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Alzheimer’s disease (AD) and multiple sclerosis (MS) are two CNS disorders

affecting millions of people, for which no cure is available. AD is usually diagnosed

in individuals age 65 and older and manifests with accumulation of beta amyloid

in the brain. MS, a demyelinating disorder, is most commonly diagnosed in

its relapsing-remitting (RRMS) form in young adults (age 20–40). The lack of

success in a number of recent clinical trials of immune- or amyloid-targeting

therapeutics emphasizes our incomplete understanding of their etiology and

pathogenesis. Evidence is accumulating that infectious agents such as viruses

may contribute either directly or indirectly. With the emerging recognition that

demyelination plays a role in risk and progression of AD, we propose that MS

and AD are connected by sharing a common environmental factor (a viral

infection such as HSV-1) and pathology (demyelination). In the viral DEmyelinating

Neurodegenerative Trigger (vDENT) model of AD and MS, the initial demyelinating

viral (e.g., HSV-1) infection provokes the first episode of demyelination that occurs

early in life, with subsequent virus reactivations/demyelination and associated

immune/inflammatory attacks resulting in RRMS. The accumulating damage

and/or virus progression deeper into CNS leads to amyloid dysfunction, which,

combined with the inherent age-related defects in remyelination, propensity

for autoimmunity, and increased blood-brain barrier permeability, leads to the

development of AD dementia later in life. Preventing or diminishing vDENT

event(s) early in life, thus, may have a dual benefit of slowing down the

progression of MS and reducing incidence of AD at an older age.
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Introduction

MS pathogenesis, models, and treatment
approaches

Multiple sclerosis (MS) is a demyelinating disorder of CNS
affecting 2.3 million people worldwide (Wallin et al., 2019).
It is most often diagnosed in individuals between 20 and
40 years of age (Howard et al., 2016). Historically, clinical
subtypes of MS include clinically isolated syndrome, relapsing-
remitting MS (RRMS), and primary and secondary progressive
MS (Thompson et al., 2018). RRMS is the most common
presentation of MS and is characterized by days to weeks of
increased inflammation and demyelinated lesions in the white
matter (Lassmann and Bradl, 2017). Depending on their location
in the CNS, the lesions can lead to visual, sensory, motor,
incoordination, neurocognitive, and bladder and bowel symptoms
(Khan and Amatya, 2017). The acute clinical attack is followed
by complete or partial recovery in patients, resulting from the
resolution of inflammation and remyelination. Accumulating
evidence suggests that relapsing vs. progressive MS phenotype is
driven by “host factors,” most notably patient’s age, with younger
patients displaying greater frequency of relapses and older patients
more prone to having progressive phenotypes (Waubant et al.,
2019).

The pathogenesis of MS includes attacks on myelinating
glia [oligodendrocytes (OL)] in the CNS resulting in myelin
degradation, axonal dysfunction, and neurodegeneration. The
attack is thought to be immune-mediated, and is the basis for
most disease modifying therapies (DMTs). Examples of approved
treatments for MS include peptides found in myelin basic protein
acting as a decoy for the attacking immune cells, a sphingosine-1-
phosphate receptor modulator sequestering lymphocytes in lymph
nodes, therapeutics preventing immune cell infiltration into the
CNS, and β-interferon drugs (Derwenskus, 2011). While these
treatments can slow progression of the disease, they are not capable
of curing MS. Recently, remyelination-promoting therapies became
a major focus of MS pharmacotherapy [reviewed in Melchor et al.
(2019)].

