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for predicting monkey brain age
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United States

The application of artificial intelligence (AI) to summarize a whole-brain magnetic

resonance image (MRI) into an e�ective “brain age” metric can provide a holistic,

individualized, and objective view of how the brain interacts with various factors

(e.g., genetics and lifestyle) during aging. Brain age predictions using deep

learning (DL) have been widely used to quantify the developmental status of

human brains, but their wider application to serve biomedical purposes is under

criticism for requiring large samples and complicated interpretability. Animal

models, i.e., rhesus monkeys, have o�ered a unique lens to understand the human

brain - being a species inwhich aging patterns are similar, for which environmental

and lifestyle factors are more readily controlled. However, applying DL methods

in animal models su�ers from data insu�ciency as the availability of animal brain

MRIs is limited compared to many thousands of human MRIs. We showed that

transfer learning can mitigate the sample size problem, where transferring the

pre-trained AI models from 8,859 human brain MRIs improved monkey brain age

estimation accuracy and stability. The highest accuracy and stability occurred

when transferring the 3D ResNet [mean absolute error (MAE) = 1.83 years] and

the 2D global-local transformer (MAE = 1.92 years) models. Our models identified

the frontal white matter as the most important feature for monkey brain age

predictions, which is consistent with previous histological findings. This first DL-

based, anatomically interpretable, and adaptive brain age estimator could broaden

the application of AI techniques to various animal or disease samples and widen

opportunities for research in non-human primate brains across the lifespan.

KEYWORDS

deep learningmodels, human brain age estimation,monkey brain age estimation, transfer

learning, brain MRIs

Introduction

The advances of artificial intelligence (AI)-based predictor of phenotypic brain aging

have generated new tools for mapping normative aging trajectory from large-scale

neuroimaging data sets, by summarizing the whole-brain magnetic resonance imaging

(MRI) into a holistic, simple, yet effective metric (Cole and Franke, 2017). Deep learning

(DL) methods which are more advanced techniques of AI models were shown useful in

providing reference information on healthy brain aging trajectories, disease-specific profiles,
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and for predicting disease progression. However, several challenges

remain before the broader application of DL models to clinical

settings. The models often require large sample sizes [at least

2,000 samples (Schulz et al., 2020; Abrol et al., 2021) for human

brain MRIs] to minimize biased and confounded predictions, and

the biological interpretability of the "brain age" measure is often

complicated and not transparent (Moore et al., 2019).

The use of laboratory animals offers a way to run tests

and experiments before human trials or when human samples

(e.g., healthy brain tissues) are impossible to obtain (Gray and

Barnes, 2019) and may help with improving AI models. For

example, studies with rhesus monkeys (Macaca mulatta) have

demonstrated how environmental and lifestyle factors such as

diet or exercise impact the brain and cognition across the

lifespan, and for understanding the effect of different disease

pathophysiology including neurodegenerative disorders, stroke,

hypertension, infectious diseases, and affect the brain as it is

easier to systematically quantify and manipulate these factors in

monkeys than in humans (Mellus, 1905, 1907; Roth et al., 2004;

Moss et al., 2007; Lacreuse and Herndon, 2009; Mattison and

Vaughan, 2017; Koo et al., 2018; Kuchan et al., 2020). However,

applying AI predictors to animal models of aging (i.e., non-human

primates) is rare and challenging because of the scarcity of brain

MRIs (Franke et al., 2010). Contrarily, the number of publicly

available human brain MRIs (>8,000) is larger than the minimum

request numbers (2,000) (Schulz et al., 2020; Abrol et al., 2021) to

train a DL model, yielding a good accuracy of brain age estimation

on human MRIs (Feng et al., 2020; He et al., 2021a; Peng et al.,

2021; Lee et al., 2022). To mitigate this issue, we implemented

the transfer learning strategy, which uses knowledge learned

from large-sample benchmark tasks (i.e., brain age estimation in

humans) to improve prediction accuracy in small-sample target

tasks (i.e., brain age estimation in animal models) (Kermany et al.,

2018) in our recently developed pre-trained 3D AI models with

improved transferability in 3D images (Feng et al., 2020; He et al.,

2021b, 2022).

Here, we applied a DL approach to MRIs of non-human

primates (NHP), which is a well-established animal model for

studying cognitive aging with high genetic homology (>92%),

similar cognitive and sensory abilities to those of humans, and

longer lifespan (approximately 1/3 to that of human) than more

distant laboratory animals such as rodents (Roth et al., 2004;

Gray and Barnes, 2019). We hypothesized that five state-of-the-

art 2D and 3D AI models pre-trained on 8,859 human brain

MRIs could reduce the errors of AI brain age estimation in 29-

290 monkey brain MRIs compared to models without transfer

learning and that the key features selected by the AI models

are consistent with previous biological investigations. Saliency

maps generated from our models are used to examine brain

image features that are most important for brain age estimation

and are compared with those from our previous human brain

age models. We demonstrated that 3D DL models with transfer

learning are highly accurate, stable, and biologically meaningful

in analyzing relatively small samples of NHPs, broadening the

opportunities for applying cutting-edge AI paradigms to various

laboratory animals.

Methods

Monkey subjects and MRI acquisition

In total, 290 T1-weighted brainMRIs from 274 rhesus monkeys

were used in this study. They include 172 male and 102 female

monkeys, 1–30 years of age at the time of brain MRI acquisition,

126 from the Boston University (BU) NHP database, and 148 from

the PRIMatE Data Exchange (PRIME-DE) database (Milham et al.,

2018).

The monkeys at BU were obtained from the Emory National

Primate Research Center, the New England National Primate

Research Center, and World Wide Primates for other funded

projects over 3 decades. Prior to entering the study, all monkeys

received medical examinations that included serum chemistry and

health screenings to ensure that monkeys did not have a history of

malnutrition, diabetes, chronic illness, or any neurological diseases.

All monkeys were housed in the Laboratory Animal Science Center

of Boston University Medical Campus, an AAALAC-accredited

facility. Experiments were conducted in accordance with the Guide

for the Care and Use of Laboratory Animals from the National

Institute of Health’s Office of Laboratory Animal Welfare and were

approved by the Boston University Institutional Animal Care and

Use Committee (IACUC).

MRIs on BU monkeys were obtained as previously

described (Koo et al., 2012, 2013). In brief, the monkeys

were anesthetized with an initial dose of ketamine (10 mg/kg,

IM) followed by administration of propofol IV (25 mg/kg, IV)

using a syringe pump to maintain anesthesia throughout the

session or with repeated doses of ketamine (10 mg/kg, IV) and

valium (1 mg/kg, IV). In the MRI scanner, monkeys were held in

a stereotactic MRI-compatible head holder designed to fit within

the 8-channel phase array head coil in a fixed position preventing

any inadvertent movement from respiration. Respiration and

oxygenation levels were monitored, and body temperature was

maintained throughout the imaging session. MRI scans were

performed on an Intera (for 16 scans) or Achieva 3T whole-body

MRI scanner (Philips Healthcare, Best, The Netherlands). T1-

weighted images were acquired using a T1-weighted 3D-turbo

field echo (TFE) sequence: repetition time (TR)/echo time (TE) =

7 ms/3 ms, flip angle = 8◦, NEX = 6, inter shot delay = 2,800 ms,

TFE = factor 200, voxel size: = 0.6 mm isotropic, and sagittal plane

acquisition.

The PRIME-DE database combines NHP neuroimaging data

sets across 22 sites. Details have been described in a 2018

article (Milham et al., 2018). Of them, this study included data from

15 sites that contain in vivo structuralMRI data for rhesusmonkeys,

details are described in Supplementary Table S2.

Among the 290 T1-weighted MRI scans, 260 monkeys had

only one scan session, 12 had two MRI sessions, and 2 had three

MRI sessions (at least 6 months apart between each scan). These

longitudinal scans are treated as independent data for brain age

estimation. Multiple scans from human subjects were also used in

human brain age prediction studies with dozens or lower hundreds

of subjects, but our study included a much lower percentage (6%)

of human subjects with two scans.
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Human subjects and MRI acquisition

We collected 8,859 T1-weighted human brainMRIs (0–97 years

of age, 45.2% male) from 13 public data sets, including ABIDE-

I (Di Martino et al., 2014) (567 scans, age 6–57), BeijingEN1(180

scans, age 17–28), CamCAN (Taylor et al., 2017) (442 scans,

age 18–68), DLBS (Park et al., 2012) (315 scans, age 20–89),

DutchDonders2 (171 scans, age 18–32), IXI3 (556 scans, age

20–86), Narratives (Nastase et al., 2021) (335 scans, age 18–

53), NIH-PD (Evans et al., 2006) (1,210 scans, age 0–23), KI-

RS_Enhanced (Nooner et al., 2012) (2,032 scans, age 6–85), OASIS-

3 (LaMontagne et al., 2018) (1,838 scans, age 42–97), SALD (Wei

et al., 2018) (488 scans, age 19–80), Wayne (Daugherty and Raz,

2017) (606 scans, age 18–91), and YaleHires (Finn et al., 2015) (119

scans, age 18–59). These T1-weighted brain MRIs were all acquired

at 1 isotropic mm voxel size or slightly higher resolution.

