the two kinds of machine learning
by using a Venn diagram to obtain the final diagnostic prediction
model.

2.5. Protein-protein interaction network
construction

The protein-protein interaction networks (PPI) were
constructed with the help of the GeneMANIA database. The

3 org.Hs.eg.db
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latter is a user-friendly and flexible website for hypotheses
generation regarding gene lists analysis, gene function, and
prioritization of genes for functional analysis (Franz et al., 2018).

2.6. Diagnostic model validation

We utilized pROC (Robin et al., 2011) in the R-package
to perform Receiver Operating Characteristic (ROC) analysis to
generate the Area Under the Curve (AUC). It was also used to
evaluate AUC and confidence intervals (CIs) with the help of the
CI function of pROC for obtaining the final AUC results. These
results were visualized using sangerBox. The whole method helped
to observe the expression of the characteristic genes in the AD
dataset GSE118553 and the alcohol dependence dataset GSE44456.

2.7. Subgroup analysis by candidate
genes

Cluster analysis was performed using ConsensusClusterPlus
(Wilkerson and Hayes, 2010), using agglomerative pam clustering
with a 1-spearman correlation distances and resampling 80% of
the samples for 10 repetitions. The optimal number of clusters was
determined using the empirical cumulative distribution function
plot.

Unsupervised hierarchical cluster analysis was performed on IS
samples using R’s “ConsensusClusterPlus” (Wilkerson and Hayes,
2010) and the gene expression of candidate genes as input
information. The different subgroups were subjected to Limma
analysis to obtain subgroup DEGs, and functional differences
between subgroups were analyzed by KEGG and GO.

2.8. Analysis of immune
microenvironment

Immuno-oncology biological research (IOBR) (Zeng et al.,
2021) is a computational tool utilized in immuno-oncology biology
studies. In this study, the CIBERSORT (Newman et al., 2015)
method was selected on the basis of our expression profiles using
the R-package IOBR to calculate the 22 immune infiltrating cell
scores for each sample. Analysis of immune cell infiltration was
conducted by Cibersort in the R-package, and its correlation was
calculated using the spearman coefficient, and a heat map of
infiltrating immune cell correlation was performed using corrplot
in the R-package.

2.9. Hub genes-miRNA prediction

To predict the miRNAs of candidate genes, we created
a gene-miRNA interaction network through Networkanalyst4

(Zhou et al., 2019).

4 https://www.networkanalyst.ca/

3. Results

3.1. Determination of DEGs in
Alzheimer’s disease and alcohol
dependence

We identified a total of 6,023 DEGs in the dataset
corresponding to AD (GSE118553) utilizing the Limma method,
out of which 2,745 were down-regulated and 3,278 were up-
regulated (Figures 2A, B). In total, 1,101 DEGs were screened in
the alcohol dependence dataset (GSE44456), of which 658 were
down-regulated and 443 were up-regulated (Figures 2C, D).

3.2. FEA of candidate genes linked with
Alzheimer’s disease and alcohol
dependence

Figure 3A depicts the 278 cross-selected candidate genes
related to AD and alcohol dependence in a Venn diagram
functional enrichment analysis (FEA) was conducted on the
candidate genes, and KEGG analysis depicted that the candidate
genes were primarily enriched in “Arachidonic acid metabolism,”
"Focal adhesion" and “Ferroptosis” pathways (Figure 3B). We
observed that both AD and alcohol dependence are closely
associated with Ferroptosis. GO analysis revealed that in terms
of cellular components, candidate genes were chiefly located
in “vesicle,” “bounding membrane of organelle” and “whole
membrane” (Figure 3C). The primary biological processes of
the candidate genes constitute “establishment of localization,”
“transport” “organic substance transport” and other transport-
related processes (Figure 3D). Molecular function (MF) depicted
that the most crucial item among the candidate genes was “cofactor
binding” (Figure 3E).