There are 4 different animal models of demylination:
(1) genetic/transgenic, (2) viral, (3) toxin-induced, and (4)
autoimmunity-driven (Gudi et al., 2014; Boukhvalova et al.,
2019; Torre-Fuentes et al., 2020). The latter two are most
commonly used for the evaluation of MS therapeutics (Melchor
et al., 2019). Toxin-induced demyelination is induced by feeding
animals cuprizone, a copper chelator, or by injecting toxins like
ethidium bromide or lysolecithin into the CNS. The autoimmunity-
driven models (e.g., the model of Experimental Autoimmune
Encephalomyelitis, or EAE) involve immunizing animals with
myelin components to induce autoimmune attacks on myelin,
or by passively transferring myelin-specific activated lymphocytes.
These models have been very useful for understanding mechanisms
of re-myelination and dissecting the role of various cell types
in the process. However, neither toxin models nor EAE models
reproduce MS as observed in humans, and may explain in part
the failure of many immunomodulatory and neuroprotective
treatment strategies in MS [reviewed in Rolfes et al. (2020) and
Huntemann et al. (2021)].

The role of viral infections in MS
pathogenesis

The involvement of viral infections in triggering an acute
attack in RRMS, potentially through a non-specific effect, has
been suggested decades ago (Andersen et al., 1993; Panitch,
1994). A number of viruses including Epstein-Barr virus (EBV)
and human herpes virus 6 (HHV-6) have been implicated
in MS pathogenesis (Lindeberg et al., 1991; Haahr et al.,
1992, 1995; Soldan et al., 1997; Munch et al., 1998; Virtanen
and Jacobson, 2012; Bjornevik et al., 2022). However, how
specific the role of these viruses is in acute attack of RRMS
remains to be determined. A longitudinal study of 26 RRMS
patients and 20 healthy controls that quantified EBV, HHV-
6, cytomegalovirus (CMV) and herpes simplex virus 1 (HSV-
1) DNA by PCR in PBMCs, showed that EBV and HHV-
6 were detected in MS patients during acute attack and
periods of remission, but also in healthy controls, with no
significant differences between the MS patients and controls
(Ferrante et al., 2000). In contrast, CMV and HSV-1 were
detected only in MS patients, with HSV-1 DNA showing up
only during an acute MS attack (Ferrante et al., 2000). This
finding, together with the earlier suggestions (Lycke et al.,
1996; Bergstrom, 1999; Ferrò et al., 2012), highlight HSV-1 as
an important etiologic factor in triggering an acute attack in
MS.

The role of HSV-1 in MS is difficult to model in laboratory
animals. Prior to our recent work in cotton rats S. hispidus,
multifocal demyelination, the main pathophysiologic feature
of MS, could be induced by lip HSV-1 infection only in
murine strains that carry inherent defects in complement
system, macrophage function, and/or muscle repair (strains
A/J, SJL/J, and PL/J) (Kastrukoff et al., 1987, 2012). These
strains are used to study developmental defects, epilepsy,
spontaneous tumorigenesis, myopathy, and/or autoimmunity,
all of which may affect CNS manifestations. Cotton rats
S. hispidus are not prone to these disorders and, instead,
have proven to be a reliable translational model of human
viral diseases (Boukhvalova et al., 2009, 2015, 2018, 2022).
The lip HSV-1 infection in S. hispidus delivered by abrasion
caused multifocal demyelination in the CNS, followed by
remyelination and formation of MS-like plaques (Boukhvalova
et al., 2019). Virus antigens were detected in association
with demyelinated lesions, suggesting a direct effect of viral
infection/presence in the brain. Involvement of thalamus was
noted, with perivascular cuffing and potential demyelination
developing in the area. In human MS cases, involvement of
the thalamus has been associated with a variety of clinical
manifestations, including fatigue, movement disorders, pain,
and cognitive impairment (CI) (Amin and Ontaneda, 2020).
A recent study of brain samples from chronic progressive
MS cases showed that active MS lesions were populated by
CD8 + tissue-resident memory T cells with signs of reactivation
and infiltration into the brain parenchyma (Fransen et al., 2020),
possibly as a recall response to viral infection/reactivation in the
CNS. Accumulating evidence, therefore, points to an important
role of viral infections/reactivations in MS pathogenesis and
etiology.
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AD pathogenesis and current treatment
approaches

