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Background: Cognitive impairment is an irreversible, aging-associated condition 
that robs people of their independence. The purpose of this study was to 
investigate possible causes of this condition and propose preventive options.

Methods: We assessed cognitive status in long-living adults aged 90+ (n  =  2,559) 
and performed a genome wide association study using two sets of variables: 
Mini-Mental State Examination scores as a continuous variable (linear regression) 
and cognitive status as a binary variable (> 24, no cognitive impairment; <10, 
impairment) (logistic regression).

Results: Both variations yielded the same polymorphisms, including a well-known 
marker of dementia, rs429358in the APOE gene. Molecular dynamics simulations 
showed that this polymorphism leads to changes in the structure of alpha helices 
and the mobility of the lipid-binding domain in the APOE protein.

Conclusion: These changes, along with higher LDL and total cholesterol levels, 
could be the mechanism underlying the development of cognitive impairment 
in older adults. However, this polymorphism is not the only determining 
factor in cognitive impairment. The polygenic risk score model included 45 
polymorphisms (ROC AUC 69%), further confirming the multifactorial nature 
of this condition. Our findings, particularly the results of PRS modeling, could 
contribute to the development of early detection strategies for predisposition to 
cognitive impairment in older adults.
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1. Introduction

Globally, the number of long-living adults (aged 90 years and older) has been increasing 
dramatically. These individuals exhibit a degree of genetic homogeneity and rarely carry 
pathogenic gene variants associated with the early onset of life-threatening diseases, including 
cognitive impairment (CI) (Balabanski et al., 2020). Therefore, examining their genetic makeup 
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could provide valuable insights into the underlying mechanisms of 
CI. Several studies have focused on social factors, such as education, 
as well as the clinical causes and manifestations of CI in long-living 
adults. However, there are still significant gaps in our understanding 
of the genetic mechanisms underlying this condition. Han et al. (2020) 
performed a genome-wide association study in a Chinese cohort of 
long-living individuals and found that the following variants were 
protective against CI: rs13198061 in ESR1; rs56368572 in CTNND2; 
rs954303 near RNU4-58P; and rs939432 in RYR3. Based on polygenic 
risk scores (PRSs), the authors concluded that ESR1 and RYR3 play an 
important role in CI pathogenesis. These results are based, in part, on 
genotype imputation. Nonetheless, they add to our understanding of 
the genetics of CI.

Variations in the apolipoprotein E-encoding APOE gene on 
chromosome 19 have been recurring findings in studies on the 
phenomena of longevity and healthy cognitive functioning (Huang 
and Mahley, 2014). Disrupted catabolism and transport of lipids 
underlie many aging-associated neurodegenerative and cardiovascular 
diseases (Sato and Morishita, 2015). APOE, TOMM40, and APOC1 in 
its vicinity have also been associated with successful aging and 
neurodegenerative disorders (Zhou et al., 2014; Huang et al., 2016). 

Humans carry three APOE alleles: ε2, ε3, and ε4 (mean 
frequency = 6.4%, 78.3%, and 14.5%, respectively) (Eisenberg et al., 
2010). Most studies on the genetics of long-living individuals have 
detected SNPs s429358 and rs7412 (Deelen et al., 2019). The ε4 allele 
originates from rs429358, which lowers the chances of living to 90+ 
years. The ε2 allele originates from rs7412, which increases the chances 
of living to 90+ years. These SNPs have also been associated with a 
genetic predisposition to Alzheimer’s disease (Bertram et al., 2007).

АРОЕ is a 34 kDa globular protein (Chou et al., 2005) with three 
structural domains: the N-terminal domain, the C-terminal domain, 
and the hinge domain (Chen et al., 2011). Due to its atypical structure, 
there is only one full-length experimental model of this protein 
available from the Protein Data Bank—2L7B (Chen et al., 2011). In 
the absence of a clearly determined structure of the full-length protein 
structure, the molecular modeling techniques used in this study seem 
optimal for analyzing the molecular mechanisms underlying the 
functional changes induced by the rs429358 substitution.

Currently, testing for the genetic susceptibility to cognitive 
disorders, particularly Alzheimer’s disease, in older adults relies on 
early detection of the APOE ε4 allele. However, as mentioned above, 
cognitive impairment is associated with several other genes, including 
TOMM40, APOC1, ESR1, RYR3, etc. In this study, we  used a 
multifactorial approach to cognitive impairment, which allowed us to 
better understand the predisposition to cognitive disorders.

In our previous study of long-living adults, we  reported 
associations between cognitive impairment and several factors, 
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such as social (age, income, social involvement, etc.) and 
physiological (family history; gynecologic history, including age 
at onset of menopause; physical activity, etc.) (Kashtanova et al., 
2022). However, the genetic traits of Russian long-living adults 
and the association of these traits with cognitive impairment have 
not been extensively studied. It is crucial to identify the 
underlying mechanisms of cognitive impairment in people of 
different ages and to determine the most appropriate individual 
prevention measures for healthy cognitive functioning and 
successful longevity. This study aimed to bridge this gap and 
provide comprehensive data on the molecular and genetic 
mechanisms underlying cognitive impairment in Russian long-
living adults.