3.3. Identification of candidate genes
linked with Ferroptosis in Alzheimer’s
disease combined with alcohol
dependence by machine learning and
PPI network construction

We cross-analyzed the AD with alcohol dependence-associated
candidate genes and Ferroptosis-associated genes to obtain seven
associated genes (Figure 4A). And LASSO regression was applied
for candidate gene identification. Seven potential candidate genes
were identified and determined in both the AD dataset and the
alcohol dependence dataset (Figures 4B–E). We also used RF
regression for the identification of candidate genes, from which
four potential candidate biomarkers were determined in the AD
dataset (Figure 4F), and six potential candidate biomarkers were
determined in the alcohol dependence dataset (Figure 4G). The
genes identified by these two-machine learning (ML) algorithms
were then cross-analyzed, which resulted in three candidate genes
(CYBB, STEAP3, and ACSL4) (Figure 4H). Based on these
three candidate genes, the establishment of a PPI network was
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FIGURE 2

(A,B) Volcano maps and heat maps of DEGs in Alzheimer’s disease; (C,D) volcano and heat maps of differentially expressed genes in
alcohol-dependent.

performed in which Physical Interactions made up 77.64%, and Co-
expression made up 8.01%. Further, they were primarily involved
in oxidoreductase activity and the superoxide metabolic process, as
depicted in Figure 4I.

3.4. Diagnostic model validation

Using ROC curves, we validated the diagnostic value of these
three candidate genes at the stage when all candidate genes were
used as joint indicators in the AD dataset (AUC 0. 75, CI 0.91–
0.60) (Figure 5A). We also validated its diagnostic model into
the alcohol dependence dataset and showed (AUC 0.81, CI 0.95–
0.68) an excellent diagnostic significance (Figure 5B). Further, an
expression profile analysis was conducted of the three candidate
genes (Figures 5C, D). The results revealed that there were
statistically significant differences (p < 0.05) among the candidate
genes, except for STEAP3, which did not differ significantly in the
alcohol dependence dataset.

3.5. Analysis of immune cell infiltration

Numerous studies have shown that alcohol consumption leads
to excessive inflammation in vital organs including liver, intestines,
and brain (Crews, 2012; Szabo et al., 2012; Szabo and Lippai, 2014).

Moreover, alcohol-induced innate immune activation in the
central nervous system (CNS) has been shown to mediate
neurotoxicity and ethanol-induced behaviors including alcohol
addiction and cognitive decline in preclinical and clinical setting
(Crews, 2008).

In this research, the Cibersort algorithm was utilized to estimate
the proportion of 22 immune cells in Alzheimer’s samples and
control samples (Figures 6A, B). We compared the immune cell
infiltration in Alzheimer’s samples and control samples using box
line plots (Figure 6C). The results depicted a significant difference
between the two groups in Regulatory T cells and Gamma delta T
cells (p < 0.05).

3.6. Consensus clustering analysis of
candidate gene clusters

We subjected the three relevant candidate gene models to
consensus clustering (CC) analysis on the AD dataset GSE118553,
considering intra-group consistency, and the highest number of
clusters was assessed based on the average intra-group consistency
of clusters, K = 2 (Figure 7A), and in the clustering heat
map, we found that the clustering between different groups was
most pronounced when K = 2 (Figure 7B), and was therefore
divided into C1 and C2 two unsupervised clustering subgroups
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FIGURE 3

(A) Venn diagram of candidate genes linked with Alzheimer’s disease and alcohol dependence; (B) Candidate gene KEGG analysis; (C) Candidate
genes GO analysis for cellular composition; (D) Candidate genes GO analysis for biological processes; (E) Candidate genes GO analysis for
molecular function.

(Supplementary Table 1). The relevant candidate genes’ expression
levels in the two subgroups were visualized by violin plots
(Figure 7C), and significant variability was found for STEAP3
(P < 0.001). The amount of 22 immune cells in the two subgroups
of AD was calculated by the Cibersort algorithm. The results
showed statistically significant variability (p < 0.001) in Plasma
Cells and Macrophages M2 between the two groups (Figure 7D).

