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Introduction: Multi-modal neuroimaging metrics in combination with advanced 
machine learning techniques have attracted more and more attention for an 
effective multi-class identification of Alzheimer’s disease (AD), mild cognitive 
impairment (MCI) and health controls (HC) recently.

Methods: In this paper, a total of 180 subjects consisting of 44 AD, 66 MCI and 58 
HC subjects were enrolled, and the multi-modalities of the resting-state functional 
magnetic resonance imaging (rs-fMRI) and the structural MRI (sMRI) for all participants 
were obtained. Then, four kinds of metrics including the Hurst exponent (HE) metric 
and bilateral hippocampus seed independently based connectivity metrics generated 
from fMRI data, and the gray matter volume (GMV) metric obtained from sMRI data, 
were calculated and extracted in each region of interest (ROI) based on a newly 
proposed automated anatomical Labeling (AAL3) atlas after data pre-processing. 
Next, these metrics were selected with a minimal redundancy maximal relevance 
(MRMR) method and a sequential feature collection (SFC) algorithm, and only a subset 
of optimal features were retained after this step. Finally, the support vector machine 
(SVM) based classification methods and artificial neural network (ANN) algorithm 
were utilized to identify the multi-class of AD, MCI and HC subjects in single modal 
and multi-modal metrics respectively, and a nested ten-fold cross-validation was 
utilized to estimate the final classification performance.

Results: The results of the SVM and ANN based methods indicated the best accuracies 
of 80.36 and 74.40%, respectively, by utilizing all the multi-modal metrics, and the 
optimal accuracies for AD, MCI and HC were 79.55, 78.79 and 82.76%, respectively, in 
the SVM based method. In contrast, when using single modal metric, the SVM based 
method obtained a best accuracy of 72.62% with the HE metric, and the accuracies 
for AD, MCI and HC subjects were just 56.82, 80.30 and 75.86%, respectively. 
Moreover, the overlapping abnormal brain regions detected by multi-modal metrics 
were mainly located at posterior cingulate gyrus, superior frontal gyrus and cuneus.

Conclusion: Taken together, the SVM based method with multi-modal metrics could 
provide effective diagnostic information for identifying AD, MCI and HC subjects.
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1. Introduction

Alzheimer’s disease (AD), a progressive and irreversible 
neurodegenerative disease, is clinically characterized by a decline in 
cognitive, memory and learning, attention deficits, perceptual and 
visuospatial disability, and even ultimately death (Feng et al., 2019; 
Mao et al., 2021; Zhou et al., 2021), and the neuropathology of AD 
evolution is related to intracellular formation of neurofibrillary tangles 
consisted by tau-associated protein and extracellular deposition of 
abeta-associated amyloid (Desikan et  al., 2009; Ota et  al., 2014; 
Skolariki et al., 2020). Currently, approximately 40 million patients 
with AD exist worldwide, and the number is expected to increase 
threefold by 2050 (Kuang et al., 2021). Mild cognitive impairment 
(MCI), in which the cognitive function is mildly impaired compared 
to normal aging but does not reach to the criteria of senile dementia, 
is often considered to be a prodromal condition of AD (Raju et al., 
2020), and 8–15% of patients with MCI would progress to AD per year 
(Kuang et al., 2021). As therapeutic interventions become available, 
developing valid multi-class discrimination methods for AD, MCI and 
health controls (HC) are desperately needed because effective clinical 
treatments for a progressive disease need to be adjusted according to 
different stages of the disease.

Multi-modal neuroimaging data such as functional magnetic 
resonance imaging (fMRI) and structural MRI (sMRI), in 
combination with advanced machine learning techniques, have 
attracted increasing attention from neuroradiologists, neuroscientists 
and neurologists in identifying AD, MCI and HC (Wang et al., 2019; 
Marin-Marin et al., 2021). The resting-state fMRI (rs-fMRI) based 
brain network analysis has been utilized as a promising technique in 
characterizing the abnormal topological organization in AD and MCI 
patients (Dyrba et al., 2015; Khazaee et al., 2016), and reduced intra-
regional and inter-regional correlations of spontaneously brain 
activities in hippocampus or entorhinal cortex were detected in AD 
and MCI patients (Han et al., 2011; Ota et al., 2014). The sMRI offers 
quantification of brain tissue atrophy caused by cellular alterations 
underlying MCI and AD (Long et al., 2018a), and the atrophied brain 
regions were predominately involved in hippocampus, posterior 
cingulate cortex, and precuneus, etc. (Lei et al., 2020; Zhao et al., 
2022). Given the consistent abnormal findings in the brain region of 
hippocampus from both fMRI and sMRI in many prior AD and MCI 
studies (Aguilar et al., 2013; Beheshti et al., 2016; Gonuguntla et al., 
2022), we  thus expect that the hippocampus based functional 
connectivity could provide some important information for AD and 
MCI identification. In addition, in combination with machine 
learning techniques, many prior studies demonstrated that the multi-
modal neuroimaging data could considerably enhance the 
classification performance in AD or MCI discrimination because 
different modalities could offer complementary information to each 
other in comparison to single modality (Hojjati et al., 2018; Zhou 
et al., 2019a,b). However, another study suggested that the integration 
of different neuroimaging modalities did not improve the 
classification performance in identifying AD and MCI patients 
(Dyrba et al., 2015). These discrepancies indicate that the MCI and 
AD identification utilizing multi-modal imagings need to be further 
explored. Furthermore, to our best knowledge, only a few works have 
investigated the multi-class identification of AD, MCI and HC 
subjects simultaneously till now (Khazaee et al., 2016; Liu et al., 2018; 
Raju et al., 2020), and we speculate the multi-modal neuroimaging 

data could provide effective information for identifying multi-class 
of AD, MCI and HC subjects.

The brain consists of about 86 billion neural cells and a similar 
number of non-neural cells, which interacts within themselves or 
with others to form long-range or short-range connections, 
resulting in an interplay at different hierarchical temporal and 
spatial scales (Gentili et al., 2015). Interestingly, the connectivity 
properties of the neural networks have displayed associations with 
the spectrum profile of brain activities both in resting state and 
stimulating condition (Steinke and Galán, 2011). Also, the power 
spectrum of rs-fMRI signal has been shown a 1/f-like or fractal 
property (where f is frequency), and the power spectrum of fMRI 
signals can be  expressed as with, which represents a modal of 
fractality (Gentili et al., 2015). The Hurst exponent (HE), an index 
ranging from 0 to 1, has a directly linear relationship with the 
parameter, which could also describe the fractal properties of fMRI 
signal well (Wei et al., 2013; Gentili et al., 2015). Actually, the time 
series could be  classified into three categories based on its 
HE values. In detail, a HE equal or close to 0.5 indicates a random 
white noise; a HE smaller than 0.5 implies an anti-correlated time 
series, i.e., the fluctuation of time series is reversing in time; and a 
HE bigger than 0.5 suggests a correlated time series, i.e., the time 
series would go in the same direction along time (Wei et al., 2013; 
Gentili et al., 2015). Currently, the changes in HE of fMRI data have 
been investigated in autism disorder, major depressive disorder, 
MCI, normal aging and different personal traits (Maxim et al., 2005; 
Lai et al., 2010; Wei et al., 2013; Gentili et al., 2015). However, it is 
still unknown whether the HE of the fMRI data could be effectively 
combined with other characteristics for a multi-class classification 
of AD, MCI and HC.

Based on multi-modal metrics, we  comparatively used two 
different machine learning methods including support vector 
machine (SVM) based classification methods and artificial neural 
network (ANN) to, respectively, perform a multi-class identification 
of AD, MCI and HC. In detail, the HE  metric and the bilateral 
hippocampus independently based connectivity metrics generated 
from fMRI data, and the gray matter volume (GMV) metric obtained 
from sMRI were firstly calculated in each region of interest (ROI) 
based on a newly proposed Automated Anatomical Labeling (AAL3) 
atlas (Rolls et  al., 2020). Then, these multi-modal metrics were 
selected with a minimal redundancy maximal relevance (MRMR) 
algorithm and a sequential feature collection (SFC) algorithm, and 
only a subset of the most discriminative features were retained after 
this step to construct the classification model. At last, the multi-class 
identifications of AD, MCI and HC subjects based on the constructed 
model were performed in single modality and multi-modal metrics 
respectively, and a nested ten-fold cross-validation was utilized to 
estimate the classification performance.