2. Methods

2.1. Participants, assessment methods, and 
medical histories

For a comprehensive description of the study design, see the 
previous article (Kashtanova et al., 2022). Participants in this single-
center, non-interventional, cross-sectional study were randomly 
recruited in 2019–2021  in collaboration with social services, 
retirement homes, geriatric centers, and other geriatric institutions in 
Moscow and the Moscow region. The study was open to all people 
aged 90 years and older who provided informed consent, except for 
people with mental or psychiatric disabilities. A total of 2,559 
participants provided their medical history, completed geriatric scales 
and questionnaires, and had their biomaterials (whole blood) sampled. 
All procedures were performed or assisted by a trained physician and 
a certified nurse during multiple visits to the participants’ places 
of residence.

The Mini-Mental State Examination (MMSE) was used to assess 
cognition: ≤ 9 points indicated cognitive impairment; > 24 points, no 
cognitive impairment (Folstein et al., 1975; Upton, 2013). A binary 
approach with two opposing variables (cognitive impairment/no 
cognitive impairment) was applied to avoid cofactor effects (such as, 
sensory deficits, increased fatigability, etc.) and to manage hard-to-
interpret cutoff values.

After the initial assessment (365 ± 30 days), the participants or 
their relatives were contacted to inquire about possible adverse events, 
including acute conditions, hospitalization, or death. When the 
participants or their relatives could not be reached, social and medical 
services were contacted.

Preliminary analysis and data visualization were performed using 
Python libraries (v. 3.9.12).

2.2. DNA extraction, genome-wide 
sequencing, and quality control

The QIAamp DNA Mini Kit (Qiagen, Germany) was used for 
DNA extraction from the whole blood samples. The Nextera DNA 
Flex kit (Illumina, United States) was used to create a WGS library. 
The samples were sequenced to 150 bp reads and at least 30× mean 
depth of coverage. The Illumina Dragen Bio-IT platform (Illumina, 
United  States) was used to align reads to the reference genome 

(GRCh38). Strelka2 (quality filtering) (Kim et al., 2018) was used for 
small-variant calling. Before individual quality control steps, all 
datasets were filtered using an upper threshold for missing data of 5%. 
Low-quality data were removed, such as those with an individual call 
rate <0.98; heterozygosity outliers (F ± 0.20); phenotype/genotype 
gender mismatches (females: F > 0.2, males: F < 0.2); and samples with 
cryptic relatedness or duplicates (PI_HAT >0.2). Variants violating the 
Hardy–Weinberg equilibrium (p < 10−6), variants with a call rate >0.98, 
multiallelic variants, and variants with a minor allele frequency <1% 
were also removed.

A separate group of participants was examined for the genetic 
variants rs3851179, rs3747742, and rs1990621, previously described 
as protective (Benitez et al., 2014; Santos-Rebouças et al., 2017; Li 
et al., 2020; Seto et al., 2021).

2.3. Population structure analysis

To account for population structure, a principal component 
analysis (PCA) was performed on a dataset of 15,000 SNPs from the 
Human Core Exome SNP Array (Illumina) with a frequency of less 
than 1% using Scikit-learn, a free machine learning library for the 
Python programming language. The stability of the results was 
confirmed in over 50 simulations (variance <5%). The first 10 
principal components were used as covariates in the genome-wide 
association studies.

2.4. Genome-wide association study

Logistic and linear regressions were used in the genome-wide 
association study.

In the logistic regression analysis, cognitive status was encoded as 
two opposing values: “cognitive impairment” and “no cognitive 
impairment.” The following equation was used:
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where: β0 = constant, βc = coefficient of the covariate vector, 
C = covariate vector, βg = vector of the coefficient of the genotype 
vector, G = genotype vector.

To avoid overfitting, data from 90% of the participants were 
randomly selected and used as a training set, while the remaining 10% 
were used as an additional validation set.

The following equation was used in the linear regression analysis 
of the MMSE score as a continuous variable:

 Y C G= + ∗ + ∗β β β0 c g

where: β0 = constant, βc = coefficient of the covariate vector, 
C = covariate vector, βg = vector of the coefficient of the genotype 
vector, G = genotype vector.

Non-informative SNPs were filtered out, and variant calling was 
optimized. The Python library (statsmodels v0.12.2) and Spark Cluster 
parallel processing were used for the calculation. Age, sex, and the first 
10 principal components were used as covariates.
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Variants were considered significant if they reached a Bonferroni 
threshold of p < 5.0 × 10−8. The LocusZoom JavaScript library was used 
to visualize regional associations.

2.5. Polygenic risk score

The polymorphisms identified in the genome-wide association 
study of the binary datasets were used to build a polygenic risk score 
model using the following equation:
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where: p = probability of dementia; β0 = model constant; 
βс = coefficient generated with selected covariates; βg = coefficient 
generated with selected genotypes; C = covariate vector; 
G = genotype vector.

To factor in the population structure, age, sex, and the first 10 
principal components were used as covariates.

The model was built iteratively, with more polymorphisms added 
in each iteration to identify the overfitting threshold resulting in a loss 
of accuracy on the validation dataset. The coefficients were calculated 
using ridge regression.

To train the logistic regression model, the sample was randomly 
divided into training and test sets (80% and 20%, respectively). In each 
iteration, the accuracy was evaluated by 10-fold cross validation on 
the validation dataset (20% of the training dataset) and measured by 
ROC AUC.