3.7. Functional differences between
various subgroups

Limma analysis was conducted on the two subgroups, and
a total of 1,119 DEGs were obtained. Out of these, 511 were
down-regulated, and 608 were up-regulated (Figure 8A). We also
performed FEA and KEGG analysis which revealed that the DEGs
were chiefly located in the “vesicle” and “plasma membrane part”
pathways (Figure 8B). GO analysis depicted that, in terms of
cellular components, the DEGs were primarily located in the
“vesicle” and “plasma membrane part” (Figure 8C). The chief
biological processes associated with DEGs are “establishment of
localization,” “transport” and “system development” (Figure 8D).
MF analysis revealed that the most crucial items of DEGs were
“lipid binding” and “calcium ion binding” (Figure 8E).

3.8. Gene–miRNA network diagram

We generated the gene and miRNA-gene interaction networks
by Networkanalyst. Three candidate gene-miRNA networks were

constructed, and it was observed that hsa-mir-34a-5p and has-mir-
106b-5p could regulate the expression of both CYBB and ACSL4
(Figure 9).

4. Discussion

Alzheimer’s disease is a progressive neurodegenerative disease
that generally (>90%) presents in later life (65 + years) (Hersi
et al., 2017). The huge majority of AD cases do not have
a clear etiology, but various risk factors have been identified,
such as female, obesity, heavy alcohol consumption, diabetes,
and smoking (Schwarzinger et al., 2018). Numerous studies
focused on the association between alcohol dependence and
AD, and the mechanisms may be mainly related to the
progressive accumulation of tau proteins, amyloid, age-dependent
cognitive decline, accumulation of plaques and tangles, and age-
dependent inflammation (Oddo et al., 2003; Janelsins et al., 2005;
Belfiore et al., 2019).

Ferroptosis is a cell death mechanism driven by iron-mediated
lipid peroxidation (Villalón-García et al., 2023). Neurodegenerative
diseases arise from intricate neuronal cell death processes, which
involve iron accumulation and lipid peroxidation in various
brain regions (Guiney et al., 2017). Multiple studies have
demonstrated that neuronal cell death often transpires due to
ferroptosis (Ren et al., 2023; Wang D. et al., 2023). In our
previous research, we have identified connections between psycho-
neuro-degeneration and various factors, including programmed
cell death (PCD), mitochondrial function, vesicular transport,
and cuproptosis (Feng and Shen, 2023; Feng et al., 2023;
Shen et al., 2023).
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FIGURE 4

(A) Crossover Venn diagram of Alzheimer’s disease with alcohol dependence-related candidate genes and Ferroptosis-related genes; (B,C) LASSO
regression candidate gene identification for Alzheimer’s disease dataset; (D,E) LASSO regression candidate gene identification for alcohol
dependence dataset; (F) RF regression candidate gene identification for Alzheimer’s disease dataset; (G) RF regression candidate gene identification
for alcohol dependence dataset; (H) machine learning Venn diagram cross-identification; (I) Candidate genes PPI network construction.

So what is the common link between AD, alcohol
dependence, and Ferroptosis? In this study, we assessed
the relationship between the three from a bioinformatics
perspective. We obtained three target genes (CYBB, STEAP3,
and ACSL4) and explained the possible mechanistic
linkage through immune infiltration, functional enrichment
analysis, machine learning algorithms, and consensus
clustering analysis.

The primary immunodeficiency caused by mutations in
the CYBB gene results in the inability of phagocytes to clear
the infection (Wong et al., 2023). Numerous studies have
demonstrated the role of CYBB as an inflammatory factor in
developing multiple diseases (Chen et al., 2021; Hong et al., 2021;
Wang et al., 2022).

STEAP3, a regulator strongly associated with Ferroptosis,
affects several diseases through the immune infiltration pathway
(Chen X. et al., 2023). STEAP3 is susceptible to m 6A-mediated
family protein 2 of the YTH structural domain (YTHDF2), an
N 6 -methyladenosine (m 6 A) reader, and is involved in the
development of abnormal oxygen metabolism in the organism
(Zhou et al., 2022).