2. Materials and methods

2.1. Participants

A total of 180 participants including 49 AD, 69 MCI patients and 
62 HC subjects were enrolled in this work, and all the participants 
were right-handed. All the AD and MCI patients were recruited from 
the memory clinic of the neurology department in Nanfang Hospital 
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affiliated to Southern Medical University, and all HC subjects were 
recruited from local community by posting advertisement. All the 
participants did not take any medication that might affect cognitive 
functions during the scan, and these three groups were well matched 
in age, gender and education level. This study was authorized by the 
ethics committee of Nanfang Hospital, in accordance with the rules of 
the declaration of Helsinki, and written informed consents from all 
participants were obtained. Before the scan, all participants were 
estimated with a standardized clinical assessment protocol including 
clinical dementia rating (CDR) scale, mini-mental state exam (MMSE) 
and auditory verbal learning test (AVLT), and the diagnosis of AD, 
MCI and HC subjects were made by two experienced neurologists 
with the following criteria (Knopman et al., 2003; Li et al., 2017; Zhou, 
2021). Of note, 5 AD, 3 MCI and 4 HC subjects were discarded from 
further analyses because of excessive head motion during the scan, 
and the detailed clinical characteristics and demographics for the 
remaining subjects were listed in Table 1.

AD criteria: (1) diagnosed with AD according to the DSM-IV 
criteria (Diagnostic and Statistical Manual of Mental Disorders, 4th 
edition, revised); (2) CDR score of 1.0; (3) able to carry out the clinical 
assessments and tolerate MRI scan.

MCI criteria: (1) CDR score of 0.5; (2) Not meeting the criteria of 
dementia according to DSM-IV; (3) objective memory complaints, 
adjusted for education and age; (4) normal or near normal activities 
of daily living; (5) normal or near normal performance of general 
cognitive function.

HC criteria: (1) CDR score of 0; (2) without memory complaints; 
(3) normal activities of daily living; (4) normal cognitive and 
physical status.

The exclusion criteria for all participants included: (1) depression, 
schizophrenia and other psychiatric diseases that can interfere with 
cognition functions; (2) epilepsy, brain tumors, encephalitis, 
Parkinson’s syndrome and other nervous system disorders that could 
result in cognitive function impairments; (3) severe brain injury that 
can influence cognitive functions; (4) those who have a history of 
congenital mental growth retardation, stroke or psychosis; (5) those 
who have a dependence of alcohol, (6) those who have contradictions 
for MRI examination or have visible vascular lesions on sMRI data.

2.2. Data acquisition

All the MRI images were obtained on a 3.0 Tesla Siemens scanner 
with an eight-channel radio frequency coil at Nanfang hospital. Two 
ear plugs were adopted to reduce the scanning noise, and a comfortable 
foam padding was utilized to restrict head motion. All participants 
were told to not move as long as possible, to open the eyes and to keep 
relax during the scan. The sMRI data were acquired using a 
magnetization prepared rapid gradient echo (MPRAGE) three-
dimensional T1-weighted sequence with following parameters: 
repetition time (TR) = 1900 ms, inversion time (TI) = 900 ms, echo 
time (TE) = 2.2 ms, flip angle (FA) = 9 degree, matrix = 256 × 256, 
thickness = 1.0 mm, number of slice = 176, and voxel 
size = 1 × 1 × 1 mm3. The fMRI data were acquired with an echo-planar 
imaging (EPI) sequence with the following parameters: TR = 2000 ms, 
TE = 40 ms, FA = 90 degree, matrix = 64 × 64, thickness = 4 mm, 
number of slice = 28, field of view (FOV) = 240 × 240, and voxel 
size = 3.75 × 3.75 × 4 mm3.

2.3. Data pre-processing

2.3.1. fMRI data
Data pre-processing for all the fMRI images were carried out by 

the toolbox of Data Processing Assistant for Resting-State fMRI 
(DPARSF) (Yan and Zang, 2010). Specifically, after the removal of the 
first 10 volumes for signal equilibrium, the remained 229 volumes 
were slice-time corrected and then realigned to the first volumes. A 
total of 12 subjects including 5 AD, 3 MCI and 4 HC subjects were 
excluded due to excessive head motion (2 mm and 2 degree in all 
direction). After that, the structural T1-weighted images for every 
subjects were co-registered to the fMRI data, and the co-registered 
structural images were then segmented and normalized to the 
Montreal Neurological Institute (MNI) space. Then, all realigned 
functional images were normalized to the MNI space by utilizing the 
parameters obtained from the structural data normalization, and all 
these images were resampled into a voxel size of 3 × 3 × 3 mm3. Next, 
nuisance covariates including the mean global signals, the 6 head-
motion parameters, and the mean signals in white matter (WM) and 
cerebrospinal fluid (CSF) were regressed out from the normalized 
functional images. At last, all these normalized fMRI data were band-
pass filtered (0.01–0.10 Hz) and spatially smoothed with a 4 mm full 
width at half maximum Gaussian kernel.

2.3.2. sMRI data
Before pre-processing the sMRI images with the toolbox of voxel 

based morphometry (VBM) implemented in Statistical Parametric 
Mapping (SPM8), all the T1-weighted images were screened by two 
professional neuroradiologists with no obvious lesion or abnormality. 
Then, all these screened sMRI data were segmented into the gray 
matter (GM), WM and CSF by utilizing the routine of ‘New-segment’ 
within VBM. Next, these segmented images were normalized into the 
MNI space by using the diffeomorphic anatomic registration through 
exponentiated lie (DARTEL) approach. After this, the normalized 
images were modulated with the Jacobian metrics to preserve the 
actual amounts of a tissue class within each voxel. At last, an 8 mm 
full-width-half-maximum Gaussian kernel was adopted to smooth all 
the modulated images.

TABLE 1 Participant demographic and clinical characteristics.

Characteristics AD MCI HC p 
values

Gender (M/F) 44(24/20) 66(30/36) 58(26/32) 0.56a

Age (years) 67.70 ± 5.24 67.11 ± 7.22 65.21 ± 7.42 0.14b

Education (years) 9.45 ± 4.72 9.74 ± 4.18 10.14 ± 4.33 0.73b

CDR 1 0.5 0 0b

MMSE 20.81 ± 2.25 24.96 ± 1.98 28.76 ± 1.05 <0.0001b

AVLT-ir 5.50 ± 3.46 7.95 ± 2.56 13.00 ± 2.98 <0.0001b

AVLT-dr 2.20 ± 2.55 4.15 ± 3.20 9.89 ± 2.72 <0.0001b

AVLT-r 4.45 ± 2.69 7.05 ± 3.51 11.53 ± 2.24 <0.0001b

aThe p value was obtained by Chi-square test.
bThe p values were obtained by the one-way analysis of variance. 
Values are mean ± S.D unless the S.D was not calculated; M, male; F, female; CDR, Clinical 
Dementia Rating scale; MMSE, Mini-Mental State Examination; AVLT, Auditory Verbal 
Learning Test; AVLT-ir, AVLT-immediate recall; AVLT-dr, AVLT-delay recall; AVLT-r, 
AVLT-recognition.
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2.4. Feature extraction based on AAL3 atlas

Four kinds of imaging metrics including the functional 
HE characteristic and bilateral hippocampus seed independently based 
functional connectivity obtained from fMRI data, and the structural 
GMV obtained from sMRI data were achieved. In detail, the HE value of 
the fMRI in each voxel was calculated by the range scaled (R/S) analysis, 
and the detailed principles for the calculation of the HE value have been 
elaborately illustrated in several prior studies (Wei et al., 2013; Jing et al., 
2017). In terms of hippocampus seed based function connectivity, 
bilateral hippocampus were independently adopted to serve as the seed 
to build the functional connectivity mapping, and the Pearson correlation 
coefficients between each voxel of the brain cortex and the hippocampus 
(numbers of 41–42 in AAL3 atlas) were computed. According to the 
partition criteria of the AAL3 atlas for the brain cortex (Figure  1A, 
available at: https://www.oxcns.org/aal3.html), the mean values of these 
functional mappings in each region of the AAL3 atlas were extracted, and 
the GMV values for all subjects in each region of the AAL3 atlas were also 
calculated by utilizing the following Matlab code.1 Actually, because two 
small regions (numbers of 133–134) were not defined after the original 
voxel size of 1 × 1 × 1 mm3 was resampled into 3 × 3 × 3 mm3, and four 

1 http://www.cs.ucl.ac.uk/staff/G.Ridgway/vbm/get_totals.m

brain regions (numbers of 35–36, 81–82) remain empty in the AAL3 
atlas, thus the number of utilized regions of the AAL3 atlas is 164 with 
the maximum label number of 170.