Pre-processing of human and monkey MRI

Following the human brain age estimation (He et al., 2021a,b,

2022), we performed identical minimal pre-processing to both

monkey and human brain MRIs.

For human brain T1-weighted brain MRI, the pre-processing

included N4 bias correction (Tustison et al., 2010), field of

view normalization (Ou et al., 2018), multi-atlas skull stripping

(MASS) (Doshi et al., 2013; Ou et al., 2015), and a deformable

registration of the skull-stripped image into the SRI24 atlas

space (Rohlfing et al., 2010) by the deformable registration via

attribute matching and mutual-saliency weighting (DRAMMS)

algorithm (Ou et al., 2011, 2014). The deformable registration

split the T1-weighted human brain MRI into two channels, both

in the atlas space: a registered intensity image channel for the

contrast information and a tissue density map known as RAVENS

map (regional analysis of volumes examined in normalized space)

containing morphometry information (Davatzikos et al., 2001).

See Figure 1B for these two channels for exemplar subjects. Our

previous study demonstrated that splitting a single T1-weighted

MRI into these two channels led to a higher brain age estimation

accuracy (He et al., 2021b, 2022). Therefore, this study used both

channels for age estimation.

Monkey T1-weighted brainMRIs underwent the AFNI pipeline

(animalwarper tool) to generate skull-stripped images (Saad et al.,

2009; Jung et al., 2021), by non-rigidly transforming NIMH

Macaque Template (NMT v2) into each monkey’s brain MRI space.

The skull-stripped monkey brain MRI in the native space then

went through DRAMMS deformable registration to be spatially

normalized into the NMT atlas space. This split the monkey brain

MRI into a registered intensity image (i.e., the contrast channel)

and the RAVENS map (i.e., the morphometry channel) similar to

those in human brain MRIs. The right panel of Figure 1B shows

exemplar monkey subjects for their images and the two channels

we used for age estimation.

1 https://fcon_1000.projects.nitrc.org/indi/PRIMEcollections.html

2 https://data.donders.ru.nl/?1

3 https://brain-development.org/ixi-dataset

After cropping unused background in the pre-processed

images, the final dimensions were 100 × 128 × 156 for monkey

images in the NMT atlas space and 120×130×170 for brain images

in the SRI24 atlas space. For the purpose of transfer learning,

further resizing was done to linearly scale (not transforming) the

human brain images to have the same size as monkey brains.

To train the deep learning model, the intensity map and

RAVENS map are concatenated as one input image with two

channels, with the size of 2× 100× 128× 156.

Five AI models

Five different DL AI models were evaluated for monkey

brain age estimation. They included the general 2D/3D ResNet

models (He et al., 2016), which were not specifically designed for

but have been previously validated for brain age estimation (He

et al., 2021a, 2022). We also included three models that were

specifically designed for brain age estimation: 3D simple fully

convolutional network (SFCN) (Peng et al., 2021), 2D global-local

transformer (GL-Transformer) (He et al., 2021a), and 3D deep

relation transformer (Relation-Transformer) (He et al., 2022). For

the 2Dmodels, we consider the 3DMRIs as a stack of 2D slices with

different channels.

We chose these five AI models for their representativeness.

On one note, these five models represent 2D and 3D typical

deep learning architectures. The 2D ResNet and GL-Transformer

are 2D deep learning architectures. The 3D ResNet, SFCN,

and Relation-Transformer are 3D deep learning architectures.

Moreover, these five models represent both the convolutional

neural network (CNN) and transformer-based algorithms. The

2D/3D ResNet and SFCN are CNN-based, whereas the GL-

Transformer and Relation-Transformer are based on transformers,

which are recently popular deep learning architectures based on

attentionmechanisms (Vaswani et al., 2017; He et al., 2022). Loosely

speaking, CNN uses voxel/pixel arrays, whereas transformer

models split the images into visual tokens. They are two main

screams of deep learning models for image computing.

The algorithms behind these models are briefly described

below. The ResNet model contains residual block with skip

connection to reuse the feature feeding into the residual block. The

SFCN is a short version of the VGGnet (Simonyan and Zisserman,

2014), with only five convolutional layers to extract deep features.

Global-Local transformer contains a transformer (Vaswani et al.,

2017) block to optimal fuse global context and local information

from patches to explore more detailed brain age information

on brain MRIs. Relation-Transformer (He et al., 2022) uses

the attention mechanism to learn four relations, such as the

cumulative, relative, maximal, and minimal relations from a pair

of input images.

Training from scratch in monkey brain MRIs

The models trained from scratch on monkey MRIs used the

same training configurations as in human MRIs: batch size was 8,

the initial learning rate of the Adam optimizer (Kingma and Ba,
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2014) was 0.0001 and was reduced to half at every 50 epochs with a

total of 200 training epochs.

Transferring and refining pre-trained
models from human to monkey MRIs

Pre-training was done in human brain MRIs. All five models

were trained with the mean absolute error (MAE) as the loss

function, the same as in other human brain age estimation

studies (Bashyam et al., 2020; Feng et al., 2020; He et al., 2021a,b,

2022; Peng et al., 2021). Parameters on models were optimized

using the Adam optimizer (Kingma and Ba, 2014), with an initial

learning rate of 0.001, which was reduced to half at every 20 epochs

with a total of 80 training epochs. The batch size was set to 16.

All other parameters were set to default provided by the PyTorch

platform, similar to existing studies (He et al., 2021a,b, 2022).

Transfer learning was done using the pre-trained models from

human brain MRIs as an initialization. The refinement was done

in two stages. In Stage 1, we refined the last fully connected layer

from scratch for monkey age estimation. We fixed the parameters

on convolutional layers for feature extraction. This was done with

100 epochs on monkey brain MRIs with a learning rate of 0.001.

After that, Stage 2 fine-tuned the parameters in all layers of the

deep learning AI models with a learning rate of 0.0005, which was

quartered at the 100th epoch. All models were trained with 200

epochs. Although the age ranges of human and monkey are not

the same, age matching is not necessary for transfer learning since

the last fully connected layer is randomly initialized formonkey and

fine-tuned in transfer learning.

Ranking AI strategies by accuracy and
stability

Ten AI strategies (five AI models, each with or without transfer

learning) were compared.

Accuracy. We used a 10-fold cross-validation to measure the

accuracy. Given N monkey brain MRIs, we randomly split them

into 10 equal numbers of non-overlapping samples. Each time,

one fold was selected for testing, and the rest were used for

training. One metric for accuracy was the mean absolute error

(MAE), MAE = 1
N

∑N
i |ŷi − yi|, where ŷ is the AI-estimated

age, while y is the chronological age. Smaller MAE corresponds

to higher accuracy. The second accuracy metric we used was

Spearman’s correlation coefficient between the chronological and

AI-estimatedmonkey brain ages. Spearman’s correlation coefficient

ranges from 0 (lowest accuracy) to 1 (highest accuracy). In addition

to reporting the overall accuracy across the lifespan in the main

text, we also computed the accuracy metrics in different age

groups in Supplementary material. A monkey’s lifespan capacity

is approximately 0–35 years, with a rough ratio of 1:3 to human

lifespan ages (Tigges et al., 1988). Therefore, we defined and

compared three age groups within the current cohort, as previously

defined (Simmons, 2016): young monkeys (age≤5, n = 88), middle-

aged (5 <age< 20, n = 157), aged (age≥ 20, n = 45).

Stability. Each AI strategy was applied to varying sample sizes

in our monkey brain MRI dataset. A strategy is more stable if

the accuracy dropped the least going from using all 290 monkey

brain MRIs to using only 10, 20, 30, . . ., and 90% of them.

Training samples were randomly selected on each fold (10-fold

cross-validation). For example, when sampling 20% for training, we

randomly selected 20% samples from the 9-fold for training and the

rest fold for testing and repeat 10 times.

Ranking by accuracy and stability. We ranked the 10 AI

strategies from 1 (least preferable) to 10 (most preferable) in each

of the four accuracy metrics and three stability metrics. The total

rank score is a summation of those 7 scores ranging from 7 (least

preferable) to 70 (most preferable). The four accuracy metrics were

MAE ranked from highest (rank score 1) to the lowest (rank score

10) when using 100% of the monkey brain MRIs; Spearman’s ρ

ranked from the lowest (rank score 1) to the highest (rank score

10) when using 100% of the monkey brain MRIs; MAE ranked

from highest (rank score 1) to the lowest (rank score 10) when

using 30% of the monkey brain MRIs; and Spearman’s ρ ranked

from the lowest (rank score 1) to the highest (rank score 10) when

using 30% of the monkey brain MRIs. The three stability metrics

were the increase of MAE ranked from the highest (rank score 1) to

the lowest (rank score 10) from using 100% to 30% of the monkey

brain MRIs, the increase of MAE ranked from the highest (rank

score 1) to the lowest (rank score 10) from using 100% to 20% of

the monkey brain MRIs, and the increase of MAE ranked from

the highest (rank score 1) to the lowest (rank score 10) from using

100% to 10% of the monkey brain MRIs. The AI strategies with

the highest ranking scores (ideally close to 70) were recommended

among the 10 strategies.