Alzheimer’s disease (AD) is a disorder that affects cognitive
function and memory that can lead to dementia. Dementia
caused by AD is diagnosed usually in people age 65 and older,
and affects an estimated 6.7 million Americans (Alzheimer’s
disease facts and figures, 2023). The main pathologic findings in
AD are the extracellular amyloid plaques and the intracellular
Tau neurofibrillary tangles (Yiannopoulou and Papageorgiou,
2020). AD pathophysiology is based on the “amyloid hypothesis,”
where cleavage of the large amyloid precursor protein (APP)
into protease-resistant peptide fibrils results in formation of beta
amyloid (Aβ) plaques. The process triggers neurotoxicity, local
inflammation, oxidation, excessive glutamate (excitotoxicity),
and Tau hyperphosphorylation. Tau is a microtubule-associated
protein that helps neuronal transport system and stabilizes
growing axons. Abnormally hyperphosphorylated Tau forms
intra-neuronal tangles composed of insoluble fibrils (Anand et al.,
2017). Accumulating neuronal damage leads to deficiencies and
imbalance between different neurotransmitters (e.g., acetylcholine,
dopamine, serotonin) and associated cognitive deficiencies
(Yiannopoulou and Papageorgiou, 2020). Treatments approved
for AD have historically been purely supportive and aimed
at counterbalancing the neurotransmitter imbalance. They
include acetylocholinesterase inhibitors and an NMDA-receptor
open-channel blocker that affects glutamatergic transmission
(Yiannopoulou and Papageorgiou, 2013; Cummings et al., 2019).
Multiple clinical trials of disease modifying treatments (DMT)
with drugs that target amyloid-related mechanisms or associated
inflammation have met with mixed results (Yiannopoulou and
Papageorgiou, 2020). In the past 2 years, the FDA has approved two
drugs for AD treatment: aducanumab and Leqembi (lecanemab-
irmb). Both are monoclonal antibodies targeting Aβ, shown to
reduce appearance of amyloid plaques, and both have advanced
through the FDA accelerated approval system. However, there
are concerns over efficacy and serious adverse events. One study
of aducanumab identified cerebral edema or hemorrhage in 41%
of patients in the study (Salloway et al., 2022). The process of
accelerated approval does indicate a dire need for effective AD
therapeutics at the time when the elderly population is increasing
worldwide (Owolabi et al., 2023). The lack of success of a number
of amyloid- and immune-targeting AD therapeutics in recent
years (reviewed Mullane and Williams, 2020) argues for a better
understanding of AD etiology and pathogenesis.

New developments in the AD field: the
role of viral infections, myelin damage,
and immune response

The number of publications supporting a role for HSV-1 in
pathogenesis of AD has steadily increased and has recently been
reviewed (Itzhaki, 2017, 2021). In brief, HSV-1 can enter the CNS
and reside there in latent form. Individuals with the type 4 allele
of the apolipoprotein E gene (APOE-ε4) are at increased risk of
AD development after HSV-1 infection (Wu et al., 2020). In a
Taiwanese study of 8,362 subjects aged ≥ 50 years, newly diagnosed

with HSV (HSV-1 or HSV-2), and exhibiting severe symptoms of
herpes labialis and/or genitalis, an increased risk of 2.56-fold of
developing dementia in a 10-year follow up compared to controls
was identified. The risk was reduced in patients who received
antiherpetic medications (Tzeng et al., 2018). Further support
comes from in vitro studies where HSV-1 was reported to induce
accumulation of Aβ in cultured neurons (De Chiara et al., 2010;
Piacentini et al., 2011) and to promote Tau hyper-phosphorylation
(Zambrano et al., 2008; Wozniak et al., 2009). A recent study
in mice infected with HSV-1 by lip abrasion showed that repeat
reactivation of virus following thermal stress led to progressive
accumulation of AD biomarkers, including Aβ and abnormal Tau,
and development of cognitive deficits (De Chiara et al., 2019). Apart
from HSV-1, other viruses, including varicella zoster virus (VZV),
EBV, CMV, and HHV-6, have been linked to dementia, but for
at least some of them it is not clear whether neurodegeneration
develops as a result of direct virus involvement or an indirect effect
on inflammation that reactivates HSV-1 (Cairns et al., 2022).