2.5. Feature selection

Effective feature selection algorithms are essential to machine 
learning methods, which can reduce the feature dimensionality and 
storage requirements, speed up the computation time, and improve the 
classification performance (Dai et al., 2012; Hojjati et al., 2018). In this 
work, the MRMR algorithm in combination with the SFC method were 
simultaneously used to select the optimal features for improving the 
multi-class identification of AD, MCI and HC subjects. The MRMR score 
for a feature set is estimated by the following formula:

 
MRMR MAX

S
I f c

S
I f fs

f s
i

f s
i j

i i

= ( ) − ( )










∈ ∈
∑ ∑1 1

2
, ,

 
(1)

Where the relevance between a feature set S and the 
corresponding class C = {c1, c2,... ck} is estimated by the average value 
of all mutual information values between the individual feature fi and 
C, and the redundancy for a feature set S is defined by the mean value 
of all mutual information values between individual feature fi and fj. 

FIGURE 1

The automated anatomical Labeling (AAL3) atlas and the abnormal brain regions in single modality or multi-modal metrics. (A) The AAL3 atlas; (B,C) 
the abnormal regions in identifying the combined A,D and MCI from HC, and in identifying A,D from MCI in the SVM model with all metrics 
respectively; (D) the abnormal regions in the ANN model with all metrics; (E-H) the abnormal regions of L. Hip seed based connectivity, R. Hip seed 
based connectivity, HE and GMV in identifying the combined AD and MCI from HC in the SVM model respectively; (I-L) The abnormal regions of L. Hip 
seed based connectivity, R. Hip seed based connectivity, HE and GMV in identifying AD from MCI in the SVM model respectively.
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In this work, the prior 50 features were extracted by the MRMR 
algorithm firstly, and then these extracted features were utilized by 
the SFC algorithm to further perform different combinations of 
features for discriminating a multi-class of AD, MCI and HC subjects. 
In detail: In the first loop, the SFC method started with the top 2 
features of sorted 50 features for estimating the performance of the 
multi-class identification, and then the number of features were 
increased one-by-one to perform the multi-class identification until 
all the 50 features were utilized. In the second loop, the SFC method 
discarded the first feature from the sorted 50 features, and then the 
multi-class identification was carried out repeatedly with the number 
of features ranging from the remained first 2 to the remained 49 
features in a one-by-one growth pattern. As the top features were 
eliminated one-by-one in every loop, the multi-class identification 
was repeatedly performed until the loop number reached up to 49, 
which means that only the last 2 features of the sorted 50 features 
were remained for multi-class identification in the last loop. Lastly, 
the best optimal subset of features was determined by comparing the 
classification performance of all the subsets of features.

2.6. Classification

2.6.1. SVM based multi-class identification
The SVM method, which is widely utilized due to its simple 

theory and implementation as well as its remarkable power for 
classification, was originally developed for binary classification 
(Dyrba et al., 2015; Beheshti et al., 2016). To perform the multi-
class identification of AD, MCI and HC, we therefore combined 
the AD patients with MCI patients to form a patient group firstly, 
and then the SVM method was utilized to perform the binary 
classification for identifying the mixed AD and MCI patients from 
HC subjects. Next, the SVM method was further performed for 
the correctly classified patients to discriminate AD from MCI 
patients. Through the above-mentioned processes, the 
classification accuracy in these three groups were evaluated. In 
particular, to improve the classification performance, the SVM 
method adopted a radial basis function (RBF) as the kernel 
function to deal with the nonlinear relationships between the 
labels and features, and the grid search method was utilized to 
optimize two parameters with the range of C = 2−8, 2–7.5, 2−7, ... 27.5, 
28 and gamma = 2−8, 2–7.5, 2−7, ... 27.5, 28. Actually, these two 
parameters were optimized by an internal ten-fold cross-
validation on the training data, and the overall of the nested 
ten-fold cross-validation classification framework were shown in 
Figure 2. In detail, all subjects were divided into 10 parts in the 
external ten-fold cross-validation. Within, nine parts of them 
were utilized as the training data to tune the classification model, 
and the remaining one part was used as the testing data to estimate 
the classification performance. These tuning and testing 
procedures were repeatedly 10 times so that each part of the data 
was utilized as the testing data once. In the internal ten-fold cross-
validation, the training data was further divided into 10 subsets. 
Within, nine subsets were utilized to determine the optimal 
parameters of C and gamma, and the remaining one subset was 
used to test the performance of the selected parameters. The 
parameters with the best accuracy were adopted as the optimal 

parameters for classification model. Lastly, all the training data 
were utilized to construct the classification model with the 
optimal parameters, and the model performance was estimated by 
the testing data with an external ten-fold cross-validation.

2.6.2. ANN based multi-class identification
The ANN algorithm, which was inspired from the attributes of 

biological nervous system that how the human brain adapts itself and 
learn, is useful for categorization and prediction (Sada and Ikpeseni, 
2021), and the ANN model can be  expressed with the 
following formula:

 
f x g w g w x

j
kj

i
ji i( ) =





















∑ ∑
 

(2)

The ANN model is executed by iteratively adjusting the weights 
to capture the nonlinear or linear relationship between the input 
signals and outputs with an acceptable error limit (Qiu et al., 2021). 
In this work, the logistic function was adopted as the activation 
function (i.e., the function g in eq. (2)), and the root mean squared 
error (RMSE) was served as the statistical measure for estimating 
the neural network (RMSE <0.01 or maximum epoch = 500). 
Similar to the above-mentioned classification process, the nested 
ten-fold cross validation was also utilized for the ANN model to 
identify the multi-class of AD, MCI and HC. In detail, the external 
ten-fold validation cross was utilized to evaluate the final 
classification performance of the multi-class identification, and the 
internal ten-fold cross validation was utilized to determine the 
optimal number of neuron nodes in the middle layer with the range 
of 2 to 20. To make a better comparison with the SVM based model, 
the ANN model was set similarly as SVM model with two binary 
classifications using all MRI metrics for identifying AD, MCI and 
HC subjects.

2.7. Validation analysis

Validation analysis were focused on the influences of three 
potential factors in the classification models: (1) direct three-class 
identification; (2) unbalanced sample size; (3) atlas choice. To 
classify AD, MCI and HC subjects directly with a three-class 
identification is another recognition manner, therefore, we testify 
ANN as well as two additional algorithms including the naive Bayes 
and the random forest (RF) (Ma et al., 2020) on all subjects with all 
metrics, which were implemented using the Statistics and Machine 
Learning Toolbox in Matlab. Considering the uncertain impact of 
unbalanced sample size on model performance, subjects of all three 
groups were randomly down-sampled into the same size of 44 
samples, and the SVM and ANN models were again tested with all 
metrics accordingly. Different brain atlases parcel the whole brain 
with distinct nodes, which may also affect the model performance. 
Consequently, another commonly used brain atlas named 
Brainnetome atlas, partitioning all the brain into 246 nodes 
including 210 cortical sub-regions and 36 subcortical sub-regions 
(Fan et al., 2016), was also adopted to compare the classification 
results obtained by the AAL3 atlas.
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3. Results

3.1. Classification performance of different 
models

By applying the SVM based method to identify the multi-class of 
AD, MCI patients and HC subjects, a best accuracy of 80.36% was 
obtained by utilizing all these four metrics simultaneously, and the 
correctly classified rates in AD, MCI and HC were 79.55, 78.79 and 
82.76%, respectively. Besides, when adopting single modality metric, 
the SVM based method obtained a best accuracy of 72.62% with the 
HE metric, and the correct rates in AD, MCI and HC were 56.82, 
80.30 and 75.86%, respectively. By applying the ANN method to 
classify these three groups with two binary classifications, a best 
accuracy of 74.40% was yielded by using all metrics, and the correct 
rates in AD, MCI and HC were 72.73, 66.67 and 84.48%, respectively. 
The detailed classification results of the SVM based method for all 
kinds of combinations of these four metrics and the results of two 
binary classifications of the ANN model with all metrics were 

displayed in Table  2. In addition, two kinds of receiver operating 
characteristic (ROC) curves including discriminating the combined 
AD and MCI from HC and the further discrimination between AD 
and MCI were shown in Figure 3, and the best area under curve 
(AUC) values of these two kinds of curves were the same 0.91 by using 
all metrics in the SVM models.