Interpretation

For further interpretation of the brain age models, saliency

maps were generated to show the most informative voxels from

MRI scans selected by the AI model for brain age estimation.

In brief, the integrated gradients were used (Sundararajan et al.,

2017) to visualize the relationship between input images and

predictions. The baseline was the image with zero values and

a sequence of images was generated by a liner interpolation

between the baseline and input image, yielding a sequence

of output prediction and a sequence of gradient maps on

input images.

The saliency maps shown in Figure 4 were computed as the

average saliency maps across all subjects in corresponding age

groups (<5 and ≥5 years for monkeys and <15 and ≥15 for

humans). To quantify the tissue-specific and regional contribution

to brain age estimations, we applied lobular segmentations for gray

and white matter regions, as well as the inclusion of the subcortical

structure as a separate region. Mean saliency values normalized by

whole sample minimum andmaximum saliency values for each age

group were quantified for tissue-based regional segmentation and

plotted to visualize the trajectories of mean saliency.

Topographical saliency maps are prepared for two age groups

for each channel used in AI models (intensity/contrast &

RAVENS/morphometry) and captured from three different axes.
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Similar procedures were carried out to generate human saliency

maps and quantified saliency trajectories in matching age groups

(under 15 years old and 15 or older) (Figure 4).

Results

Setup of transfer learning

The benchmark task was human brain age estimation

(Figure 1A, left panel). It was based on using 8,859 T1-weighted

human brain MRIs 0-97 years of age. The target task was monkey

brain age estimation (Figure 1A, right panel), using T1-weighted

monkey brain MRI from 290 monkeys with a lifespan of 1–

30 years of age. We applied minimum pre-processing to split

each bias-corrected and skull-stripped T1-weighted MRI into a

3D intensity image (for contrast information) and a 3D RAVENS

(regional analysis of volumes examined in normalized space) map

(for morphometry information) in the human or monkey atlas

spaces (Seidlitz et al., 2018; He et al., 2021a,b, 2022; Jung et al.,

2021), as shown in Figure 1B. Age estimation in this study, with

or without transfer learning, was based on concatenating and using

these two channels of images.

The five AI models we used in the study included two 2D

AI models [the classic 2D ResNet He et al., 2016, our 2D global-

local transformer (GL-Transformer) He et al., 2021a] and three

3D AI models (the classic 3D ResNet He et al., 2016, a recently-

developed 3D SFCN Peng et al., 2021, and our 3D Relation

Transformer He et al., 2022). These five models also include three

convolutional neural network models (2D/3D ResNet, 3D SFCN)

and two transformer models, that are the two main branches of

deep learning AI architectures.

Transfer learning improved accuracy,
especially in very small sample sizes

We performed transfer learning by first fixing the parameters

from the pre-trained benchmark (human) model on convolutional

layers, to refine the last fully-connected layer from scratch, and then

performed refinement of all the parameters during target (monkey)

model training. Figure 2 shows that transferring AI models from

human to monkey brain MRIs (dashed curves) led to reduced

age estimation errors (y-axis) for all five AI models compared to

training directly in monkey data from scratch (solid curves). The

effect varied, though, by sample size in the target task (x-axis) and

across models.

The effect of transfer learning on AI accuracy was more

pronounced when we used only <150, especially <50 (p < 0.05

for t-Test), randomly-sampled monkey MRIs. The benefit

of transfer learning became smaller or even vanished for

some AI models when using more than 200 randomly-

sampled monkey MRIs. This general trend is consistent

with all five models we tested although the specific cutoff

sample size varied for different underlying AI models, as

described below.

E�ects of transfer varied by AI models

We evaluated the performances of the AI models using mean

absolute error (MAE) and Spearman’s correlation coefficient (ρ)

between the actual and the AI-estimated ages. A lower MAE and

a higher ρ usually correspond to higher accuracy. The lowest MAE

in the analysis of the 290 monkey brain MRIs occurred when using

3D ResNet with transfer learning (MAE=1.83 ± 0.39 years). The

highest Pearson correlation ρ occurred when using the 3D SFCN

with transfer learning (ρ = 0.921).

Two 3D AI models (3D SFCN and 3D relation transformer)

benefited more from transfer learning than the two 2D AI models

(2D ResNet and 2D GL-Transformer). In general, 3D AI models

often required larger sample sizes than 2D models (Schulz et al.,

2020).

The AI model that benefited the most was the model with the

largest errors (3D SFCN). AI models that had a relatively smaller

error (<4 years), even with just 30 randomly-sampledmonkey brain

MRIs, benefited less from transfer learning.

Of special note is the 3D relation transformer, which, given N

input images, used N2 pairs of images as training samples. The 3D

relation transformer estimated the relationship (sum, difference,

bigger/smaller than) on every pair of input images (He et al., 2022).

Therefore, transfer learning reduced errors compared to without

transfer learning for the 3D relation transformer, with 220 or fewer

input images (<48,400 input image pairs). The MAE of transfer

learning became larger than the MAE without transfer learning

with more than 220 input monkey brain MRIs (more than 48,400

input MRI pairs).

In general, the comparison across the underlying AI models

showed that those AI models that needed more input MRIs

(e.g., 3D SFCN and 3D ResNet) would benefit more from

transfer learning.

Transfer learning also improved stability

We next ranked the 10 strategies (five AI models; with or

without transfer learning) based on their accuracy and stability

(Figure 3). The rank score ranged from 1 (least recommended)

to 10 (most recommended) in four accuracy metrics and three

stability metrics (with each row being a metric). Accuracy

was measured as the mean absolute errors (MAE, smaller is

better) and Spearman’s correlation (higher is better) at 30%

and 100% of the samples between AI-estimated and actual

chronological monkey ages. Stability was measured by the

increase of MAE (smaller is better) from when using 100%

of the samples to when using 10%, 20%, and 30% of the

samples. Overall, the 2D GL-Transformer with transfer learning

and the 3D ResNet with transfer learning received the highest

total rank scores, both scored 56 out of 70. They were

followed by 2D ResNet with transfer learning, with a total

rank score of 51. These recommended choices were all with

transfer learning.
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FIGURE 1

Our transfer learning framework. (A) Pre-trained AI models for human brain age estimation (benchmark task, left panel) were transferred to facilitate

monkey brain age estimation (target task, right panel). In each panel, the histograms show sample sizes and age distributions of the study population.

(B) Exemplar images for human and monkey T1-weighted brain MRIs. The skull-stripped images in the first row had been split into two channels –

registered images (second row) for the contrast channel and RAVENS tissue density maps (third row) for the morphometry channel. Both channels

were in the species-specific template space. The values in the RAVENS maps, as coded in the color bar, quantified the volumetric ratio (<, =, and > 1

for volumetric shrinkage, preservation, and expansion) in the subject as compared to the template at each voxel.

Neuroanatomical interpretations

After examining the accuracy and stability of different AI

models, we visualized the key MRI regions and features (from

the contrast and morphometry channels) that contributed the

most to age estimation in the best-performing model, 3D ResNet

model with transfer learning, which had the highest rank scores

in Figure 3 and the lowest MAE when all 290 MRIs were

used in cross-validation. We generated saliency maps, which are

topographical representations of feature importance, showing the

most informative voxels selected by the AI model for brain

age estimation (Figure 4). Three main observations are noted

when comparing saliency maps generated from the pre-trained

human model:
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FIGURE 2

E�ects of transfer learning in monkey brain age estimation. Each panel corresponds to an AI model that was used in this study. Brain age errors

(mean absolute errors or MAEs) in 10-fold cross-validation of monkey brains are plotted on the y-axis, and various sample sizes used for AI are

plotted on the x-axis. Solid curves are errors without transfer (i.e., training from monkey brain MRIs from scratch). Dashed curves are errors with

transfer (from human to monkey). Red colors are used for 2D AI models, green for 3D AI models, and blue for a special 3D AI model that uses N2

input image pairs given N input images.

FIGURE 3

Ranking 10 AI strategies by accuracy (Rows 1–4) and stability (Rows 5–7). Each row assigns 10 AI strategies a rank score of 1 (least preferable, light

blue) to 10 (most preferable, dark blue). The AI strategies with the highest total rank scores (bottom row) are the most accurate and stable choices

for monkey brain age estimation. The exact values in those 10 accuracy and stability metrics can be found in Figure 2 and Supplementary Table S1.

• For rhesus monkeys 5 years of age or younger, the salient

regions selected by the AI model were more global throughout

the brain. This can be seen in the right panels in Figure 4(a).

Quantitative results in 1-5 years in Figure 4(b) also confirmed

this observation.