2.6. Polygenic risk score model validation

The PRS model was validated using additional data from 100 
participants with known phenotype: 50 participants with cognitive 
impairment and 50 participants with no cognitive impairment, which 
were not used for testing or training. The above protocol was 
followed. The predicted polygenic risk scores were compared with the 
known phenotype, and the ROC AUC was used to measure the 
accuracy of the final PRS.

2.7. Molecular modeling of APOE

The NMR structure of the wild-type APOE (ε3) was obtained 
from the Protein Data Bank (2l7b) (Chen et al., 2011). The PyMOL 
(Schrödinger) mutagenesis tool was used to generate the ε4 structure. 
The GROMACS package (version 2020.1) (Abraham et al., 2015) and 
the CHARMM27 all-atom force field (Klauda et al., 2010) were used 
for molecular dynamics (MD) simulations. An integration time step 
of 2 fs was set, and 3D periodic boundary conditions were 
implemented. A temperature of 300 K and a pressure of 1 atm were 
maintained in the system through velocity rescaling (Bussi et al., 2007) 
and the Parrinello-Rahman algorithm (Parrinello and Rahman, 1998), 
respectively. The proteins were solvated [water model TIP4P 
(Jorgensen et al., 1998)]. A 12 Å cutoff radius was defined for the 
Coulombic and van der Waals interactions. Particle-mesh Ewald 
summation (Essmann et  al., 1998) was used to compute the 

electrostatic interactions. Na+ ions were added to neutralize the 
system. Prior to the MD simulations, the conjugate gradient algorithm 
was used to minimize the energy (in 10,000 steps), followed by heating 
from 5 to 300 K over a period of 5 ns. For each model iteration, 500 ns 
MD trajectories were calculated, which totaled only 1 μs for the APOE 
dynamics. The MDAnalysis Python package (Michaud-Agrawal et al., 
2011) and PyMOL were used for data analysis and visualization.

3. Results

3.1. The study cohort

The study involved 2,559 participants between the ages of 90 and 
102, 75% of whom were women. The median MMSE score Was 23.0 
points [19.0, 26.0]. Table  1; Supplementary Figure S1 detail the 
characteristics of the study participants. Sex and age significantly 
correlated with MMSE scores (Figure 1; Table 1; Supplementary Figure S1). 
The results of the statistical analysis were adjusted accordingly.

3.2. GWAS: a linear regression model based 
on MMSE scores

After quality filtration, 8,455,468 variants were tested. Eight 
variants located on chromosomes 10 and 19 reached the genome-wide 
significance threshold. Table 2; Figure 2 present the results of the 
linear regression modeling.

SNPs on chromosome 19 were of particular interest, as seen in 
Figure  2C. SNPs rs145461979, rs78741720, rs113472381, and 
rs10048455  in intergenic regions, as well as rs193174984 on 
chromosome 10, had not been previously described. SNPs rs429358 
(in an APOE exon; chr19:44908684, GRCh38; p-value = 2.2808 × 10−12) 
and rs769449 (in an APOE intron; chr19:44906745, GRCh38; 
p-value = 2.4323 × 10−10) are particularly relevant. Substitutions at 
these positions and at rs10414043 (in a non-coding region; 
chr19:44912456, GRCh38; p-value = 1.2851 × 10−10) were associated 
with lower MMSE scores. The regression coefficient for rs429358 was 
−2.4882; for rs769449, −2.4867; and for rs10414043, −2.4925. Linkage 
disequilibrium (LD) between rs429358 and significant SNPs in its 
vicinity did not exceed 0.4 (R2).

Given reported associations between education and healthy 
cognition, GWAS results were adjusted for education 
(Supplementary material, education-adjusted GWAS results, 
Supplementary Table S2; Supplementary Figures S2, S3). The adjusted 
and non-adjusted GWAS results were identical (Table 2; Figure 2, 
non-adjusted GWAS results; Supplementary Table S2; 
Supplementary Figure S3, adjusted GWAS results). Therefore, no 
adjustment for education was further applied (significant APOE 
polymorphisms showed similar associations with MMSE scores).

3.3. Genome-wide association study using 
logistic regression modeling based on 
MMSE scores

In addition, we performed a genome-wide association study of 
those participants, whose cognitive assessments fell into two opposite 
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categories: cognitive impairment (MMSE <10) and no cognitive 
impairment (MMSE >24). The characteristics of this sub-cohort 
(n = 1,155) are described in Supplementary Table S1. The results are 
provided in Table 2; Figure 3. A total of 9,287,600 polymorphisms 
were analyzed. After quality filtration, 8,505,513 of them were tested 
in a binary logistic regression model. Eight polymorphisms across 
three chromosomes (1, 4, and 19) reached the genome-wide 
significance threshold.

These results were largely identical to the results of the genome-
wide association study based on MMSE scores as a continuous 
variable (Table 2). The logistic regression model revealed significant 
associations between cognitive impairment (MMSE <10 points) and 
rs10414043 (p-value = 4.5*10−9; coeff. =1.2811), rs429358 (p-
value = 7.7*10−10; coeff. = 1.2419), and rs769449 (p-value = 1.7 × 10−8, 
coeff. = 1.2503). These SNPs were generated in both linear (continuous 
variable) and binary models; hence, they were further studied in 
more detail.