3.2. Characteristic brain abnormalities 
among three groups

The abnormal brain regions appeared no less than 6 times in the 
whole external 10-fold cross-validation with the optimal classification 
conditions in identifying the combined AD and MCI from HC, and 
in further identifying AD from MCI in the SVM model were shown 
in Figures 1B,C, respectively. The number of retained features and the 
abnormal brain regions in each fold of the external 10-fold cross-
validation in the SVM model using all metrics were summarized in 
Supplementary Tables S1, 2. When using the ANN model to directly 

FIGURE 2

The framework of the nested 10-fold cross-validation.
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TABLE 2 The detailed results of the SVM based method for all kinds of combinations of four metrics and the ANN model with all metrics.

Metrics AD vs. MCI vs. HC 
performance

(AD&MCI) vs. HC performance AD vs. MCI performance

Overall AD MCI HC No. of 
features

Overall AD&MCI HC AUC No. samples 
(AD/MCI)

No. of 
features

Overall AD MCI AUC

L.HIP 61.90 63.64 77.27 43.10 6 75.60 92.73 43.10 0.67 43/59 30 77.45 65.12 86.44 0.79

R.HIP 61.90 65.91 77.27 41.38 23 75.00 92.73 41.38 0.73 44/58 45 78.43 65.91 87.93 0.80

HE 72.62 56.82 80.30 75.86 39 83.33 87.27 75.86 0.89 38/58 29 81.25 65.79 91.38 0.77

GMV 69.64 68.18 74.24 65.52 8 81.55 90.00 65.52 0.84 44/55 28 79.80 68.18 89.09 0.81

L.HIP + R.HIP 66.67 75.00 66.67 60.34 13 77.38 86.36 60.34 0.77 41/54 6 81.05 80.49 81.48 0.81

L.HIP + HE 73.21 65.91 84.85 65.52 15 84.52 94.55 65.52 0.86 44/60 7 81.73 65.91 93.33 0.83

L.HIP + GMV 72.62 75.00 68.18 75.86 11 82.14 85.45 75.86 0.87 43/51 12 82.98 76.74 88.24 0.86

R.HIP + HE 73.21 70.45 81.82 65.52 23 83.93 93.64 65.52 0.88 43/60 9 82.52 72.09 90.00 0.86

R.HIP + GMV 73.21 72.73 71.21 75.86 5 83.33 87.27 75.86 0.87 44/52 10 82.29 72.73 90.38 0.85

HE + GMV 75.00 79.55 74.24 72.41 6 84.52 90.91 72.41 0.89 43/57 4 84.00 81.40 85.96 0.87

L.HIP + R.HIP + HE 75.00 68.18 86.36 67.24 34 85.12 94.55 67.24 0.87 43/61 7 83.65 69.77 93.44 0.79

L.HIP + R.HIP + GMV 76.19 81.82 71.21 77.59 26 84.52 88.18 77.59 0.88 44/53 21 85.57 81.82 88.68 0.90

L.HIP + HE + GMV 79.17 75.00 81.82 79.31 16 88.10 92.73 79.31 0.91 44/58 7 85.29 75.00 93.10 0.91

R.HIP + HE + GMV 79.17 88.64 68.18 84.48 22 87.50 89.09 84.48 0.89 44/54 15 85.71 88.64 83.33 0.86

L.HIP + R.HIP + HE + GMV (SVM) 80.36 79.55 78.79 82.76 17 88.69 91.82 82.76 0.91 44/57 15 86.14 79.55 91.23 0.91

L.HIP + R.HIP + HE + GMV (ANN) 74.40 72.73 66.67 84.48 21 85.12 85.45 84.48 0.90 40/54 18 80.85 80.00 81.48 0.85

L.Hip, left hippocampus seed based connectivity; R.Hip, right hippocampus seed based connectivity; HE; Hurst exponent; GMV, gray matter volume.
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identify these three groups, the most abnormal brain regions were 
displayed in Figure 1D. The overlapping abnormal brain regions for 
these four metrics were mainly located at posterior cingulate gyrus, 
superior frontal gyrus and cuneus. In addition, when using the SVM 
model to identify the combined AD and MCI from HC with single 
metric, the abnormal brain regions of the left hippocampus (L.Hip) 
seed based connectivity, the right hippocampus (R.Hip) seed based 
connectivity, the HE  and the GMV were detailedly displayed in 
Figures 1E–H, respectively. When using the SVM model to further 
identify the AD from MCI patients, the abnormal regions of the L.Hip 
seed based connectivity, the R.Hip seed based connectivity, the 
HE and the GMV were elaborately shown in Figures 1I–L, respectively. 
Besides, the abnormal regions of the single modality and all metrics 
based classification in the SVM models and all metrics based direct 
three-class identification in ANN model were summarized in the 
Table 3. At last, the results of the correlation analyses between the 
clinical assessments and the prior three features in each metric were 
shown in Table 4.

3.3. Validation analysis results

By applying the ANN method to classify these three groups 
directly, a best accuracy of 73.81% was yielded, and the correct rates 
in AD, MCI and HC were 75.00, 63.64 and 84.48% respectively, and 
the detailed classification results of the direct three-class identification 
of the ANN method for all kinds of combinations of these four metrics 
were displayed in Table 5. In comparison, the naive Bayes classifier 
obtained a best accuracy of 72.62%, and the correct rates in AD, MCI 
and HC were 72.73, 65.15 and 81.03%. The RF method yielded a best 
accuracy of 73.21%, and the correct rates in AD, MCI and HC were 

72.73, 63.64 and 84.48%. The classification performance of these two 
methods were relatively lower than or similar with the ANN method 
in direct three-class identification.

When down-sampling AD, MCI and HC patients into the same 
size of 44 subjects, the SVM based method obtained a best accuracy 
of 81.06% with all metrics, and the correct rates in AD, MCI and HC 
were 79.55, 77.27 and 86.36%, respectively. The ANN model obtained 
a best accuracy of 74.24%, and the correct rates in AD, MCI and HC 
were 75.00, 63.64, and 84.09%, respectively. The classification results 
with balanced samples were similar with those obtained on all 
subjects, demonstrating the stability of the classification performance.

When using the Brainnetome Atlas, the SVM based method 
yielded a best accuracy of 80.95% with all metrics, and the correct 
rates in AD, MCI and HC were 75.00, 81.82 and 84.48%, respectively. 
The ANN model obtained a best accuracy of 74.40%, and the correct 
rates in AD, MCI and HC were 75.00, 65.15 and 84.48%, respectively. 
The similar classification performance between these Brainnetome 
atlas and AAL3 atlas again indicated the feasibility of the AAL3 atlas 
in identifying AD, MCI and HC.

4. Discussion

The main aim of this work was to build effective methods for 
automatic identification of AD, MCI and HC subjects with multi-
modal and multi-view metrics, and a best accuracy of 80.36% was 
achieved by simultaneously utilizing all four functional and structural 
metrics in the SVM based classification model. Correspondingly, the 
correct rates in AD, MCI and HC were 79.55, 78.79 and 82.76% 
respectively, indicating a powerful ability of multi-class diagnosis for 
AD and MCI patients. Additionally, when using the single modality 

FIGURE 3

Two kinds of ROC curves for identifying AD, MCI and HC subjects.
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metric, an optimal accuracy of 72.62% was achieved by using the 
HE metric in the SVM based method, and the correct rates in AD, 
MCI and HC were 56.82, 80.30 and 75.86% respectively, suggesting 
the HE  metric could convey more useful and comprehensive 
information for the SVM based classification compared to 
other metrics.