Although AD has long been considered a disease of gray matter,
recent neuroimaging studies have identified micro- and macro-
structural changes in the white matter that could contribute to risk
and progression of AD, resulting in a shift of focus in AD research
toward myelin and oligodendrocytes [reviewed in Nasrabady et al.
(2018)]. It has also been shown that several AD-relevant pathways
overlap significantly with remyelination pathways that contribute
to myelin repair by encouraging oligodendrocyte proliferation.
Importantly, amyloid, Tau, and ApoE, previously defined as
therapeutic targets of AD, contribute to both remyelination and
AD progression (Papuć and Rejdak, 2018). Aggregated Aβ 42 and
neurofibrillary tangles may not only be responsible for neuronal
loss but can also induce myelin damage and oligodendrocyte
death (Papuć and Rejdak, 2018). The impairment in the formation
of myelin sheath can even precede Aβ and Tau pathologies
in AD (Couttas et al., 2016; Papuć and Rejdak, 2018). The
contribution of immune-mediated mechanisms to pathogenesis
of AD is also gaining increased recognition. Dysregulation of
monocyte subsets, accumulation of neutrophils in the CNS,
depleted and/or dysfunctional regulatory T cells (Tregs), and brain
damage mediated by CD8 + T cells have now been documented in
both AD and MS cases [reviewed in Rossi et al. (2021)].

The vDENT model

The scientific fields of MS and AD appear to be rapidly
changing, in part because of a lack of success of a number of
immune- or amyloid-targeting therapeutics developed on the basis
of an earlier understanding of the pathogenesis of these diseases
(Mullane and Williams, 2020; Rolfes et al., 2020; Huntemann et al.,
2021). It is becoming clear that MS and AD, albeit disparate
in regard to the timing of their diagnosis and the extent of
cognitive impairment, share a number of important similarities,
such as the contribution of herpesvirus infections, demyelination,
and immune dysregulation. The potential role of an infectious
etiology in MS and AD is becoming more focused. Members of
the family Herpesviridae including HSV-1, EBV, CMV, HHV-6,
VZV (and others) have long been suspected of playing a role, but
their involvement has never been proven. Recently, a contribution
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of HSV-1 to AD has been acknowledged, while a similar interest
in the contribution of herpesviruses to MS is increasing. We
would like to propose that MS and AD are connected, share a
viral infection as an environmental trigger, and demyelination
as a common factor in pathogenesis. We propose the viral
DEmyelinating Neurodegenerative Trigger (vDENT) model of AD
and MS (Figure 1) where the initial viral infection (e.g., HSV-1) and
ensuing demyelination provoke the first episode of MS-like disease
early in life, with subsequent viral reactivations and associated
immune/inflammatory attacks leading to appearance of RRMS-
like disease, with periods of symptomatic disease coinciding with
virus reactivation/demyelination episodes and remission brought
on by remyelination and resolution of immune/inflammatory
reaction. The CNS damage accumulating during the repeated
reactivation episodes would lead to amyloid dysfunction, which,
combined with the potential virus progression deeper into the CNS,
inherent remyelination defects developing in older age (Barbosa
et al., 2019; Dimovasili et al., 2023), and altered immune and
blood-brain barrier function (Mooradian, 1988; Ransohoff, 2023),
would bring on AD-like cognitive defects. It is also possible
that neurodegenerative damage accumulates in the absence of
symptomatic reactivation episodes (MS forms other than RRMS),
that demyelination becomes less pronounced with subsequent
reactivation events, and/or that immune dysfunction plays a bigger
role during the later stages of MS that occur at an older age,
manifesting the prevalence of progressive MS form over RRMS in
the elderly (Waubant et al., 2019; Ransohoff, 2023).