Additionally, we detected CI-associated SNPs with genome-wide 
significance, rs11118728 (chromosome 1), rs1293508533 (chromosome 
4), and rs10048455, rs113472381, and rs113288717 (chromosome 19) 
(Table 2), which had not been previously described or annotated.

3.4. Molecular modeling of APOE

The exon-located rs429358 leads to the C112R substitution. To 
understand the molecular mechanisms underlying its effects, 
we compared the ε3 (wild-type) and ε4 (rs429358) protein isoforms. The 
tertiary structure of the protein and the site of C112R introduction are 
shown in Supplementary Figure S4. Further relaxation of the protein and 
the introduction of the C112R substitution in 2L7B (from the Protein 
Data Bank) had no discernible effect on the structure of APOE. However, 
a gain of a single positive charge in ε4 led to both changes in the net 
charge of the protein (−5 in ε3; −4, in ε4) and changes in the electrostatic 
interaction map, affecting the interactions between the APOE domains. 
Molecular dynamics (MD) simulations were used to analyze the 
behavior of all APOE isoforms in a solution, and the root-mean-square 
deviation (RMSD) was calculated. In the 500 ns MD simulations, the 
APOE isoforms demonstrated different degrees of mobility (Figure 4). 
Notably, ε3 remained the most stable throughout the simulation process 
(APOE3, Figure 4A), whereas ε4 showed the greatest deviation from its 
original structure (APOE4, Figure 4A).

The mobility of individual domains was also analyzed (Figures 4B,C), 
including the root mean square fluctuation (RMSF) of the amino acids 

TABLE 1 Characteristics of participants from linear regression analysis of MMSE scores as a continuous variable.

Characteristic N n, % or median 
[Q1; Q3] median 

[Q1, Q3]

CC p-value

Sex Female 1940 23.00 [18.00; 26.00] −1.64 1.74 × 10−07

Male 619 24.00 [21.00; 27.00] 1.64 1.74 × 10−07

Age, years 2,559 92.00 [91.00; 94.00] −0.10 9.0 × 10−02

BMI*, kg/m2 2,419 25.50 [23.10; 28.40] 0.21 9.1 × 10−12

Education* Basic 199 199 (7.9%) −4.24 4.06 × 10−19

Secondary basic 328 328 (13.1%) −0.28 4.65 × 10−01

Secondary complete 424 424 (16.9%) −1.30 1.55 × 10−04

Secondary vocational 170 170 (6.8%) 0.21 6.79 × 10−01

Advanced vocational 434 434 (17.3%) −0.03 9.25 × 10−01

Undergraduate 31 31 (1.2%) 0.42 7.21 × 10−01

Graduate 857 857 (34.1%) 1.99 2.82 × 10−13

Post-graduate 67 67 (2.7%) 2.63 1.05 × 10−03

Depression* (GDS-5; >2 points) 2,503 855 (34.2%) −0.88 1.2 × 10−24

Dependence ADL* Independent (Barthel score of >95) 215 215 (8.6%) 3.77 1.13 × 10−14

Dependent (Barthel score of ≤95) 2,298 2,298 (91.4%) −3.77 1.13 × 10−14

Diabetes mellitus (type 2)* 2,559 378 (14.8%) −0.4581 0.228

Hypertension* 2,559 2,274 (88.9%) 1.1648 0.008

Dyslipidemia* Total cholesterol ≥5.2 mmol/L 2,533 914 (36.1%) 0.9349 0.001

Total cholesterol*, mmol/L 2,533 4.77 [3.95; 5.57] 0.31 4.5 × 10−03

HDL*, mmol/L 2,532 1.25 [1.03; 1.52] 2.72 2.4 × 10−13

LDL*, mmol/L 2,524 2.86 [2.21; 3.56] 0.02 9.0 × 10−01

Lp(a)*, mg/dL 2,543 128.0 [111.0; 147.0] 0.05 3.22 × 10−25

Triglyceride*, mmol/L 2,507 1.18 [0.9; 1.54] 0.6 0.008

*Coefficients and p-values of age and sex were not adjusted; coefficients and p-values of other characteristics (*) were adjusted for age and sex. ADL, activity of daily-living; BMI, body mass 
index; СС, correlation coefficient; GDS-5, geriatric depression scale-5; MMSE, Mini-Mental State Examination; n, the number of participants with the characteristic under consideration; N, 
the number of participants with the known value for the characteristic under consideration; LDL, low-density lipoproteins; HDL, high-density lipoproteins; Lp(a), lipoprotein (a).
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(Figure  4D). The C-terminal domain had the highest RMSD value 
(0.8–1.1 nm) and contributed most to the deviation from the original 
protein structure (Figure  4B). The RMSD value of the N-terminal 
domain did not exceed 0.7 nm (Figure 4C). In APOE2 and APOE3, the 
N-terminal domains showed almost similar changes in the RMSD values. 
In APOE4, the RMSD value of the N-terminal domain was 0.15 nm 
higher. However, fluctuation analysis did not reveal any significant 
differences in the mobility of the N-terminal domains (Figure 4E). RMSF 
analysis revealed significantly more mobile hinge and C-terminal 
domains in APOE4 compared to “wild-type” APOE3 (Figure 4B), with 
maximum mobility at amino acids 260–280 (Figure 4E).