To achieve a high classification performance for AD and MCI 
patients, several measures were taken for the classification models. 
Firstly, considering the fact that the multi-modal neuroimaging data 
have complementary information for each other (Hojjati et al., 2018; 
Zhou et al., 2019a,b), therefore both the sMRI and fMRI were adopted 
in this work to improve the diagnosis of AD and MCI. Through 
comparing the classification performance, we found the multi-modal 
metrics based identification models performed better than those with 
the single modality metric, which again validated the multi-modal 
imagings could enhance the classification performance. Secondly, 
when using all functional and structural characteristics of the multi-
modal imagings, the feature dimension could reach up to 654 
(164 × 4), but most of them are irrelevant and redundant for 
classification. Thus, the feature selection must be  performed for 
dimensionality reduction to acquire a subset of optimal features 
(Pereira et  al., 2009; Dai et  al., 2012). In this paper, the MRMR 
algorithm, in combination with the SFC method, were utilized for 
feature selection, which significantly enhanced the classification 
performance in comparison to the classification model without feature 
selection. Actually, the best accuracy of the SVM based method for all 
the integrated features without feature selection was less than 50.00%, 
which was obviously lower than that with feature selection. It is worth 
mentioning that the feature selection was only constrained on the 
training data, which could avoid the potential overfitting. Thirdly, an 

inner 10-fold cross-validation was carried out to estimate the optimal 
modal parameters, which may improve the model generalization as 
well. Fourthly, the RBF kernel function, which can deal with the 
nonlinear problems between the features and labels, in combination 
with the grid search method for optimizing the parameters of the 
classification models were utilized in this work, which also has an 
important impact to promote the classification performance. In fact, 
we also tested the SVM based model with the linear kernel function 
for classifying AD, MCI and HC subjects in single modality or multi-
modal conditions, and the overall correct rates were 60.12, 60.12, 
70.24, 66.67 and 76.19%, by using the L.HIP based connectivity 
metric, the R.HIP based connectivity metric, the HE, the GMV and 
all the integrated metrics respectively, which were lower than those 
with the RBF kernel function. Fifthly, the AAL3 atlas replacing of the 
conventional AAL atlas was adopted to partition the whole brain 
cortex in this work, which provides more detailed parcellation for 
some brain areas. Actually, the AAL atlas was also tested for the multi-
class diagnosis of AD, MCI and HC subjects with the SVM based 
classification model, and the best recognition rate was 73.21% by using 
all the features, which was lower than that with the newly proposed 
AAL3 atlas. Sixthly, two kinds of classification methods including the 
SVM based method and the ANN model were independently adopted 
to perform the multi-class identification of AD, MCI and HC subjects. 
Although the former method was intrinsically proposed for solving 
two-class classification problems, a three-class classification of AD, 
MCI and HC was well solved by applying the SVM method two times 
to deal with two kinds of binary classification problems in this work. 
The ANN method can handle a three-class classification problem with 
a direct identification or use two binary classifications instead, and our 
discrimination results demonstrated that the SVM based model 

TABLE 3 The abnormal brain regions in single or all metrics based classification model.

Metrics (AD&MCI) vs. HC AD vs. MCI

L.Hip Inferior frontal gyrus[7], Posterior cingulate gyrus[39], Superior 

occipital gyrus[53], Lobule I and II of vermis[113], Lobule X of 

vermis[120], Ventral tegmental area[159]

Superior frontal gyrus[21], Superior occipital gyrus[53], Lobule VIIB of 

cerebellar[105], Lobule X of vermis[120], Pulvinar lateral of thalamus[147], 

Raphe necleus, dorsal[169]

R.Hip Inferior frontal gyrus[7], Olfactory cortex[17], Lateral orbital 

gyrus[31], Posterior cingulate gyrus[39], Superior occipital 

gyrus[53], Red nucleus[165]

Olfactory cortex[18], Cuneus[50], Lobule VIIB of cerebellar[106], Lobule 

I and II of vermis[113], Lobule X of vermis[120], Lateral posterior of 

thalamus[124]

HE Anterior orbital gyrus[27], Posterior orbital gyrus[29], 

Hippocampus[41], Lobule IX of vermis[119], Lateral posterior of 

thalamus[123], Lobule I, II of vermis[113]

Anterior orbital gyrus[27], Lobule VIIB of cerebellar[105], Mediodorsal 

medial magnocellular of thalamus[136], Medial geniculate of thalamus[142], 

Pulvinar lateral of thalamus[148], Locus coeruleus[168]

GMV Posterior cingulate gyrus[39], Amygdala[45], Amygdala[46], 

Angular gyrus[69], Petuman[77], Lobule X of cerebellar[112]

Amygdala[45], Amygdala[46], Inferior temporal gyrus[93], Lobule X of 

cerebellar[112], Lobule X of vermis[120], Ventral anterior of thalamus[126]

All metrics for SVM 

model

L.Hip: Inferior frontal gyrus[7], Posterior cingulate gyrus[39], 

Lobule I, II of vermis[113]

R.Hip: Inferior frontal gyrus[10], Superior occipital gyrus[53]

HE: Posterior orbital gyrus[29], Hippocampus[41], Anterior 

cingulate cortex[156]

GMV: Posterior cingulate gyrus[39], Posterior cingulate gyrus[40], 

Amygdala[45], Amygdala[46], Angular gyrus[69], Putamen[77]

L.Hip: Inferior frontal gyrus[7], Posterior cingulate gyrus[39]; Lobule I, II of 

vermis[113]

R.Hip: Olfactory cortex[18], Cuneus[50], Lateral posterior of thalamus[124]

HE: Pulvinar lateral of thalamus[147], Pulvinar lateral of thalamus[148]

GMV: Amygdala[45], Amygdala[46], Inferior parietal gyrus[66], Inferior 

temporal gyrus[93], Lobule X of cerebellar[112], Ventral anterior of 

thalamus[126]

All metrics for direct 

ANN model

L.Hip: Superior frontal gyrus[21], Posterior cingulate gyrus[39], Posterior cingulate gyrus[40], Cuneus[49], Cuneus[50];R.Hip: Superior frontal 

gyrus[21], Posterior cingulate gyrus[39], Cuneus[49], Cuneus[50], Superior occipital gyrus[53];HE: Posterior orbital gyrus[29], Hippocampus[41], 

Hippocampus[42], Ventral lateral of thalamus[127], Pulvinar lateral of thalamus[148];GMV: Posterior cingulate gyrus[39], Posterior cingulate 

gyrus[40], Amygdala[45], Amygdala[46], Putamen[78], Lenticular nucleus[80]

Labels were: the abnormal brain region[the index number in the AAL3 atlas]; The maximum number of the abnormal brain regions for each metric was 6.
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performs better than these two kinds of ANN models, suggesting the 
importance of classifier selection in future studies. Currently, a direct 
three-class identification is still a big challenging problem, and several 
studies have indicated a relatively low classification accuracy in 
directly identifying AD, MCI and HC (Zhang et al., 2012; David et al., 
2016; Liu et al., 2018). Thus, a direct three-class identification is not 
the primary aim of this work. Furthermore, a prior study has 
demonstrated that the multi-class SVM procedure can be carried out 
using a multiple trained binary SVM (Hussein et al., 2021), therefore 
two binary classifications with the SVM method were performed to 
identify AD, MCI and HC groups in this work, and the classification 
results demonstrated that the SVM based method performs better 
than the direct three-class algorithms including ANN and two other 
identification methods. Taken together, the proposed multi-modal 
metrics based SVM classification model with the newly proposed 

AAL3 atlas was effective in identifying the multi-class of AD, 
MCI and HC.

To validate the efficiency of the MRMR and SFC algorithms, the 
primary component analysis (PCA) was also tried for feature 
reduction in these two classification techniques with all the functional 
and structural metrics, and the cumulative variance contribution rate 
(CVCR) parameter of PCA was setting up ranging from 0.60 to 0.90 
with a step-length of 0.05. In detail, the SVM model was firstly 
implemented to identify the mixed patients from the HC with 
different CVCR values. Then the second SVM based method was 
carried out only to the accurately identified AD and MCI cases under 
the optimal condition of the first SVM model. Overall, the SVM based 
method obtained a best accuracy of 79.17%, and the correct rates in 
AD, MCI and HC were 84.09, 71.21 and 84.48%, respectively. The 
direct ANN model yielded a best accuracy of 73.21% with the optimal 

TABLE 4 The correlation between the clinical assessments and the prior three features in each metric.