• For rhesus monkeys 5 years of age and older, the aging

effect became more localized in specific regions or tissue

types. Compared to monkeys younger than 5 years of age, AI

estimated ages for monkeys 5 years and older was higher/more

reliant in the frontal white matter [pointed out by red arrows

in Figure 4 (a, left)], temporal white matter (orange arrows)

and subcortical structures (yellow arrows, including basal

ganglia, diencephalon, brain stem, and cerebellum), followed

distantly by the parietal white matter. The age information

came from both the contrast (intensity) and the morphometry

(RAVENS) channels. This can be visualized under monkey

panels in Figure 4(a), as well as quantified in Figure 4(b) for

5 years and up.

• A similar trend is observed in humans under the age of

15 where salient regions are globally distributed and mean

saliency values are comparable across regions [Figure 4 (left)],

whereas in humans 15 years old and older (matching to 5 years
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FIGURE 4

Brain regions and metrics contributing to monkey brain age estimation by 3D ResNet with transfer learning. (a) Saliency maps quantifying voxel-wise

contribution in the intensity (contrast) channel (Top) and in the RAVENS (morphometry) channel (Bottom), with humans on the left and monkeys on

the right. Each saliency map is an average of an individual’s saliency maps across all individuals in the corresponding age group. (b) Regions

contribute the most to age estimation, by taking the mean saliency values in corresponding age groups in each brain region. The arrows in monkey

saliency maps in panels (a) point out key regions demonstrated in panels (b): red - frontal white matter (WM), orange—temporal WM, and

yellow—subcortical structures (including basal ganglia, diencephalon, brain stem, and cerebellum).

old and older in monkeys), subcortical structures were the

most prominent, followed by temporal, frontal, and parietal

white matters [Figure 4 (left)].

Discussion

Following the advances in medicine and nutrition, the longer

life expectancy worldwide led to a growing elderly population

and an increased healthcare burden on neurodegenerative

diseases. Rhesus monkeys are particularly important in mapping

longitudinal normal and pathological aging trajectories because

of their high genetic and physiological similarity to humans,

which effectively helped to bridge the critical gap between

rodent experiments and human trials for developing potential

therapeutics (Gray and Barnes, 2019). However, the limited

sample sizes of monkey studies present a major obstacle to the

reproducibility and wider application of this model in biomedical

research. As a potential solution, we built and improved AI models

with transfer learning from a large-sample (human) benchmark

task to small-sample (monkey) target tasks (Kermany et al., 2018)

to study brain aging using human and monkey MRI scans. While

existing studies primarily focused on transferring pre-trained 2D

AI models to 2D images or 2D slices within 3D images (Kather

et al., 2019; Bashyam et al., 2020; Hollon et al., 2020; Ström

et al., 2020), recent advances in 3D AI models (He et al., 2016;

Feng et al., 2020), including our models (He et al., 2021a,b,

2022), which have been pre-trained on thousands to tens of

thousands of 3D images (Figure 1), have created the opportunity

to transfer pre-trained 3D AI models to 3D medical images. In

the current study, we demonstrated that (1) 3D ResNet with

transfer learning achieved the highest ranking in accuracy and

stability out of 10 strategies (five AI models, with or without

transfer), as well as the lowest errors when all 290 monkey MRIs

were used (Figure 3), (2) transfer learning improved the accuracy

and stability for monkey brain age estimation for all models (see
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the total ranking scores before versus after transfer in Figure 3),

and the effect was more pronounced in very small sample sizes

(especially for sample size ranges between 150 and 50, Figure 2),

(3) the saliency maps generated by our best-performing model

identified important brain age features in the frontal white matter,

which is consistent with previous monkey studies (Wisco et al.,

2008; Peters and Kemper, 2012). To the best of our knowledge,

this is the first study that applied the DL framework combined

with the transfer learning technique for brain age prediction

using brain MRI from rhesus monkeys. Of note, there was one

study that trained a non-deep-learning (DL) algorithm (relevance

vector regression) on the tissue segmentations from 29 T1-

weighted baboon brain MRIs for age estimation (Franke et al.,

2017).

The current study sought to mitigate the small sample issue

in building DL brain age models by applying transfer learning

from pre-trained models from human to monkey. Indeed, we

observed improved age prediction accuracy (indicated by the

reduction of MAE in Figure 2) in all five models at various degrees.

Interestingly, while we initially expected that more complex AI

models [complexity is determined by the number of parameters

and the floating point operations per second (flops)] may need

more samples and thus would benefit more from transfer learning,

our results did not conform with such an expectation. For

instance, 3D SFCN [2.81 M(ega) parameters and 26.66 G(iga)

flops] and 3D relation transformer (2.91 M parameters and 6.46

G flops) had fewer parameters than other AI models we used

in this study but benefited the most from transfer learning. In

contrast, 2D GL-Transformer (19.68 M parameters and 16.75

G flops), 2D ResNet (11.25 M parameters and 3.6 G flops),

and 3 D ResNet (31.65 M parameters and 34.71 G flops)—

three AI models with larger numbers of parameters (suggesting

higher complexity)—actually benefited less from transfer learning.

Instead of complexity as the major factor for determining the

success of transfer learning, our results showed that AI models

with larger errors at very small sample sizes (50 or under)

actually benefited more from transfer learning. This suggests that,

in addition to model complexity, sample sizes might be a key

factor to consider when selecting the appropriate AI model for

different tasks.

After evaluating the performances (based on accuracy and

stability) of our DL models, we showed that the two top-ranked

models (see Figure 3) are 3D ResNet with transfer learning (MAE

= 1.83 years) and 2D GL-Transformer with transfer learning

(MAE = 1.99 years). For brain age models, improved prediction

accuracy may suggest a potentially higher sensitivity to identify

subtle deviations from normal brain aging curves. In human,

AI-estimated ages have identified accelerated aging for cognitive

impairment (Liem et al., 2017; Poddar et al., 2019), traumatic

brain injuries (Cole et al., 2015), schizophrenia (Cole et al., 2018),

Alzheimer’s disease (Franke et al., 2010), diabetes (Franke et al.,

2013; Guan et al., 2022), smoking or alcohol use (Guggenmos et al.,

2017; Ning et al., 2020), and early signs of future psychosis (Chung

et al., 2018). Similarly, AI quantified the delayed human aging

in long-term meditation practice (Luders et al., 2016), music-

making (Rogenmoser et al., 2018), and higher education (Steffener

et al., 2016). In these studies, the AI age estimation errors on

human brain MRIs are around 3-6 years (Goyal et al., 2019;

Bashyam et al., 2020; Smith et al., 2020; He et al., 2021b). With

improvements in prediction accuracy and stability from transfer

learning for monkey brain age estimation, it becomes possible to

better quantify how diseases, genetics, environment, lifestyle, and

other epigenetic factors have shifted monkey brains from normal

aging curves (Jeon et al., 2018; Kuchan et al., 2020; Souder et al.,

2021). This is especially useful because many of these factors can

be well controlled in the laboratories for monkeys and other animal

models, providing neuroscience testbeds that are otherwise difficult

to obtain in human brains (Moss et al., 2007).

The current study also sought to improve the interpretability

of the DL models and pinpoint the most important MRI features

used by the best-performing models for age predictions. To achieve

this, we generated saliency maps and showed that the highest-

ranked AI strategy was able to learn monkey brain ages from

both morphometry (RAVENS map) and the contrast (intensity

image) information (Figure 4). The aging information was more

widespread throughout the whole brain in monkeys under the age

of 5 years but became progressively more localized for monkeys

5 years and more, which was also observed in the age-matched

groups of humans (Figure 4). Interestingly, AI predicted monkey

brain ages mostly based on MRI voxels located in the frontal white

matter (WM) regions, followed by parietal WM and subcortical

(mostly GM) regions (Figure 4). This agrees with previously

established histological findings on monkey brain development

across the lifespan, where WM degeneration was prevalent in

aged animals (Peters, 2009; Peters and Kemper, 2012; Chen

et al., 2013; Kubicki et al., 2019). These have mostly focused

on the forebrain regions, showing mild dendritic and synaptic

loss, and prominent WM degeneration in the dorsal prefrontal

cortex, area 46, anterior cingulate cortex, and hippocampus during

aging (Bowley et al., 2010; Luebke et al., 2010; Hara et al., 2012;

Koo et al., 2012, 2013). We also observed that the rhesus monkey

brain develops throughout young ages (under 5) (Malkova et al.,

2006; Scott et al., 2016; Kim et al., 2020), which is similar to

human brain development (Ou et al., 2017; Sotardi et al., 2021);

WM undergoes more maturation and neurodegeneration similar

to that in human; whereas the GM in monkey brain, unlike

in human, experiences less to no significant changes in volume

beyond very early maturation phases (Rakic et al., 1986; Ge et al.,

2002; Peters and Kemper, 2012; Shi et al., 2013). The different

feature salience from our model between humans and monkeys

may be explained by neuroanatomical differences across species.

For example, monkeys do not show increased neurofibrillary

tangles and amyloid plaques, which are pathological hallmarks

primarily affecting human hippocampal and parahippocampal

regions during early stages of aging and dementia (Luebke et al.,

2010). Moreover, evidence suggests functional specialization of the

human brain for language related to the expansion of temporalWM

connections, which may give rise to variation in WM connectome

between humans and monkeys (Sierpowska et al., 2022). The

differences in monkey salience features compared to those of

humans may reflect that our pre-trained AI models were well-

adapted to the animal dataset after transfer learning.