The structure of the lipid-binding domain described by Frieden 
et al. (2017) at positions 88–104 and 251–266 was examined in detail. 
The lipid-binding domain in the ε4 isoform showed structural changes 
in the MD simulations, while in the ε3 isoform, it remained very stable 
(Figure 4D). The most dramatic changes were observed at amino acids 
251–266 in the highly mobile C-terminal domain. The RMSF analysis 
of the amino acids 251–266, where the helical unwinding occurred, did 
not provide definitive results (Figure 4E). However, the region 260–266 
was significantly more mobile in APOE4 than in other isoforms.

No such changes were observed in the region, associated with 
LDL-binding (amino acids 140–150) (Frieden et  al., 2017) or 
β-amyloid-binding (amino acids 133–135 and 150–161) (Tsiolaki 
et al., 2019) in any APOE isoform.

3.5. Associations between APOE 
genotypes, lipid metabolism, and 1  year 
mortality

The results of the molecular modeling suggest an association 
between the APOE isoforms and lipid metabolism, since the structural 

deviation of the lipid-binding domain in APOE would disrupt the 
main function of the protein. Therefore, we examined the effects of 
just a single ε4 allele on lipid metabolism. We found that carrying even 
a single ε4 allele was associated with increased levels of total 
cholesterol (coeff. = 0.169; p-value = 0.013) and LDL (coeff. = 0.188; 
p-value = 9.2 × 10−4) and a higher atherogenic index (coeff = 0.194, 
p-value = 4.2 × 10−4) (Supplementary Table S3).

It is worth noting that long-living adults rarely carry the ε4 allele. 
In our study, the allele frequency was 0.007, regardless of cognitive 
status. The genome-wide association study using linear regression 
(n = 2,559; adjusted for age and sex) showed that even a single ε4 allele 
(rs429358) contributed to cognitive impairment in the oldest-old 
(coeff. = −2.4882; p-value = 2.2808 × 10−12). There was no significant 
difference in LDL levels between the “cognitive impairment” group 
and the “no cognitive impairment” group, whereas the HDL levels 
were significantly higher in the “no cognitive impairment” group 
(Supplementary Table S1). A 1-unit increase in the HDL/LDL ratio 
was associated with lower MMSE scores (coeff. = −0.736; 
p-value = 6.4 × 10−8, adjusted for age and sex). These associations may 
represent the mechanism underlying the neurodegenerative effects 
of APOE.

The ε2 allele of the APOE gene originates from the polymorphism 
rs7412 and is typically associated with the maintenance of cognitive 
functions. In our study, this allele did not reach genome-wide 
significance (linear regression, coeff. = 0.6597; p-value = 0.0342). In 
contrast to the ε4 allele, carrying even a single ε2 was associated with 
higher MMSE scores and lower total cholesterol and LDL levels 
(Supplementary Table S3).

One-year mortality was known for 1,350 participants. Carrying 
even a single ε4 allele was associated with an 80% increase in mortality 
within 12 months of assessment (Supplementary Table S3).

FIGURE 1

Correlations between the median MMSE score and age and sex.
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The interaction between two alleles had an effect on MMSE scores 
(Supplementary Figure S5; Supplementary Table S4). The ε3/ε4 
combination posed the highest risk of cognitive impairment (MMSE 
<10) (OR = 3.15; p-value =1.16 × 10−7). Analysis of MMSE scores as a 
continuous variable showed that the median MMSE score decreased 
in carriers of ε3/ε4, ε2/ε4, and ε4/ε4. However, the statistical 
significance of this decrease is difficult to assess, since only 9 
participants were carriers of ε4/ε4.

3.6. The ε4/ε4 homozygous combination 
analysis

Nine ε4/ε4-carriers (3 men and 6 women between the ages of 90 
and 95) were analyzed in more detail. Although the median MMSE 
score was lower in this group, only one carrier (a 91 years-old male; 
MMSE = 4 points) exhibited clear signs of cognitive impairment. With 
the exception of this individual, all other carriers had substitutions at 
loci rs3851179 (intergenic, chromosome 11), rs3747742 (TREML2 
missense variant, chromosome 6), and rs1990621 (intergenic, 
chromosome 7), which previously have been shown to be protective 
against cognitive impairment (Seto et al., 2021). Notably, in the entire 
cohort, these substitutions had no significant effect on MMSE scores, 
further highlighting the multifactorial and polygenic nature of 
cognitive impairment.

3.7. Polygenic risk score model (PRS model)

The binary GWAS results were used to build a polygenic risk score 
model for a genetic predisposition to cognitive impairment in adults 
aged 90+ years.

The trained model generated a ROC AUC of 84.8% (F1 = 57.4%; 
precision = 47%; recall = 73.8%) (Figure 5). Overall, the PRS model 
included 45 polymorphisms (Supplementary Table S5). Notably, some 
of the most significant SNPs in the model did not reach the standard 
genome-wide significance threshold.