The abnormal regions MMSE AVLT-ir AVLT-dr AVLT-r

L.Hip: Superior frontal gyrus[21] 0.33 0.33 0.40 0.35

L.Hip: Posterior cingulate gyrus[39] 0.35 0.32 0.45 0.33

L.Hip: Cuneus[49] 0.38 0.36 0.39 0.31

R.Hip: Superior frontal gyrus[21] 0.33 0.35 0.41 0.38

R.Hip: Cuneus[50] 0.40 0.36 0.37 0.33

R.Hip: Superior occipital gyrus[53] 0.35 0.47 0.43 0.43

HE: Hippocampus[41] −0.40 −0.46 −0.47 −0.42

HE: Hippocampus[42] −0.38 −0.44 −0.41 −0.36

HE: Posterior orbital gyrus[29] 0.41 0.36 0.45 0.32

GMV: Amygdala[46] 0.57 0.58 0.54 0.53

GMV: Amygdala[45] 0.48 0.52 0.46 0.45

GMV: Posterior cingulate gyrus[39] 0.48 0.45 0.41 0.42

TABLE 5 The detailed classification performance of the direct three-class identification with ANN model.

Metrics AD, MCI and HC based three classification performance

No. of features AD MCI HC Overall

L.HIP 44 47.73 46.97 67.24 54.17

R.HIP 28 54.55 54.55 58.62 55.95

HE 17 45.45 63.64 63.79 58.93

GMV 26 68.18 50.00 67.24 60.71

L.HIP+R.HIP 48 52.27 50.00 67.24 56.55

L.HIP + HE 24 40.91 63.64 72.41 60.71

L.HIP + GMV 17 75.00 63.64 68.97 68.45

R.HIP + HE 34 52.27 62.12 63.79 60.12

R.HIP + GMV 26 75.00 63.64 68.97 68.45

HE + GMV 25 72.73 63.64 84.48 73.21

L.HIP + R.HIP + HE 34 52.27 63.64 72.41 63.69

L.HIP + R.HIP + GMV 34 75.00 63.64 70.69 69.05

L.HIP + HE + GMV 25 72.73 63.64 84.48 73.21

R.HIP+ HE + GMV 25 72.73 63.64 84.48 73.21

L.HIP + R.HIP + HE + GMV 27 75.00 63.64 84.48 73.81
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CVCR of 0.80, and the correct rates in AD, MCI and HC subjects were 
72.73, 63.64 and 84.48%, respectively. The slight superiority of the 
identification rates compared to the PCA algorithm demonstrated the 
efficiency of the MRMR and SFC.

In this paper, the overlapping abnormal brain regions were 
mainly located at posterior cingulate gyrus, superior frontal gyrus 
and cuneus in identifying the AD, MCI and HC, which were 
consistent with many prior studies that analyzed the functional or 
structural images with conventional univariate analysis in AD and 
MCI patients (Han et al., 2011; Marco et al., 2017). The posterior 
cingulate gyrus plays a prominent role in the default-mode network 
(DMN) that is significantly deficient in AD and MCI patients 
compared to HC (Wang et al., 2011; Dai et al., 2012). The superior 
frontal gyrus was detected with significant atrophy by utilizing the 
VBM analysis (Anne et al., 2007), and the cuneus was found with 
increased low-frequency blood oxygenation level dependent (BOLD) 
fluctuations in AD and MCI (He et al., 2007). All these brain regions 
were abnormal in different MRI metrics, suggesting the underlying 
mechanism of AD and MCI patients in these regions. Furthermore, 
some divergences of the detected abnormal brain regions in different 
metrics were also found in the SVM based model, including the 
HE abnormalities in the hippocampus, thalamus and the anterior 
orbital gyrus, the GMV abnormalities in amygdala, putamen and part 
cerebellar regions, the L.Hip based connectivity abnormalities in 
superior occipital gyrus and part vermis regions, and the R.Hip based 
connectivity abnormalities in superior occipital gyrus, inferior frontal 
gyrus, and part cerebellar and vermis regions. The main reason for 
the divergences may be attributed to the fact of the specificity in each 
modality and metric. The HE index reflects the persistent behaviors 
of the spontaneous brain activities, and even many investigators 
speculate that the HE reflects some inherent patterns of spontaneous 
discharge that could be  adjusted by psychopathological and 
psychological conditions (Gentili et al., 2015; Long et al., 2018b). The 
GMV indicates the morphological information of the cortex, and the 
bilateral hippocampus based connectivity reflects the connection 
properties between the core region of hippocampus and other brain 
regions. The abnormalities of the structural and the functional 
metrics in above-mentioned regions are also important in the 
pathology of AD and MCI. Finally, a correlation analysis between the 
clinical assessments and the prior three abnormal regions obtained 
by directly applying the MRMR algorithm to these three groups in 
the ANN model, which were largely overlapping with the regions got 
in the SVM model, was also carried out. The significant correlation 
between clinical evaluations and all the abnormal regions also 
demonstrated the potential of these regions underlying AD and 
MCI patients.

Several limitations need to be discussed about this work. Firstly, 
some other brain atlases such as the Dosenbach atlas and the Desikan 
atlas have been proposed currently, which also could be utilized to 
investigate the abnormalities in AD and MCI patients. Because 
different atlases own different number of ROIs and different size of 
the regions, the differences of feature vectors due to different 
partitions would naturally affect the classification performance in the 
multivariate pattern analysis (Ota et al., 2014). Secondly, some other 
neuroimaging modalities such as the positron emission tomography 
(PET) and single photon emission computed tomography (SPECT), 
and other characteristic metrics such as the functional graph 
measures and the structural cortex thickness, also existed nowadays, 

and these modalities and characteristics could also be simultaneously 
used to differentiate AD and MCI patients form HC. At last, 
considering that the samples utilized in this work is not very large, 
thus we will further validate and verify the classification methods 
with a large size of samples obtained from a public database in 
future works.

5. Conclusion

In this paper, two classification techniques including the SVM 
and ANN methods were comparatively utilized to identify a multi-
class of AD, MCI and HC by using single modal metric and multi-
modal metrics, respectively. The results of the SVM and the ANN 
methods achieved the best accuracies of 80.36 and 74.40%, 
respectively, by using all multi-modal metrics, and the correct rates 
in AD, MCI and HC subjects were 79.55, 78.79 and 82.76%, 
respectively, in the SVM based classification model. Furthermore, the 
multi-modal metrics based identification models performed better 
than those with the single modality. Therefore, the classification 
methods utilized in this work could be successfully implemented in 
identifying AD, MCI and HC, and different modalities could offer 
more useful information for classification compared to 
single modality.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Nanfang Hospital 
affiliated to Southern Medical University. The studies were conducted 
in accordance with the local legislation and institutional requirements. 
The participants provided their written informed consent to 
participate in this study.

Author contributions

ZL and JL made substantial contributions to the conception, 
design, analysis and interpretation of data and drafted the manuscript. 
ZL, JL, JF, BL, YD, SQ, JC, JY, and BJ made contributions to the 
revision of the manuscript. JM, ZL, and BJ made contributions to the 
data acquisition. BJ made contributions to conception and 
interpretation of data, and determined the final version to 
be submitted for publishing. All authors contributed to the article and 
approved the submitted version.

Funding

The work was supported by open fund project of Beijing Key 
Laboratory of Fundamental Research on Biomechanics in Clinical 
Application (2023KF05).

https://doi.org/10.3389/fnagi.2023.1212275
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Long et al. 10.3389/fnagi.2023.1212275

Frontiers in Aging Neuroscience 12 frontiersin.org

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnagi.2023.1212275/
full#supplementary-material

References
Aguilar, C., Westman, E., Muehlboeck, J. S., Mecocci, P., Vellas, B., Tsolaki, M., et al. 