There are several limitations of the study that we plan to address

in our future analyses. First, we observed a regression-to-the-mean
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(RTM) issue, similar to previous studies on age estimation

in human brain MRIs (Bashyam et al., 2020; Feng et al.,

2020; He et al., 2021b). Specifically, younger monkey brains

were predicted older, and older brains were predicted younger

(Supplementary Table S1 and Supplementary Figure S1). This is

a well-known methodological issue for AI-based age estimation

models. For our follow-up analyses, we aimed to address the RTM

issue by re-balancing sample distribution across ages (Feng et al.,

2020) or post-correction of AI-estimated brain ages (Liang et al.,

2019; Peng et al., 2021). These procedures are ongoing work in

the field (de Lange and Cole, 2020) but outside the main focus

of the current study (transfer learning). Second, this study only

focused on T1-weighted brain MRIs, similar to most AI brain

age estimation articles in the human brain, as T1-weighted MRIs

are most common in a large cohort (Bashyam et al., 2020; Feng

et al., 2020; He et al., 2021b; Peng et al., 2021). Future studies may

include diffusion and functional MRIs to further improve model

performances. Third, among the 290 T1-weighted brain MRIs

from 274 monkeys, there were 16 longitudinal scans or 6% of the

monkeys had longitudinal scans, which is a much lower percentage

of longitudinal scans compared to human brain age prediction

studies with only dozen to lower hundreds of subjects (Zhang et al.,

2018; Hu et al., 2019). It is possible that the addition of more

longitudinal scans or using longitudinal information as a prior may

improve model predictions. Fourth, we are yet to test the effect

of scanner or site on AI accuracy in this study, similar to other

human brain age estimation studies that also merged data from 10+

sites, and also due to heavily unbalanced data across sites (eight

sites had less than five subjects, see Supplementary Table S2) and

across scanners (95.5% of the scans were acquired on 3T scanners).

Fifth, the saturated and highest possible accuracy in monkey age

estimation remains unanswered due to the lack of large-scale

monkey brain MRIs. It took at least 8,000 brain MRIs to saturate

human brain age estimation (Kaufmann et al., 2019; Schulz et al.,

2020). Nonetheless, we showed that given the limitedmonkey brain

MRIs (dozens to lower hundreds), transfer learning brings higher

accuracy and stability to AI models than without transfer learning.

Our best-performing model also identified biologically meaningful

age-related features and showed successful adaptation of the pre-

trained model to the small sample target population as reflected

by different saliency regions highlighted by the human pre-trained

model and transferred monkey model which are consistent with

previous studies.

Despite the limitations, we showed that transfer learning has

a great potential to mitigate the small sample size problem in AI-

driven brain age estimation using monkey MRIs and identified key

features of aging in the frontal WM regions. Given the AI brain

age estimator’s wide success in human brain research, this first

DL-based, transfer-learning-powered, lifespan-compatible, highly

accurate, and publicly-released monkey brain age estimator could

provide a simple but holistic measure of how brain changes in

aging. Our study will also open wide opportunities to studymonkey

and other laboratory animal models under a variety of normal

and pathological conditions, such as to help differentiate animals

of the same chronological age but demonstrating varying levels of

cognitive impairments.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found within the

Supplementary material.

Ethics statement

The studies involving humans were approved by

Boston Children’s Hospital and Harvard Medical School.

The studies were conducted in accordance with the

local legislation and institutional requirements. Written

informed consent for participation was not required from

the participants or the participants’ legal guardians/next

of kin in accordance with the national legislation and

institutional requirements. The animal study was approved

by the Boston University Institutional Animal Care and

Use Committee.

Author contributions

Study design: SH, B-BK, and YO. Data analysis: SH, YG, CHC,

B-BK, and YO.Manuscript writing: SH, YG, CHC, TM, JL, RK, DR,

B-BK, and YO. All authors contributed to the article and approved

the submitted version.

Funding

The study was supported, in part, by Charles A. King

Trust Fellowship (SH), Massachusetts Life Science Center Bits to

Bytes grants (YO), NIH/NICHD R03 HD104891, NIH/NICHD

R03 HD107124, NIH/NINDS R21 NS121735, NIH/NCATS R21

TR004265, and NIH/NINDS R61 NS126792. The work was

supported also, in part, by NIH/NIA RF1 AG062831-01, RF1-

AG043640-06, and R01 AG042512 (DR), R01-AG071230 and

R01-AG059028 (JL, YG, and B-BK), NIH/NIA R01 AG068168

(TM), NIH/NIA R56 AG059693, NIH/NINDS R21-NS102991,

NIH/NINDS U01-NS076474, and NIH/NIA R01 AG043478 (TM

and B-BK), R01AG055948 and GW210034 (B-BK and YG), and

1RF1AG083206 (B-BK, YG, and CHC).

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

Frontiers in AgingNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1249415
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


He et al. 10.3389/fnagi.2023.1249415

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnagi.2023.

1249415/full#supplementary-material

References

Abrol, A., Fu, Z., Salman, M., Silva, R., Du, Y., Plis, S., et al. (2021). Deep learning
encodes robust discriminative neuroimaging representations to outperform standard
machine learning. Nat. Commun. 12, 1–17. doi: 10.1038/s41467-020-20655-6

Bashyam, V. M., Erus, G., Doshi, J., Habes, M., Nasrallah, I. M., Truelove-Hill,
M., et al. (2020). Mri signatures of brain age and disease over the lifespan based
on a deep brain network and 14 468 individuals worldwide. Brain 143, 2312–2324.
doi: 10.1093/brain/awaa160

Bowley, M. P., Cabral, H., Rosene, D. L., and Peters, A. (2010). Age changes in
myelinated nerve fibers of the cingulate bundle and corpus callosum in the rhesus
monkey. J. Comparat. Neurol. 518, 3046–3064. doi: 10.1002/cne.22379

Chen, X., Errangi, B., Li, L., Glasser, M. F., Westlye, L. T., Fjell, A. M.,
et al. (2013). Brain aging in humans, chimpanzees (pan troglodytes), and
rhesus macaques (macaca mulatta): magnetic resonance imaging studies
of macro-and microstructural changes. Neurobiol. Aging 34, 2248–2260.
doi: 10.1016/j.neurobiolaging.2013.03.028

Chung, Y., Addington, J., Bearden, C. E., Cadenhead, K., Cornblatt, B., Mathalon,
D. H., et al. (2018). Use of machine learning to determine deviance in neuroanatomical
maturity associated with future psychosis in youths at clinically high risk. JAMA
Psychiatry 75, 960–968. doi: 10.1001/jamapsychiatry.2018.1543

Cole, J. H., and Franke, K. (2017). Predicting age using neuroimaging: innovative
brain ageing biomarkers. Trends Neurosci. 40, 681–690. doi: 10.1016/j.tins.2017.10.001

Cole, J. H., Leech, R., Sharp, D. J., and Initiative, A. D. N. (2015). Prediction of brain
age suggests accelerated atrophy after traumatic brain injury.Ann. Neurol. 77, 571–581.
doi: 10.1002/ana.24367

Cole, J. H., Ritchie, S. J., Bastin, M. E., Hernández, V., Mu noz Maniega, S.,
Royle, N., et al. (2018). Brain age predicts mortality. Mol. Psychiatry 23, 1385–1392.
doi: 10.1038/mp.2017.62

Daugherty, A. M., and Raz, N. (2017). A virtual water maze revisited: Two-year
changes in navigation performance and their neural correlates in healthy adults.
Neuroimage 146, 492–506. doi: 10.1016/j.neuroimage.2016.09.044

Davatzikos, C., Genc, A., Xu, D., and Resnick, S. M. (2001). Voxel-based
morphometry using the ravens maps: methods and validation using simulated
longitudinal atrophy. Neuroimage 14, 1361–1369. doi: 10.1006/nimg.2001.0937

de Lange, A.-M. G., and Cole, J. H. (2020). Commentary: Correction procedures in
brain-age prediction. NeuroImage: Clinical 26, 102229. doi: 10.1016/j.nicl.2020.102229

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K.,
et al. (2014). The autism brain imaging data exchange: towards a large-scale
evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667.
doi: 10.1038/mp.2013.78

Doshi, J., Erus, G., Ou, Y., Gaonkar, B., and Davatzikos, C. (2013). Multi-atlas
skull-stripping. Acad. Radiol. 20, 1566–1576. doi: 10.1016/j.acra.2013.09.010

Evans, A. C., Group, B. D. C., et al. (2006). The NIH MRI
study of normal brain development. Neuroimage 30, 184–202.
doi: 10.1016/j.neuroimage.2005.09.068

Feng, X., Lipton, Z. C., Yang, J., Small, S. A., Provenzano, F. A., Initiative, A. D.
N., et al. (2020). Estimating brain age based on a uniform healthy population with
deep learning and structural magnetic resonance imaging. Neurobiol. Aging 91, 15–25.
doi: 10.1016/j.neurobiolaging.2020.02.009

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., et al.
(2015). Functional connectome fingerprinting: identifying individuals using patterns
of brain connectivity. Nat. Neurosci. 18, 1664–1671. doi: 10.1038/nn.4135

Franke, K., Clarke, G. D., Dahnke, R., Gaser, C., Kuo, A. H., Li, C., et al. (2017).
Premature brain aging in baboons resulting frommoderate fetal undernutrition. Front.
Aging Neurosci. 9, 92. doi: 10.3389/fnagi.2017.00092

Franke, K., Gaser, C., Manor, B., and Novak, V. (2013). Advanced brainage
in older adults with type 2 diabetes mellitus. Front. Aging Neurosci. 5, 90.
doi: 10.3389/fnagi.2013.00090

Franke, K., Ziegler, G., Klöppel, S., Gaser, C., Initiative, A. D. N., et al. (2010).
Estimating the age of healthy subjects from t1-weighted mri scans using kernel
methods: exploring the influence of various parameters. Neuroimage 50, 883–892.
doi: 10.1016/j.neuroimage.2010.01.005

Ge, Y., Grossman, R. I., Babb, J. S., Rabin, M. L., Mannon, L. J., and Kolson, D. L.
(2002). Age-related total gray matter and white matter changes in normal adult brain.
Part i: volumetric mr imaging analysis. Am. J. Neuroradiol. 23, 1327–1333.