The final PRS model generated a ROC AUC of 69% on the 
external validation set which included 76 women and 24 men in age 
92 (91–94) (F1 = 61.7%, precision = 65.9%, recall = 58%) (Figure 5A). 
We can conclude that the PRS model is highly specific and sensitive 
for assessing the risk of cognitive impairment. It is worth mentioning 
that models based on genetic traits are 23% more accurate risk 
predictors than those based on only other characteristics, such as age 
and sex, which are significantly associated with dementia (Figure 5B).

4. Discussion

Here, we present the findings from a genome-wide association 
study on cognitive impairment in Russian long-living adults and the 
results of molecular modeling of the APOE protein. We  detected 

TABLE 2 Summary table of GWAS results.

Chr Position AF LR 
coefficient

p-value Statistics in 
the Hardy–
Weinberg 

test

Hardy–
Weinberg 

test (p-
value)

Gene Gene variant SNP

GWAS, MMSE score as a continuous variable

chr19 44,908,684 0.077 −2.49 2.28 × 10−12 2.88 0.24 APOE Missense variant rs429358

chr19 27,353,865 0.014 −4.45 2.08 × 10−8 0.55 0.76 Intergenic variant rs145461979

chr19 44,912,456 0.063 −2.49 1.29 × 10−10 1.03 0.60 APOE Downstream gene 

variant

rs10414043

chr19 27,359,319 0.014 −4.42 2.35 × 10−8 0.55 0.76 Intergenic variant rs78741720

chr19 44,906,745 0.061 −2.49 2.43 × 10−10 1.51 0.47 APOE Intron variant rs769449

chr19 27,355,589 0.026 −3.35 1.73 × 10−8 1.88 0.39 Intergenic variant rs113472381

chr19 27,369,272 0.018 −4.49 5.41 × 10−10 0.82 0.66 Intergenic variant rs10048455

chr10 106,063,954 0.012 −5.18 4.02 × 10−9 0.35 0.84 Intergenic variant rs193174984

GWAS, “case-control”. “Case” = MMSE <10; “Control” = MMSE >24

chr19 44,908,684 0.067 1.24 7.71 × 10−10 2.26 0.32 APOE Missense variant rs429358

chr19 27,349,377 0.037 1.41 1.95 × 10−8 1.73 0.42 Intergenic variant rs113288717

chr19 44,912,456 0.055 1.28 4.51 × 10−9 1.93 0.38 APOE Downstream gene 

variant

rs10414043

chr19 44,906,745 0.052 1.25 1.74 × 10−8 1.65 0.44 APOE Intron variant rs769449

chr19 27,355,589 0.032 1.58 1.61 × 10−9 1.30 0.52 Intergenic variant rs113472381

chr19 27,369,272 0.020 1.78 1.59 × 10−8 0.50 0.78 Intergenic variant rs10048455

chr4 49,710,764 0.018 1.87 3.62 × 10−8 0.38 0.83 Regulatory region 

variant

rs1293508533

chr1 221,475,211 0.771 −0.50 3.32 × 10−8 1033.60 3.6 × 10−225 Intergenic variant rs11118728

Chr, chromosome number; AF, allele frequency; LR coefficient, logistic regression coefficient.

https://doi.org/10.3389/fnagi.2023.1273825
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Kashtanova et al. 10.3389/fnagi.2023.1273825

Frontiers in Aging Neuroscience 08 frontiersin.org

recurring polymorphisms on chromosome 19  in the non-coding 
region upstream of the APOC1 gene (rs10414043) and in the APOE 
gene (rs429358 and rs769449) and identified a possible mechanism 
whereby these substitutions contribute to cognitive impairment. SNPs 
associated with cognitive impairment have been well studied. 

However, in this study, we examined them from a different perspective, 
i.e., as factors contributing to cognitive impairment in long-living 
adults, and confirmed their significance in the Russian population.

rs10414043 G>A is located in a non-coding region on 
chromosome 19. The functional significance of this SNP can 

FIGURE 2

Manhattan plot (A), QQ plot (B), and regional association plot (C) for the linear regression model based on MMSE scores as a continuous variable 
(adjusted for age, sex, and the first 10 principal components). (A) Manhattan plot of −log10 p-values of common variants. The dashed red line 
represents a Bonferroni threshold of (−log10(5  ×  10−8)). The dashed blue line represents a threshold of (−log10(1  ×  10−6)). (B) GWAS QQ-plot. Most of 
the observed and expected p-values were identical, indicating the validity of the GWA model. (C) Regional association plot for the locus on 
chromosome 19 (chromosome 19:44,878,048–44,944,779) that contains all significant SNPs. The color indicates the strength of linkage disequilibrium 
between the lead SNP, rs429358, and other SNPs in this region. The dashed line represents a Bonferroni threshold of (−log10(5  ×  10−8)).