Acyl-CoA Synthetase Long-Chain Family Member 4 (ACSL4) is
a critical isozyme in polyunsaturated fatty acid (PUFA) metabolism
(Zhou et al., 2023). ACSL4 would play a role in lipopolysaccharide

(LPS)-induced microglia inflammation and has implications for
diseases such as Parkinson’s disease and AD; however, the
mechanism is not clear (Zhou et al., 2023). According to research
by Wang M. E. et al. (2023), the direct E2F target gene ACSL4
appears to be essential for the sensitivity of RB1 loss-induced
ferroptosis.

Micro RNA (miRNA) is a key regulator of disease
gene expression. Numerous studies have demonstrated the
extensive association between hsa-mir-34a-5p and AD (Li
and Cai, 2021; Samadian et al., 2021), and studies by Alamro
et al. (2022) demonstrated its use as a reliable indicator for
diagnosing AD.

miR-106b-5p has the ability to inhibit the suppression of
cell viability and certain DNA synthesis, thereby mediating cell
death. Several studies have emphasized the importance of its
involvement in coagulation, oxidative stress, and inflammatory
pathways, particularly phosphorylation of tau, C-reactive
protein (CRP), and neurofilaments, among others, showing
its different plasma levels in AD patients (Mayo et al., 2021;
Segaran et al., 2021).

With advances in molecular genetic phenotyping studies,
the links between social behavior and genetic variation to
protein and receptor function and disease development are
being increasingly revealed. The findings of this study shed
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FIGURE 5

(A) ROC curves in the Alzheimer’s disease dataset; (B) ROC curves in the alcohol dependence dataset; (C) candidate gene expression profile analysis
in the Alzheimer’s disease dataset; (D) candidate gene expression profile analysis in the alcohol dependence dataset.

FIGURE 6

(A) Correlation between 22 immune cells; (B) relative proportion of 22 immune cells in each sample; (C) difference in immune infiltration between
the Alzheimer’s sample group and the control sample.
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FIGURE 7

(A,B) Relevant candidate genes for consensus clustering analysis; (C) violin plot showing differential expression of relevant candidate genes between
subgroups; (D) difference in immune infiltration between two subgroups.

FIGURE 8

(A) Volcano map of subgroup DEG; (B) DEGs’ KEGG analysis; (C) DEGs’ GO analysis for cell composition; (D) DEGs’ GO analysis for biological
processes; (E) DEGs’ GO analysis for molecular functions.

Frontiers in Aging Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1201142
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1201142 July 7, 2023 Time: 13:46 # 10

Tian et al. 10.3389/fnagi.2023.1201142

FIGURE 9

Interaction between candidate genes and miRNAs.

light on the possibility that alcohol addiction, as an exposure
factor, may cause alterations in genetic markers of qtl, which
in turn lead to differential expression of mRNA transcripts
(CYBB, STEAP3 and ACSL4), which then further play a role
in translational protein function (including, e.g., iron death
in pcd and other metabolic pathways and alterations in the
immune microenvironment) Such a line of research we think
is interesting and we have been working for some time on
a Mendelian randomization study analyzing neurodegenerative
diseases and social behavior. Although this study has not
yet fully elucidated the causal relationship, we believe that
this step in the analysis of the mRNA and protein levels is
important and meaningful.

5. Conclusion

In conclusion, we suggest that there is a link between
AD, alcohol dependence, and Ferroptosis, which acts mainly
through Ferroptosis-related metabolic pathways and the
immune microenvironment, especially Regulatory T cells
and gamma delta T cells. Three genes (CYBB, STEAP3,

and ACSL4) and two miRNAs (hsa-mir-34a-5p and has-
mir-106b-5p), which were mined on this basis, are strongly
associated with these pathways. The diagnostic model built
on the three genes was significant in predicting both AD and
alcohol dependence.
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