Goyal, M. S., Blazey, T. M., Su, Y., Couture, L. E., Durbin, T. J., Bateman, R. J., et al.
(2019). Persistent metabolic youth in the aging female brain. Proc. Nat. Acad. Sci. 116,
3251–3255. doi: 10.1073/pnas.1815917116

Gray, D. T., and Barnes, C. A. (2019). Experiments in macaque monkeys provide
critical insights into age-associated changes in cognitive and sensory function. Proc.
Nat. Acad. Sci. 116, 26247–26254. doi: 10.1073/pnas.1902279116

Guan, Y., Ebrahimzadeh, S. A., Cheng, C.-h., Chen,W., Leung, T., Bigornia, S., et al.
(2022). Association of diabetes and hypertension with brain structural integrity and
cognition in the boston puerto rican health study cohort. Neurology 98, e1534–e1544.
doi: 10.1212/WNL.0000000000200120

Guggenmos, M., Schmack, K., Sekutowicz, M., Garbusow, M., Sebold, M., Sommer,
C., et al. (2017). Quantitative neurobiological evidence for accelerated brain aging in
alcohol dependence. Transl. Psychiatry 7, 1–7. doi: 10.1038/s41398-017-0037-y

Hara, Y., Rapp, P. R., and Morrison, J. H. (2012). Neuronal and morphological
bases of cognitive decline in aged rhesus monkeys. Age 34, 1051–1073.
doi: 10.1007/s11357-011-9278-5

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (Las Vegas, NV), 770–778.

He, S., Feng, Y., Grant, P. E., and Ou, Y. (2022). Deep relation learning for
regression and its application to brain age estimation. IEEE Trans. Med. Imaging. 41,
2304–2317doi: 10.1109/TMI.2022.3161739

He, S., Grant, P. E., and Ou, Y. (2021a). Global-local transformer for brain age
estimation. IEEE Trans. Med. Imaging 41, 213–224. doi: 10.1109/TMI.2021.3108910

He, S., Pereira, D., Perez, J. D., Gollub, R. L., Murphy, S. N., Prabhu, S., et al. (2021b).
Multi-channel attention-fusion neural network for brain age estimation: accuracy,
generality, and interpretation with 16,705 healthy mris across lifespan. Med. Image
Anal. 72, 102091. doi: 10.1016/j.media.2021.102091

Hollon, T. C., Pandian, B., Adapa, A. R., Urias, E., Save, A. V., Khalsa, S.
S. S., et al. (2020). Near real-time intraoperative brain tumor diagnosis using
stimulated raman histology and deep neural networks. Nat. Med. 26, 52–58.
doi: 10.1038/s41591-019-0715-9

Hu, D., Wu, Z., Lin, W., Li, G., and Shen, D. (2019). Hierarchical rough-to-fine
model for infant age prediction based on cortical features. IEEE J. Biomed. Health
Informat. 24, 214–225. doi: 10.1109/JBHI.2019.2897020

Jeon, S., Ranard, K. M., Neuringer, M., Johnson, E. E., Renner, L., Kuchan, M. J.,
et al. (2018). Lutein is differentially deposited across brain regions following formula or
breast feeding of infant rhesus macaques. J. Nutr. 148, 31–39. doi: 10.1093/jn/nxx023

Jung, B., Taylor, P. A., Seidlitz, J., Sponheim, C., Perkins, P., Ungerleider, L. G., et al.
(2021). A comprehensive macaque fmri pipeline and hierarchical atlas. Neuroimage
235, 117997. doi: 10.1016/j.neuroimage.2021.117997

Kather, J. N., Pearson, A. T., Halama, N., Jäger, D., Krause, J., Loosen, S. H., et al.
(2019). Deep learning can predict microsatellite instability directly from histology in
gastrointestinal cancer. Nat. Med. 25, 1054–1056. doi: 10.1038/s41591-019-0462-y

Kaufmann, T., van der Meer, D., Doan, N. T., Schwarz, E., Lund, M. J., Agartz,
I., et al. (2019). Common brain disorders are associated with heritable patterns of
apparent aging of the brain. Nat. Neurosci. 22, 1617–1623.

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L.,
et al. (2018). Identifying medical diagnoses and treatable diseases by image-based deep
learning. Cell 172, 1122–1131. doi: 10.1016/j.cell.2018.02.010

Kim, J., Jung, Y., Barcus, R., Bachevalier, J. H., Sanchez, M. M., Nader, M. A., et al.
(2020). Rhesus macaque brain developmental trajectory: a longitudinal analysis using
tensor-based structural morphometry and diffusion tensor imaging. Cerebral Cortex
30, 4325–4335. doi: 10.1093/cercor/bhaa015

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization. arXiv
[Preprint]. arXiv:1412.6980. doi: 10.48550/arXiv.1412.6980

Koo, B.-B., Calderazzo, S., Bowley, B. G., Kolli, A., Moss, M.
B., Rosene, D. L., et al. (2018). Long-term effects of curcumin

Frontiers in AgingNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1249415
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1249415/full#supplementary-material
https://doi.org/10.1038/s41467-020-20655-6
https://doi.org/10.1093/brain/awaa160
https://doi.org/10.1002/cne.22379
https://doi.org/10.1016/j.neurobiolaging.2013.03.028
https://doi.org/10.1001/jamapsychiatry.2018.1543
https://doi.org/10.1016/j.tins.2017.10.001
https://doi.org/10.1002/ana.24367
https://doi.org/10.1038/mp.2017.62
https://doi.org/10.1016/j.neuroimage.2016.09.044
https://doi.org/10.1006/nimg.2001.0937
https://doi.org/10.1016/j.nicl.2020.102229
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1016/j.acra.2013.09.010
https://doi.org/10.1016/j.neuroimage.2005.09.068
https://doi.org/10.1016/j.neurobiolaging.2020.02.009
https://doi.org/10.1038/nn.4135
https://doi.org/10.3389/fnagi.2017.00092
https://doi.org/10.3389/fnagi.2013.00090
https://doi.org/10.1016/j.neuroimage.2010.01.005
https://doi.org/10.1073/pnas.1815917116
https://doi.org/10.1073/pnas.1902279116
https://doi.org/10.1212/WNL.0000000000200120
https://doi.org/10.1038/s41398-017-0037-y
https://doi.org/10.1007/s11357-011-9278-5
https://doi.org/10.1109/TMI.2022.3161739
https://doi.org/10.1109/TMI.2021.3108910
https://doi.org/10.1016/j.media.2021.102091
https://doi.org/10.1038/s41591-019-0715-9
https://doi.org/10.1109/JBHI.2019.2897020
https://doi.org/10.1093/jn/nxx023
https://doi.org/10.1016/j.neuroimage.2021.117997
https://doi.org/10.1038/s41591-019-0462-y
https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.1093/cercor/bhaa015
https://doi.org/10.48550/arXiv.1412.6980
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


He et al. 10.3389/fnagi.2023.1249415

in the non-human primate brain. Brain Res. Bull. 142, 88–95.
doi: 10.1016/j.brainresbull.2018.06.015

Koo, B.-B., Oblak, A. L., Zhao, Y., Farris, C. W., Bowley, B., Rosene, D. L.,
et al. (2013). Hippocampal network connections account for differences in memory
performance in the middle-aged rhesus monkey. Hippocampus 23, 1179–1188.
doi: 10.1002/hipo.22156

Koo, B.-B., Schettler, S. P., Murray, D. E., Lee, J.-M., Killiany, R. J., Rosene, D. L.,
et al. (2012). Age-related effects on cortical thickness patterns of the rhesus monkey
brain. Neurobiol. Aging 33, 200–e23. doi: 10.1016/j.neurobiolaging.2010.07.010

Kubicki, M., Baxi, M., Pasternak, O., Tang, Y., Karmacharya, S., Chunga, N., et al.
(2019). Lifespan trajectories of white matter changes in rhesus monkeys. Cerebral
Cortex 29, 1584–1593. doi: 10.1093/cercor/bhy056

Kuchan, M. J., Ranard, K. M., Dey, P., Jeon, S., Sasaki, G. Y., Schimpf, K. J., et al.
(2020). Infant rhesus macaque brain α-tocopherol stereoisomer profile is differentially
impacted by the source of α-tocopherol in infant formula. J. Nutr. 150, 2305–2313.
doi: 10.1093/jn/nxaa174

Lacreuse, A., and Herndon, J. (2009).Nonhuman Primate Models of Cognitive Aging
in Animal Models of Human Cognitive Aging. New York, NY: Humana Press, 29–58.