FIGURE 3

Manhattan plot (A), QQ plot (B), and regional association plot (C) for the logistic regression model based on MMSE scores as a binary variable (adjusted 
for age, sex, and the first 10 principal components). (A) Manhattan plot of −log10 p-values of common variants. The dashed red line represents a 
Bonferroni threshold of (−log10(5  ×  10−8)). The dashed blue line represents a threshold of (−log10(1  ×  10−6)). (B) GWAS QQ-plot. Most of the observed 
and expected p-values were identical, indicating the validity of the GWA model. (C) Regional association plot for the locus on chromosome 19 
(chromosome 19:44,878,048–44,944,779) that contains all significant SNPs. The color indicates the strength of linkage disequilibrium between the 
lead SNP, rs429358, and other SNPs in this region. The dashed line represents a Bonferroni threshold of (−log10(5  ×  10−8)).
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be speculated based on its effect on the expression of the APOC1 and 
TOMM40 genes, where it occupies regulatory regions. It has also been 
shown to be associated with changes in the volume of the hippocampus 
and amygdala, the most important parts of the limbic system (Yuan 
et al., 2019). A smaller hippocampus and amygdala (along with other 
parts of the brain) are predictors of Alzheimer’s disease in patients 
with cognitive impairment (Tabatabaei-Jafari et al., 2019).

Polymorphisms in APOE have been associated with life 
expectancy (Sebastiani et al., 2019) and cognitive status (Yamazaki 

et  al., 2019). rs429358 and rs7412 are the most typical of 
these phenotypes.

rs429358 T>C is located at chr19: 44908684 in the 4th exon of 
APOE. It causes a cysteine-to-arginine substitution at amino acid 
112 in APOE. This substitution can disrupt the unfolding of the 
protein and affect its affinity (Chen et al., 2021), leading to the 
formation of the ε4 isoform associated with Alzheimer’ disease. 
This association might be caused by the effect of the ε4 isoform, 
which has been shown to increase tau protein phosphorylation in 

FIGURE 4

Mobility analysis of APOE isoforms: ε3 (APOE3, dark blue) and ε4 (APOE4, red). Changes in the RMSD value: (A) full-length protein; (B) the N-terminal 
domain; (C) the C-terminal domain; (D) the lipid-binding domain. (E) the RMSF for all alpha-carbon atoms. The vertical dotted line marks the edges of 
the N-terminal, hinge, and C-terminal domains. The arrow marks the mutation site. (F) Structure of the ε3 isoform’s lipid-binding domain in the final 
MD simulation frame. (G) Structure of the ε4 isoform’s lipid-binding domain in the final frame. (H) The initial protein structure; blue: the lipid-binding 
domain; red: the location of the C112R substitution introduced to from the APOE4 isoform. *APOE3, APOE ε3 isoform; APOE4, APOE ε4 isoform.
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a murine model (Brecht et al., 2004), and accelerate beta-amyloid 
deposition in the early stages of Alzheimer’s disease (Hudry 
et al., 2013).

rs769449 G>A (in an APOE intron) has not been described in 
detail and is less well known. Carriers of this polymorphism have 
increased levels of phosphorylated tau protein in the cerebrospinal 
fluid (Cruchaga et al., 2013) and blood serum (Huang et al., 2022). 
Increased serum levels of phosphorylated tau protein are the primary 
marker of Alzheimer’s disease. Moreover, a sharp decline in MMSE 
scores in rs769449 carriers was observed over a 100 months period 
(Huang et al., 2022). However, the contribution of this polymorphism 
to cognitive impairment remains unclear.

According to the Genome Aggregation Database (gnomAD; 
GnomADv2.1.1), the typical allele frequencies (IF) for ε2 (rs7412), 
ε3 (wild type), and ε4 (rs429358) in a mixed-age population are: 
6.5%, 79.2%, and 14.3%, respectively. In our study, these alleles 
occurred with a frequency of 10.1%, 82.2%, and 7.6%, respectively. 
The ε2 allele was much more common in the study cohort than in 
the general population, making the rs7412 substitution a potential 
genetic marker for longevity. However, this variant is also known 
as a risk factor for cardio-vascular diseases, such as 
hypercholesterolemia (Garatachea et al., 2015). However, the ε4 
allele was significantly less common in the cohort of long living 
adults than in the general population, as confirmed by published 
data (Garatachea et al., 2015).

4.1. Analysis of the APOE protein structure

Changes in the structure of the APOE protein, caused by a single-
nucleotide substitution, alter its biophysical and biochemical 
properties, possibly accounting for its association with Alzheimer’s 
disease (Huang et al., 2004). However, the rs429358 substitution in the 
N-terminal domain, leading to the formation of the ε4 isoform, had 
no significant impact on the protein structure. Moreover, there were 
no differences in the substitution site fluctuations between the APOE 
isoforms (Figure 4E).

However, shifts in amino acid interactions, particularly salt 
bridges, caused by the gain or loss of a charged arginine, led to changes 
in the contacts between the APOE domains and their mobility. Our 
results, therefore, suggest that the ε4 isoform deviates the most from 
its original structure (Figure 4A), due to a simultaneous increase in 
the mobility of both the N- and C-terminal domains (Figures 4B,C). 
This isoform also showed increased mobility in the hinge domain 
(Figure 4E), which had been previously demonstrated in comparative 
studies of the APOE4 and the wild-type isoform structures (Ray et al., 
2017). However, the authors also observed helix formation, and, 
hence, reduced conformational mobility at 270–280  in ε4, which 
contradicts our finding of significant fluctuations in these amino acids 
(Figure 4E).