(2013). Different multivariate techniques for automated classification of MRI data in 
Alzheimer's disease and mild cognitive impairment. Psychiatry Res. 212, 89–98. doi: 
10.1016/j.pscychresns.2012.11.005

Anne, H., Susanna, T., Marta, G. O., Eini, N., Corina, P., Jari, H., et al. (2007). Voxel-
based morphometry to detect brain atrophy in progressive mild cognitive impairment. 
NeuroImage 37, 1122–1131. doi: 10.1016/j.neuroimage.2007.06.016

Beheshti, I., and Demirel, H.Alzheimer’s Disease Neuroimaging Initiative (2016). 
Feature-ranking-based Alzheimer's disease classification from structural MRI. Magn. 
Reson. Imaging 34, 252–263. doi: 10.1016/j.mri.2015.11.009

Dai, Z., Yan, C., Wang, Z., Wang, J., Xia, M., Li, K., et al. (2012). Discriminative 
analysis of early Alzheimer's disease using multi-modal imaging and multi-level 
characterization with multi-classifier (M3). NeuroImage 59, 2187–2195. doi: 10.1016/j.
neuroimage.2011.10.003

David, C., Diego, C., and German, C. (2016). Centered kernel alignment enhancing 
neural network Pretraining for MRI-based dementia diagnosis. Comput. Math. Methods 
Med. 2016, 9523849–9523810. doi: 10.1155/2016/9523849

Desikan, R. S., Cabral, H. J., Hess, C. P., Dillon, W. P., Glastonbury, C. M., 
Weiner, M. W., et al. (2009). Automated MRI measures identify individuals with mild 
cognitive impairment and Alzheimer's disease. Brain 132, 2048–2057. doi: 10.1093/
brain/awp123

Dyrba, M., Grothe, M., Kirste, T., and Teipel, S. J. (2015). Multimodal analysis of 
functional and structural disconnection in Alzheimer's disease using multiple kernel 
SVM. Hum. Brain Mapp. 36, 2118–2131. doi: 10.1002/hbm.22759

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., et al. (2016). The human 
Brainnetome atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 
26, 3508–3526. doi: 10.1093/cercor/bhw157

Feng, Q., Wang, M., Song, Q., Wu, Z., Jiang, H., Pang, P., et al. (2019). Correlation 
between Hippocampus MRI Radiomic features and resting-state Intrahippocampal 
functional connectivity in Alzheimer's Disease. Front. Neurosci. 13:435. doi: 10.3389/
fnins.2019.00435

Gentili, C., Vanello, N., Cristea, I., David, D., Ricciardi, E., and Pietrini, P. (2015). 
Proneness to social anxiety modulates neural complexity in the absence of exposure: a 
resting state fMRI study using Hurst exponent. Psychiatry Res. 232, 135–144. doi: 
10.1016/j.pscychresns.2015.03.005

Gonuguntla, V., Yang, E., Guan, Y., Koo, B. B., and Kim, J. H. (2022). Brain signatures 
based on structural MRI: classification for MCI, PMCI, and AD. Hum. Brain Mapp. 43, 
2845–2860. doi: 10.1002/hbm.25820

Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., et al. (2011). Frequency-dependent 
changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive 
impairment: a resting-state fMRI study. NeuroImage 55, 287–295. doi: 10.1016/j.
neuroimage.2010.11.059

He, Y., Wang, L., Zang, Y., Tian, L., Zhang, X., Li, K., et al. (2007). Regional coherence 
changes in the early stages of Alzheimer's disease: a combined structural and resting-
state functional MRI study. NeuroImage 35, 488–500. doi: 10.1016/j.
neuroimage.2006.11.042

Hojjati, S. H., Ebrahimzadeh, A., Khazaee, A., and Babajani-Feremi, A.Alzheimer's 
Disease Neuroimaging Initiative (2018). Predicting conversion from MCI to AD by 
integrating rs-fMRI and structural MRI. Comput. Biol. Med. 102, 30–39. doi: 10.1016/j.
compbiomed.2018.09.004

Hussein, A. F., Hashim, S. J., Rokhani, F. Z., and Adnan, W. A. W. (2021). An 
automated high-accuracy detection scheme for myocardial ischemia based on multi-
Lead Long-interval ECG and Choi-Williams time-frequency analysis incorporating a 
multi-class SVM classifier. Sensors 21:2311. doi: 10.3390/s21072311

Jing, B., Long, Z., Liu, H., Yan, H., Dong, J., Mo, X., et al. (2017). Identifying current 
and remitted major depressive disorder with the Hurst exponent: a comparative study 

on two automated anatomical labeling atlases. Oncotarget 8, 90452–90464. doi: 
10.18632/oncotarget.19860

Khazaee, A., Ebrahimzadeh, A., and Babajani-Feremi, A. (2016). Application of 
advanced machine learning methods on resting-state fMRI network for identification 
of mild cognitive impairment and Alzheimer's disease. Brain Imaging Behav. 10, 
799–817. doi: 10.1007/s11682-015-9448-7

Knopman, D. S., Boeve, B. F., and Petersen, R. C. (2003). Essentials of the proper 
diagnoses of mild cognitive impairment, dementia, and major sub- types of dementia. 
Mayo Clin. Proc. 78, 1290–1308. doi: 10.4065/78.10.1290

Kuang, J., Zhang, P., Cai, T., Zou, Z., Li, L., Wang, N., et al. (2021). Prediction of 
transition from mild cognitive impairment to Alzheimer's disease based on a logistic 
regression-artificial neural network-decision tree model. Geriatr Gerontol Int 21, 43–47. 
doi: 10.1111/ggi.14097

Lai, M. C., Lombardo, M. V., Chakrabarti, B., Sadek, S. A., Pasco, G., Wheelwright, S. J., 
et al. (2010). A shift to randomness of brain oscillations in people with autism. Biol. 
Psychiatry 68, 1092–1099. doi: 10.1016/j.biopsych.2010.06.027

Lei, B., Zhao, Y., Huang, Z., Hao, X., Zhou, F., Elazab, A., et al. (2020). Adaptive sparse 
learning using multi-template for neurodegenerative disease diagnosis. Med. Image 
Anal. 61:101632. doi: 10.1016/j.media.2019.101632

Li, Y., Jing, B., Liu, H., Li, Y., Gao, X., Li, Y., et al. (2017). Frequency-dependent 
changes in the amplitude of low-frequency fluctuations in mild cognitive impairment 
with mild depression. J. Alzheimers Dis. 58, 1175–1187. doi: 10.3233/JAD-161282

Liu, M., Cheng, D., Wang, K., and Wang, Y.Alzheimer’s Disease Neuroimaging 
Initiative (2018). Multi-modality cascaded convolutional neural networks for 
Alzheimer's Disease diagnosis. Neuroinformatics 16, 295–308. doi: 10.1007/
s12021-018-9370-4

Long, Z., Huang, J., Li, B., Li, Z., Li, Z., Chen, H., et al. (2018a). A comparative atlas-
based recognition of mild cognitive impairment with voxel-based morphometry. Front. 
Neurosci. 12:916. doi: 10.3389/fnins.2018.00916

Long, Z., Jing, B., Guo, R., Li, B., Cui, F., Wang, T., et al. (2018b). A Brainnetome atlas 
based mild cognitive impairment identification using Hurst exponent. Front. Aging 
Neurosci. 10:103. doi: 10.3389/fnagi.2018.00103

Ma, Z., Jing, B., Li, Y., Yan, H., Li, Z., Ma, X., et al. (2020). Identifying mild cognitive 
impairment with random Forest by integrating multiple MRI morphological metrics. J. 
Alzheimers Dis. 73, 991–1002. doi: 10.3233/JAD-190715

Mao, Y., Liao, Z., Liu, X., Li, T., Hu, J., Le, D., et al. (2021). Disrupted balance of long 
and short-range functional connectivity density in Alzheimer's disease (AD) and mild 
cognitive impairment (MCI) patients: a resting-state fMRI study. Ann. Transl. Med. 9:65. 
doi: 10.21037/atm-20-7019

Marco, M. D., Beltrachini, L., Biancardi, A., Frangi, A. F., and Venneri, A. (2017). 
Machine-learning support to individual diagnosis of mild cognitive impairment using 
multimodal MRI and cognitive assessments. Alzheimer Dis. Assoc. Disord. 31, 278–286. 
doi: 10.1097/WAD.0000000000000208

Marin-Marin, L., Palomar-García, M. Á., Miró-Padilla, A., Adrián-Ventura, J., 
Aguirre, N., Villar-Rodríguez, E., et al. (2021). Bilingualism's effects on resting-state 
functional connectivity in mild cognitive impairment. Brain Connect. 11, 30–37. doi: 
10.1089/brain.2020.0877

Maxim, V., Sendur, L., Fadili, J., Suckling, J., Gould, R., Howard, R., et al. (2005). 
Fractional Gaussian noise, functional MRI and Alzheimer's disease. NeuroImage 25, 
141–158. doi: 10.1016/j.neuroimage.2004.10.044

Ota, K., Oishi, N., Ito, K., and Fukuyama, H.SEAD-J Study Group (2014). A 
comparison of three brain atlases for MCI prediction. J. Neurosci. Methods 221, 139–150. 
doi: 10.1016/j.jneumeth.2013.10.003