LaMontagne, P. J., Keefe, S., Lauren, W., Xiong, C., Grant, E. A., Moulder,
K. L., et al. (2018). Oasis-3: longitudinal neuroimaging, clinical, and cognitive
dataset for normal aging and alzheimer’s disease. Alzheimer’s Dement. 14, P1097.
doi: 10.1101/2019.12.13.19014902

Lee, J., Burkett, B. J., Min, H.-K., Senjem, M. L., Lundt, E. S., Botha, H., et al. (2022).
Deep learning-based brain age prediction in normal aging and dementia. Nature Aging
2, 412–424. doi: 10.1038/s43587-022-00219-7

Liang, H., Zhang, F., and Niu, X. (2019). Investigating Systematic Bias in Brain
Age Estimation With Application To Post-Traumatic Stress Disorders. Technical report.
Hoboken, NJ: Wiley Online Library. doi: 10.1002/hbm.24588

Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K., Huntenburg, J. M.,
et al. (2017). Predicting brain-age from multimodal imaging data captures cognitive
impairment. Neuroimage 148, 179–188. doi: 10.1016/j.neuroimage.2016.11.005

Luders, E., Cherbuin, N., and Gaser, C. (2016). Estimating brain age using high-
resolution pattern recognition: Younger brains in long-term meditation practitioners.
Neuroimage 134, 508–513. doi: 10.1016/j.neuroimage.2016.04.007

Luebke, J., Barbas, H., and Peters, A. (2010). Effects of normal aging
on prefrontal area 46 in the rhesus monkey. Brain Res. Rev. 62, 212–232.
doi: 10.1016/j.brainresrev.2009.12.002

Malkova, L., Heuer, E., and Saunders, R. (2006). Longitudinal magnetic resonance
imaging study of rhesus monkey brain development. Eur. J. Neurosci. 24, 3204–3212.
doi: 10.1111/j.1460-9568.2006.05175.x

Mattison, J. A., and Vaughan, K. L. (2017). An overview of nonhuman primates in
aging research. Exp. Gerontol. 94, 41–45. doi: 10.1016/j.exger.2016.12.005

Mellus, E. L. (1905). A study of the location and arrangement of the giant cells in the
cortex of the right hemisphere of the bonnet monkey (macacus sinicus). Am. J. Anat.
4, 405–408. doi: 10.1002/aja.1000040403

Mellus, E. L. (1907). Relations of the frontal lobe in the monkey. Am. J. Anat. 7,
227–243. doi: 10.1002/aja.1000070205

Milham, M. P., Ai, L., Koo, B., Xu, T., Amiez, C., Balezeau, F., et al.
(2018). An open resource for non-human primate imaging. Neuron 100, 61–74.
doi: 10.1016/j.neuron.2018.08.039

Moore, J. H., Raghavachari, N., et al. (2019). Artificial intelligence based
approaches to identify molecular determinants of exceptional health and life span-an
interdisciplinary workshop at the national institute on aging. Front. Artif. Intellig. 2, 12.
doi: 10.3389/frai.2019.00012

Moss, M., Moore, T., Schettler, S., Killiany, R., Rosene, D., and Riddle, D. (2007).
Brain aging: Models, Methods, and Mechanisms. Florida: CRC Press, 21–38.

Nastase, S. A., Liu, Y.-F., Hillman, H., Zadbood, A., Hasenfratz, L., Keshavarzian,
N., et al. (2021). Narratives: fMRI data for evaluating models of naturalistic language
comprehension. bioRxiv. 2020, 12. doi: 10.1038/s41597-021-01033-3

Ning, K., Zhao, L., Matloff, W., Sun, F., and Toga, A. W. (2020). Association of
relative brain age with tobacco smoking, alcohol consumption, and genetic variants.
Sci. Rep. 10, 1–10. doi: 10.1038/s41598-019-56089-4

Nooner, K. B., Colcombe, S., Tobe, R., Mennes, M., Benedict, M., Moreno,
A., et al. (2012). The NKI-Rockland sample: a model for accelerating the pace
of discovery science in psychiatry. Front. Neurosci. 6, 152. doi: 10.3389/fnins.2012.
00152

Ou, Y., Akbari, H., Bilello, M., Da, X., and Davatzikos, C. (2014). Comparative
evaluation of registration algorithms in different brain databases with varying
difficulty: results and insights. IEEE Trans. Med. Imaging 33, 2039–2065.
doi: 10.1109/TMI.2014.2330355

Ou, Y., Gollub, R. L., Retzepi, K., Reynolds, N., Pienaar, R., Pieper, S., et al. (2015).
Brain extraction in pediatric ADC maps, toward characterizing neuro-development
in multi-platform and multi-institution clinical images. Neuroimage 122, 246–261.
doi: 10.1016/j.neuroimage.2015.08.002

Ou, Y., Sotiras, A., Paragios, N., and Davatzikos, C. (2011). DRAMMS: Deformable
registration via attribute matching and mutual-saliency weighting. Med. Image Anal.
15, 622–639. doi: 10.1016/j.media.2010.07.002

Ou, Y., Zöllei, L., Da, X., Retzepi, K., Murphy, S. N., Gerstner, E. R., et al. (2018).
Field of view normalization in multi-site brain MRI. Neuroinformatics 16, 431–444.
doi: 10.1007/s12021-018-9359-z

Ou, Y., Zöllei, L., Retzepi, K., Castro, V., Bates, S. V., Pieper, S., et al. (2017).
Using clinically acquired mri to construct age-specific adc atlases: Quantifying
spatiotemporal adc changes from birth to 6-year old.Hum. BrainMapp. 38, 3052–3068.
doi: 10.1002/hbm.23573

Park, J., Carp, J., Kennedy, K. M., Rodrigue, K. M., Bischof, G. N., Huang, C.-
M., et al. (2012). Neural broadening or neural attenuation? Investigating age-related
dedifferentiation in the face network in a large lifespan sample. J. Neurosci. 32,
2154–2158. doi: 10.1523/JNEUROSCI.4494-11.2012

Peng, H., Gong,W., Beckmann, C. F., Vedaldi, A., and Smith, S. M. (2021). Accurate
brain age prediction with lightweight deep neural networks. Med. Image Anal. 68,
101871. doi: 10.1016/j.media.2020.101871

Peters, A. (2009). The effects of normal aging on myelinated nerve fibers in monkey
central nervous system. Front. Neuroanat. 11, 9. doi: 10.3389/neuro.05.011.2009

Peters, A., and Kemper, T. (2012). A review of the structural alterations in the
cerebral hemispheres of the aging rhesus monkey. Neurobiol. Aging 33, 2357–2372.
doi: 10.1016/j.neurobiolaging.2011.11.015

Poddar, J., Pradhan, M., Ganguly, G., and Chakrabarti, S. (2019). Biochemical
deficits and cognitive decline in brain aging: Intervention by dietary supplements. J.
Chem. Neuroanat. 95, 70–80. doi: 10.1016/j.jchemneu.2018.04.002

Rakic, P., Bourgeois, J.-P., Eckenhoff, M. F., Zecevic, N., and Goldman-Rakic, P.
S. (1986). Concurrent overproduction of synapses in diverse regions of the primate
cerebral cortex. Science 232, 232–235. doi: 10.1126/science.3952506

Rogenmoser, L., Kernbach, J., Schlaug, G., and Gaser, C. (2018). Keeping
brains young with making music. Brain Struc. Funct. 223, 297–305.
doi: 10.1007/s00429-017-1491-2

Rohlfing, T., Zahr, N. M., Sullivan, E. V., and Pfefferbaum, A. (2010). The SRI24
multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31,
798–819. doi: 10.1002/hbm.20906

Roth, G. S., Mattison, J. A., Ottinger, M. A., Chachich, M. E., Lane, M. A.,
and Ingram, D. K. (2004). Aging in rhesus monkeys: relevance to human health
interventions. Science 305, 1423–1426. doi: 10.1126/science.1102541

Saad, Z. S., Glen, D. R., Chen, G., Beauchamp, M. S., Desai, R., and
Cox, R. W. (2009). A new method for improving functional-to-structural
mri alignment using local pearson correlation. Neuroimage 44, 839–848.
doi: 10.1016/j.neuroimage.2008.09.037