The vDENT model of MS/AD stipulates that developing MS
after viral infection early in life can lead to symptomatic AD in
old age, and that preventing/lessening MS can reduce incidence
of AD. More intricately, it suggests that the pre-symptomatic

phase of AD, which may span decades and appear well before the
cognitive defects develop (Braak et al., 2011; Braak and Del Tredici,
2014, 2015), may overlap with the mid- or late- stages of MS and
represent a progression of the same pathophysiologic mechanism
initiated by viral infection. The recent demonstrations that HSV-
1 can directly cause Tau pathology [reviewed in Harris and Harris
(2018) and Duarte et al. (2019)], and that Tau defects appear during
the first decades in life, while amyloid abnormalities occur at an
older age (Braak and Del Tredici, 2015), support the progressive
nature of viral-induced CNS neurodegeneration. The connection of
both AD and MS to demyelination, the critical role demyelination
can play in initiation (and potentially relapsing nature) of MS,
and overlap of demyelination and AD-critical pathways, further
support the link between AD, MS, and viral infections that can
cause demyelination. Importantly, during the earlier stages of AD,
Tau defects are found not in the cortex but in the neurons of the
brainstem (BST) (Braak and Del Tredici, 2015), the same place
where the first demyelinating lesions appear after the lip HSV-1
infection. In both HSV-1 infected cotton rats and in susceptible
murine strains, demyelinated lesions after the initial HSV-1
infection progress in the sequence BST > cerebellum > cerebral
hemispheres (Kastrukoff et al., 1992, 2012; Boukhvalova et al.,
2019).

Multiple sclerosis is very heterogeneous in its clinical course,
clinical severity and outcome, pathological appearance, MRI
appearance, and response to therapy. It is possible that vDENT
model applies only to a subset of MS cases. It is also likely that
the model applies to a small fraction of all herpesvirus infections,
as seroprevalence of some of them (e.g., HSV-1) can be as a
high as 90% in developed countries (Roizman and Knipe, 2001;
Whitley and Roizman, 2001). The selection may depend on the

FIGURE 1

vDENT (viral demyelinating neurodegenerative trigger) model of AD and MS. vDENT model of MS/AD (on the right) is based on the current view of
MS and AD (on the left). In this current view, HSV-1 contributes to AD in humans and animal models through repeated reactivation of virus in the
nervous system (blue star symbols on the red line). Contribution of HSV-1 to MS in humans is not entirely clear (dashed black line), however, it’s been
demonstrated in animals (cotton rats, solid red line). Although demyelination is central to the pathogenesis of MS in both humans and animals, many
therapies tested in the non-infectious EAE models (yellow box) have failed to show efficacy in humans. Not only is demyelination central to MS, it is
also recognized as being important for risk and progression of AD in humans. A model is proposed on the right in which MS and AD are linked to the
same vDENT event early in life, which can lead to development of AD later on.
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ability of herpesviruses to induce CNS demyelination under certain
conditions. One example here may include a specific age at which
the first (acute) infection occurs, and whether it happens in a
susceptible child/adolescent or an adult. Our studies in cotton rats
indicate that demyelination in the CNS after lip HSV-1 infection
occurs prevalently in young animals, when brain plasticity is still
high, and that demyelination and disease in animals infected
with HSV-1 for the first time as “adults” are less pronounced
(Boukhvalova et al., 2019, 2022). This finding is important as it
may indicate that vDENT hypothesis of MS/AD connection applies
specifically to select pediatric-onset MS cases (Thompson et al.,
2018). It is also possible that the model applies to a subset of
MS patients with detectable lesions in trigeminal root entry zone
(TREZ) [about 10% (Sugiyama et al., 2015)], as TREZ is a portal
often utilized by herpesvirus infections. Overall, only a fraction
of herpesvirus-infected individuals may go on to develop CNS
demyelination, MS, and subsequently AD.