We propose that increased conformational mobility of the 
260–280 region in the C-terminal domain of APOE4 may play a 
role in the pathogenesis of cognitive impairment, in contrast to 
previous findings suggesting that the salt bridge R61-E255 
stabilizes the C-terminal domain (Hatters et al., 2006). Increased 
conformational mobility makes the protein more available for 
proteolysis, resulting in the formation of truncated APOE4 
fragments (Δ272–299) associated with amyloid aggregation 
(Harris et al., 2003). Stabilization of the C-terminal domain in 
APOE2 and APOE3 presumably preserves the full-length protein 
and improves its functionality.

Our findings also suggest that impaired lipid transporter function 
underlies the pathogenic effects of the APOE 4 isoform. Reduced lipid 
transport is the result of a low affinity of individual monomers 
resulting from alterations in the structure of the lipid-binding domain, 
as demonstrated in this study. However, the molecular nature of 
lipoprotein formation by the ε2 and ε4 isoforms should be studied in 
more detail in silico, in vitro, and in vivo.

4.2. Homozygote analysis

There were only 9 carriers of the homozygous ε4 allele among 
2,559 participants. This finding is consistent with the published 

FIGURE 5

PRS modeling results. (A) Model testing results: internal validation: 20% of the GWAS data; external validation: additional data from 100 participants, 
whose data were not used for testing. (B) Model training results. The purple line shows the ROC curve of the covariate-based model (age and sex); the 
red line represents the ROC curve of the model based on both covariates and genotype.
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data that the frequency of this allele is generally lower in older-
adults than in mixed-age populations. The homozygous ε4 allele 
could be  inversely correlated with longevity (Garatachea et al., 
2015). The subgroup of long-living ε4/ε4 carriers with relatively 
higher MMSE scores (except for one participant) is an intriguing 
case. This subgroup suggests that the rs429358 substitution, 
despite its demonstrated significance, is not a sufficient 
prerequisite for the formation of the cognitive decline phenotype 
or its sole determinant. An additional analysis of the functional 
pathways and PRS modeling confirmed this suggestion.

4.3. Polygenic risk score model

Cognitive status is a complex and heterogeneous phenotypic trait. 
Normal cognitive functioning in long-living adults aged 90+ could 
be  accounted for by a large number of the so-called protective 
polymorphisms, each with limited individual significance (Seto et al., 
2021). Given the heterogeneous nature of cognitive impairment and 
the polygenic nature of its inheritance, we built a polygenic risk score 
model for cognitive impairment in long-living adults.

Polygenic risk score modeling allows for a comprehensive genetic 
study of cognitive impairment and the identification of the 
contribution of each polymorphism to the formation of this complex 
trait. The most significant genes in our PRS model were GRIK3, SV2C, 
and DKK3, each containing a single intron polymorphism 
(Supplementary Table S5).

GRIK3 and SV2C regulate synaptic transmission. GRIK3 
encodes a glutamate receptor and has previously been associated 
with mental disorders, particularly schizophrenia (Dai et al., 2014). 
Latimer et  al. (2014) suggest that it is signaling through this 
receptor that underlies the improved cognitive performance in 
mice supplemented with vitamin D. Pathway enrichment analysis 
also showed that changes in the expression of this gene are 
associated with the development of familial Alzheimer’s disease 
(Antonell et al., 2013). The synaptic vesicle glycoprotein encoded 
by the SVC2 gene regulates the release of dopamine into the 
synaptic cleft. This process has been shown to be  disrupted in 
Parkinson’s disease (Dunn et al., 2017).

DKK3 is a member of the Dickkopf (Dkk) family, which is 
involved in embryonic development, including brain development. 
The product of this gene is considered by some authors to be  a 
potential biomarker of Alzheimer’s disease in cerebrospinal fluid 
(Zenzmaier et al., 2009).

The polygenic risk score model included many polymorphisms 
located on chromosome 19. Some of them have been previously 
described, such as rs429358 and rs769449  in APOE and 
rs10414043 in APOC1. In addition, the model included rs7256200 
(APOC1), previously associated with Alzheimer’s disease 
(Vogrinc et al., 2021), and rs1555789087 (TOMM40). APOC1, 
TOMM40, and APOE are involved in lipid metabolism and are 
well-known markers of cognitive status (Zhou et  al., 2014; 
Vogrinc et al., 2021).

Notably, all genes involved in synaptic transmission had more 
“weight” than polymorphisms in APOE, suggesting that APOE is 
insufficient as a single genetic predictor of dementia and further 
highlighting the importance of a polygenic approach to risk 
assessment. The multifactorial character of the cognitive impairment 

was also confirmed by the pathway enrichment analysis presented in 
the Supplementary material.

5. Conclusion

The genome-wide association study showed that the APOE gene 
plays a significant role in the development of cognitive impairment in 
long-living adults. The molecular modeling results showed that the 
rs429358 polymorphism (C112R missense substitution in the APOE 
protein) alters protein motility and disrupts the structure of the lipid-
binding domain, which can affect the affinity of APOE for lipids and 
reduce the efficiency of their transport. However, the presence of this 
substitution is not the only factor determining the phenotype of its 
carrier. Cognitive impairment is a multifactorial phenotype, as 
demonstrated by the diversity of genes included in the polygenic risk 
score model presented in this study. Further insight into the 
mechanisms and causes of the late-onset cognitive impairment 
observed in long-lived adults, as well as the identification of protective 
factors, will allow us to propose methods for early detection of 
dementia or even options for its treatment.
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