Schulz, M.-A., Yeo, B., Vogelstein, J. T., Mourao-Miranada, J., Kather, J. N.,
Kording, K., et al. (2020). Different scaling of linear models and deep learning in
ukbiobank brain images versus machine-learning datasets. Nat. Commun. 11, 1–15.
doi: 10.1038/s41467-020-18037-z

Scott, J. A., Grayson, D., Fletcher, E., Lee, A., Bauman, M. D., Schumann, C.
M., et al. (2016). Longitudinal analysis of the developing rhesus monkey brain using
magnetic resonance imaging: birth to adulthood. Brain Struct. Funct. 221, 2847–2871.
doi: 10.1007/s00429-015-1076-x

Seidlitz, J., Sponheim, C., Glen, D., Frank, Q. Y., Saleem, K. S., Leopold, D. A.,
et al. (2018). A population mri brain template and analysis tools for the macaque.
Neuroimage 170, 121–131. doi: 10.1016/j.neuroimage.2017.04.063

Shi, Y., Short, S. J., Knickmeyer, R. C., Wang, J., Coe, C. L., Niethammer, M., et al.
(2013). Diffusion tensor imaging-based characterization of brain neurodevelopment in
primates. Cerebral Cortex 23, 36–48. doi: 10.1093/cercor/bhr372

Sierpowska, J., Bryant, K. L., Janssen, N., Blazquez Freches, G., Römkens,
M., Mangnus, M., et al. (2022). Comparing human and chimpanzee temporal
lobe neuroanatomy reveals modifications to human language hubs beyond
the frontotemporal arcuate fasciculus. Proc. Nat. Acad. Sci. 119, e2118295119.
doi: 10.1073/pnas.2118295119

Simmons, H. (2016). Age-associated pathology in rhesus macaques (macaca
mulatta). Vet. Pathol. 53, 399–416. doi: 10.1177/0300985815620628

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv [Preprint]. arXiv:1409.1556.
doi: 10.48550/arXiv.1409.1556

Smith, S. M., Elliott, L. T., Alfaro-Almagro, F., McCarthy, P., Nichols, T. E.,
Douaud, G., et al. (2020). Brain aging comprises many modes of structural and
functional change with distinct genetic and biophysical associations. Elife 9, e52677.
doi: 10.7554/eLife.52677

Sotardi, S., Gollub, R. L., Bates, S. V., Weiss, R., Murphy, S. N., Grant, P. E., et al.
(2021). Voxelwise and regional brain apparent diffusion coefficient changes on mri
from birth to 6 years of age. Radiology 298, 415. doi: 10.1148/radiol.2020202279

Souder, D. C., Dreischmeier, I. A., Smith, A. B., Wright, S., Martin, S. A., Sagar, M.
A. K., et al. (2021). Rhesus monkeys as a translational model for late-onset Alzheimer’s
disease. Aging Cell 20, e13374. doi: 10.1111/acel.13374

Frontiers in AgingNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1249415
https://doi.org/10.1016/j.brainresbull.2018.06.015
https://doi.org/10.1002/hipo.22156
https://doi.org/10.1016/j.neurobiolaging.2010.07.010
https://doi.org/10.1093/cercor/bhy056
https://doi.org/10.1093/jn/nxaa174
https://doi.org/10.1101/2019.12.13.19014902
https://doi.org/10.1038/s43587-022-00219-7
https://doi.org/10.1002/hbm.24588
https://doi.org/10.1016/j.neuroimage.2016.11.005
https://doi.org/10.1016/j.neuroimage.2016.04.007
https://doi.org/10.1016/j.brainresrev.2009.12.002
https://doi.org/10.1111/j.1460-9568.2006.05175.x
https://doi.org/10.1016/j.exger.2016.12.005
https://doi.org/10.1002/aja.1000040403
https://doi.org/10.1002/aja.1000070205
https://doi.org/10.1016/j.neuron.2018.08.039
https://doi.org/10.3389/frai.2019.00012
https://doi.org/10.1038/s41597-021-01033-3
https://doi.org/10.1038/s41598-019-56089-4
https://doi.org/10.3389/fnins.2012.00152
https://doi.org/10.1109/TMI.2014.2330355
https://doi.org/10.1016/j.neuroimage.2015.08.002
https://doi.org/10.1016/j.media.2010.07.002
https://doi.org/10.1007/s12021-018-9359-z
https://doi.org/10.1002/hbm.23573
https://doi.org/10.1523/JNEUROSCI.4494-11.2012
https://doi.org/10.1016/j.media.2020.101871
https://doi.org/10.3389/neuro.05.011.2009
https://doi.org/10.1016/j.neurobiolaging.2011.11.015
https://doi.org/10.1016/j.jchemneu.2018.04.002
https://doi.org/10.1126/science.3952506
https://doi.org/10.1007/s00429-017-1491-2
https://doi.org/10.1002/hbm.20906
https://doi.org/10.1126/science.1102541
https://doi.org/10.1016/j.neuroimage.2008.09.037
https://doi.org/10.1038/s41467-020-18037-z
https://doi.org/10.1007/s00429-015-1076-x
https://doi.org/10.1016/j.neuroimage.2017.04.063
https://doi.org/10.1093/cercor/bhr372
https://doi.org/10.1073/pnas.2118295119
https://doi.org/10.1177/0300985815620628
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.7554/eLife.52677
https://doi.org/10.1148/radiol.2020202279
https://doi.org/10.1111/acel.13374
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


He et al. 10.3389/fnagi.2023.1249415

Steffener, J., Habeck, C., O’Shea, D., Razlighi, Q., Bherer, L., and Stern,
Y. (2016). Differences between chronological and brain age are related to
education and self-reported physical activity. Neurobiol. Aging 40, 138–144.
doi: 10.1016/j.neurobiolaging.2016.01.014

Ström, P., Kartasalo, K., Olsson, H., Solorzano, L., Delahunt, B., Berney, D.
M., et al. (2020). Artificial intelligence for diagnosis and grading of prostate
cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 21, 222–232.
doi: 10.1016/S1470-2045(19)30738-7

Sundararajan, M., Taly, A., and Yan, Q. (2017). “Axiomatic attribution for
deep networks,” in International Conference on Machine Learning, 3319–3328.
doi: 10.48550/arXiv.1703.01365

Taylor, J. R., Williams, N., Cusack, R., Auer, T., Shafto, M. A., Dixon,
M., et al. (2017). The Cambridge Centre for Ageing and Neuroscience (Cam-
CAN) data repository: structural and functional MRI, MEG, and cognitive
data from a cross-sectional adult lifespan sample. Neuroimage 144, 262–269.
doi: 10.1016/j.neuroimage.2015.09.018

Tigges, J., Gordon, T. P., McClure, H. M., Hall, E. C., and Peters, A.
(1988). Survival rate and life span of rhesus monkeys at the yerkes regional

primate research center. Am. J. Primatol. 15, 263–273. doi: 10.1002/ajp.13501
50308

Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P.
A., et al. (2010). N4itk: improved n3 bias correction. IEEE Trans. Med. Imaging 29,
1310–1320. doi: 10.1109/TMI.2010.2046908

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems (Long Beach, CA), 30.

Wei, D., Zhuang, K., Ai, L., Chen, Q., Yang, W., Liu, W., et al. (2018). Structural
and functional brain scans from the cross-sectional Southwest University adult lifespan
dataset. Sci. Data 5, 180134. doi: 10.1038/sdata.2018.134

Wisco, J. J., Killiany, R. J., Guttmann, C. R., Warfield, S. K., Moss, M.
B., and Rosene, D. L. (2008). An mri study of age-related white and gray
matter volume changes in the rhesus monkey. Neurobiol. Aging 29, 1563–1575.
doi: 10.1016/j.neurobiolaging.2007.03.022

Zhang, C., Adeli, E., Wu, Z., Li, G., Lin, W., and Shen, D. (2018). Infant brain
development prediction with latent partial multi-view representation learning. IEEE
Trans. Med. Imaging 38, 909–918. doi: 10.1109/TMI.2018.2874964

Frontiers in AgingNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1249415
https://doi.org/10.1016/j.neurobiolaging.2016.01.014
https://doi.org/10.1016/S1470-2045(19)30738-7
https://doi.org/10.48550/arXiv.1703.01365
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1002/ajp.1350150308
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1038/sdata.2018.134
https://doi.org/10.1016/j.neurobiolaging.2007.03.022
https://doi.org/10.1109/TMI.2018.2874964
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org

	Human-to-monkey transfer learning identifies the frontal white matter as a key determinant for predicting monkey brain age
	Introduction
	Methods
	Monkey subjects and MRI acquisition
	Human subjects and MRI acquisition
	Pre-processing of human and monkey MRI
	Five AI models
	Training from scratch in monkey brain MRIs
	Transferring and refining pre-trained models from human to monkey MRIs
	Ranking AI strategies by accuracy and stability
	Interpretation

	Results
	Setup of transfer learning
	Transfer learning improved accuracy, especially in very small sample sizes
	Effects of transfer varied by AI models
	Transfer learning also improved stability
	Neuroanatomical interpretations

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