The direct progression from MS to AD has not been proposed
before, possibly because of the reduced life expectancy in MS
patients in the past compared to the general population (Lunde
et al., 2017; Leadbetter et al., 2023), because of so many diverse
forms/manifestations of MS, because remyelinated lesions are often
difficult to image (potentially precluding detection of both MS and
AD pathology in the same autopsy samples), and/or because of the
lack of systematic studies searching for the causative association
between MS and AD. It is known, however, that cognitive
dysfunction develops in about half of MS patients (Sumowski
et al., 2018), potentially influenced by genetics and lifestyle. As the
survival gap between MS patients and general population appears
to be receding due to progress in disease management (Leadbetter
et al., 2023), detection of MS to AD progression could become
easier in future studies designed to detect markers of both diseases
in respective patient cohorts of all ages, taking into account the
evolving nature of these diseases. The overlap may be easier to
correlate to viral markers during the late MS - early (preclinical)
AD in patients who are younger, as the disease may progress to
the more immune-mediated mechanisms and the frequency of MS
relapses (and coincidentally detectable viral markers) may reduce
with advancing age (Waubant et al., 2019).

It is possible that in those individuals who are genetically
susceptible to developing MS (with or without influence of
additional environmental factors), the initial demyelinating event
and later reactivations of virus can trigger a complex abnormal
immune reaction directed at myelin and myelinating cells (Miller
et al., 2001; Vanderlugt and Miller, 2002). With repeated viral
reactivation and damage to the CNS, breaks in tolerance, epitope
spread, bystander activation, and molecular mimicry will evolve
and begin to take over from viral reactivation as the driving force
behind the disease (Miller et al., 1997, 2001). Eventually MS can
be established as an autoimmune disease. In those individuals
who are genetically susceptible to developing AD, the initial
demyelinating event and later reactivations of virus can trigger an
abnormal immune reaction directed at neuronal cells (Jamieson
et al., 1991; Itzhaki et al., 1997; Mori, 2010; Rossi et al., 2021).
It can be a secondary event with the primary event being virus
taking over neuronal function and giving rise to the toxins that
eventually result in abnormal Tau proteins and amyloid bodies
(Duarte et al., 2019). The proposed connection between MS and AD
through the common viral demyelinating trigger, therefore, may

be complicated, but is nevertheless important as it suggests that
therapeutics capable of slowing down progression of MS may also
be able to reduce incidence of AD at an older age.

Conclusion

Recently, a theory that Tau pathology is an initiating event
leading to sporadic Alzheimer’s disease has been proposed (Arnsten
et al., 2021). This theory is partly based on the fact that Tau
abnormalities are first detected in childhood, while amyloid
abnormalities do not show up until an older age (Braak and Del
Tredici, 2015). vDENT theory, and the fact that HSV-1 infection
itself can cause Tau abnormalities, fits this “Tau-first” hypothesis
very well and takes it one step further by suggesting that the first
Tau abnormalities in children and/or young adolescents are caused
by the first encounter with HSV-1 (or other demyelinating viruses)
at an age when the brain is more susceptible to virus-induced
demyelination and when the immune system is still naïve to these
viruses. vDENT theory of MS/AD connection suggests that, in
some cases, as the child/adolescent becomes an adult, and then
an elderly, inherent aging-related deficiencies may contribute to
the transition from MS to AD, including defects in remyelination
mechanisms (Barbosa et al., 2019; Dimovasili et al., 2023),
increased permeability of blood-brain barrier (Mooradian, 1988),
and propensity for autoimmunity (Ransohoff, 2023). Historical
arguments of immune and inflammatory mechanisms contributing
to AD and MS pathogenesis, therefore, are not excluded by the
vDENT theory. On the contrary, they are a crucial part of it
that should be incorporated through the lenses of antigen-specific
local mechanisms in brain parenchyma that may not have been
considered before.
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