Pereira, F., Mitchell, T., and Botvinick, M. (2009). Machine learning classifiers and 
fMRI: a tutorial overview. NeuroImage 45, S199–S209. doi: 10.1016/j.
neuroimage.2008.11.007

https://doi.org/10.3389/fnagi.2023.1212275
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1212275/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1212275/full#supplementary-material
https://doi.org/10.1016/j.pscychresns.2012.11.005
https://doi.org/10.1016/j.neuroimage.2007.06.016
https://doi.org/10.1016/j.mri.2015.11.009
https://doi.org/10.1016/j.neuroimage.2011.10.003
https://doi.org/10.1016/j.neuroimage.2011.10.003
https://doi.org/10.1155/2016/9523849
https://doi.org/10.1093/brain/awp123
https://doi.org/10.1093/brain/awp123
https://doi.org/10.1002/hbm.22759
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.3389/fnins.2019.00435
https://doi.org/10.3389/fnins.2019.00435
https://doi.org/10.1016/j.pscychresns.2015.03.005
https://doi.org/10.1002/hbm.25820
https://doi.org/10.1016/j.neuroimage.2010.11.059
https://doi.org/10.1016/j.neuroimage.2010.11.059
https://doi.org/10.1016/j.neuroimage.2006.11.042
https://doi.org/10.1016/j.neuroimage.2006.11.042
https://doi.org/10.1016/j.compbiomed.2018.09.004
https://doi.org/10.1016/j.compbiomed.2018.09.004
https://doi.org/10.3390/s21072311
https://doi.org/10.18632/oncotarget.19860
https://doi.org/10.1007/s11682-015-9448-7
https://doi.org/10.4065/78.10.1290
https://doi.org/10.1111/ggi.14097
https://doi.org/10.1016/j.biopsych.2010.06.027
https://doi.org/10.1016/j.media.2019.101632
https://doi.org/10.3233/JAD-161282
https://doi.org/10.1007/s12021-018-9370-4
https://doi.org/10.1007/s12021-018-9370-4
https://doi.org/10.3389/fnins.2018.00916
https://doi.org/10.3389/fnagi.2018.00103
https://doi.org/10.3233/JAD-190715
https://doi.org/10.21037/atm-20-7019
https://doi.org/10.1097/WAD.0000000000000208
https://doi.org/10.1089/brain.2020.0877
https://doi.org/10.1016/j.neuroimage.2004.10.044
https://doi.org/10.1016/j.jneumeth.2013.10.003
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1016/j.neuroimage.2008.11.007


Long et al. 10.3389/fnagi.2023.1212275

Frontiers in Aging Neuroscience 13 frontiersin.org

Qiu, X., Miao, J., Lan, Y., Sun, W., Li, G., Pan, C., et al. (2021). Artificial neural network 
and decision tree models of post-stroke depression at 3 months after stroke in patients 
with BMI ≥ 24. J. Psychosom. Res. 150:110632. doi: 10.1016/j.jpsychores.2021.110632

Raju, M., Gopi, V. P., Anitha, V. S., and Wahid, K. A. (2020). Multi-class diagnosis of 
Alzheimer's disease using cascaded three dimensional-convolutional neural network. 
Phys. Eng. Sci. Med. 43, 1219–1228. doi: 10.1007/s13246-020-00924-w

Rolls, E. T., Huang, C. C., Lin, C. P., Feng, J., and Joliot, M. (2020). Automated 
anatomical labelling atlas 3. NeuroImage 206:116189. doi: 10.1016/j.
neuroimage.2019.116189

Sada, S. O., and Ikpeseni, S. C. (2021). Evaluation of ANN and ANFIS modeling ability 
in the prediction of AISI 1050 steel machining performance. Heliyon 7:e06136. doi: 
10.1016/j.heliyon.2021.e06136

Skolariki, K., Terrera, G. M., and Danso, S. (2020). Multivariate data analysis and 
machine learning for prediction of MCI-to-AD conversion. Adv. Exp. Med. Biol. 1194, 
81–103. doi: 10.1007/978-3-030-32622-7_8

Steinke, G. K., and Galán, R. F. (2011). Brain rhythms reveal a hierarchical network 
organization. PLoS Comput. Biol. 7:e1002207. doi: 10.1371/journal.pcbi.1002207

Wang, N., Chen, J., Xiao, H., Wu, L., Jiang, H., and Zhou, Y. (2019). Application of 
artificial neural network model in diagnosis of Alzheimer's disease. BMC Neurol. 19:154. 
doi: 10.1186/s12883-019-1377-4

Wang, Z., Yan, C., Zhao, C., Qi, Z., Zhou, W., Lu, J., et al. (2011). Spatial patterns of 
intrinsic brain activity in mild cognitive impairment and Alzheimer's disease: a resting-
state functional MRI study. Hum. Brain Mapp. 32, 1720–1740. doi: 10.1002/hbm.21140

Wei, M., Qin, J., Yan, R., Li, H., Yao, Z., and Lu, Q. (2013). Identifying major depressive 
disorder using Hurst exponent of resting-state brain networks. Psychiatry Res. 214, 
306–312. doi: 10.1016/j.pscychresns.2013.09.008

Yan, C. G., and Zang, Y. F. (2010). DPARSF: a MATLAB toolbox for "pipeline" data 
analysis of resting-state fMRI. Front. Syst. Neurosci. 4:13. doi: 10.3389/fnsys.2010.00013

Zhang, Z., Liu, Y., Jiang, T., Zhou, B., An, N., Dai, H., et al. (2012). Altered spontaneous 
activity in Alzheimer's disease and mild cognitive impairment revealed by regional 
homogeneity. NeuroImage 59, 1429–1440. doi: 10.1016/j.neuroimage.2011.08.049

Zhao, K., Zheng, Q., Dyrba, M., Rittman, T., Li, A., Che, T., et al. (2022). Regional 
Radiomics similarity networks reveal distinct subtypes and abnormality patterns in mild 
cognitive impairment. Adv. Sci. 9:e2104538:2104538. doi: 10.1002/advs.202104538

Zhou, Y. (2021). Imaging and Multiomic biomarker applications advances in early 
Alzheimer’s Disease, New York: Nova Science Publishers.

Zhou, T., Liu, M., Thung, K. H., and Shen, D. (2019a). Latent representation 
learning for Alzheimer's Disease diagnosis with incomplete multi-modality 
Neuroimaging and genetic data. IEEE Trans. Med. Imaging 38, 2411–2422. doi: 
10.1109/TMI.2019.2913158

Zhou, Y., Song, Z., Han, X., Li, H., and Tang, X. (2021). Prediction of Alzheimer's 
Disease progression based on magnetic resonance imaging. ACS Chem. Neurosci. 12, 
4209–4223. doi: 10.1021/acschemneuro.1c00472

Zhou, T., Thung, K. H., Liu, M., Shi, F., Zhang, C., and Shen, D. (2019b). Multi-modal 
latent space inducing ensemble SVM classifier for early dementia diagnosis with 
neuroimaging data. Med. Image Anal. 60:101630. doi: 10.1016/j.media.2019.101630

https://doi.org/10.3389/fnagi.2023.1212275
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.jpsychores.2021.110632
https://doi.org/10.1007/s13246-020-00924-w
https://doi.org/10.1016/j.neuroimage.2019.116189
https://doi.org/10.1016/j.neuroimage.2019.116189
https://doi.org/10.1016/j.heliyon.2021.e06136
https://doi.org/10.1007/978-3-030-32622-7_8
https://doi.org/10.1371/journal.pcbi.1002207
https://doi.org/10.1186/s12883-019-1377-4
https://doi.org/10.1002/hbm.21140
https://doi.org/10.1016/j.pscychresns.2013.09.008
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.1016/j.neuroimage.2011.08.049
https://doi.org/10.1002/advs.202104538
https://doi.org/10.1109/TMI.2019.2913158
https://doi.org/10.1021/acschemneuro.1c00472
https://doi.org/10.1016/j.media.2019.101630

	Identifying Alzheimer’s disease and mild cognitive impairment with atlas-based multi-modal metrics
	1. Introduction
	2. Materials and methods
	2.1. Participants
	2.2. Data acquisition
	2.3. Data pre-processing
	2.3.1. fMRI data
	2.3.2. sMRI data
	2.4. Feature extraction based on AAL3 atlas
	2.5. Feature selection
	2.6. Classification
	2.6.1. SVM based multi-class identification
	2.6.2. ANN based multi-class identification
	2.7. Validation analysis

	3. Results
	3.1. Classification performance of different models
	3.2. Characteristic brain abnormalities among three groups
	3.3. Validation analysis results

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

