
Frontiers in Aging Neuroscience 01 frontiersin.org

Application of robust regression 
in translational neuroscience 
studies with non-Gaussian 
outcome data
Michael Malek-Ahmadi 1,2*, Stephen D. Ginsberg 3,4,5,6, 
Melissa J. Alldred 3,4, Scott E. Counts 7, Milos D. Ikonomovic 8,9,10, 
Eric E. Abrahamson 8,9, Sylvia E. Perez 11 and Elliott J. Mufson 11

1 Banner Alzheimer’s Institute, Phoenix, AZ, United States, 2 Department of Biomedical Informatics, 
University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States, 3 Center for Dementia 
Research, Nathan Kline Institute, Orangeburg, NY, United States, 4 Department of Psychiatry, New York 
University Grossman School of Medicine, New York, NY, United States, 5 Department of Neuroscience 
and Physiology, New York University Grossman School of Medicine, New York, NY, United States, 
6 NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 
United States, 7 Departments of Translational Neuroscience and Family Medicine, Michigan State 
University, Grand Rapids, MI, United States, 8 Department of Neurology, University of Pittsburgh 
School of Medicine, Pittsburgh, PA, United States, 9 Geriatric Research Education and Clinical Center, 
VA Pittsburgh Healthcare System, Pittsburgh, PA, United States, 10 Department of Psychiatry, University 
of Pittsburgh, Pittsburgh, PA, United States, 11 Department of Translational Neurosciences, Barrow 
Neurological Institute, Phoenix, AZ, United States

Linear regression is one of the most used statistical techniques in neuroscience, 
including the study of the neuropathology of Alzheimer’s disease (AD) dementia. 
However, the practical utility of this approach is often limited because dependent 
variables are often highly skewed and fail to meet the assumption of normality. 
Applying linear regression analyses to highly skewed datasets can generate 
imprecise results, which lead to erroneous estimates derived from statistical 
models. Furthermore, the presence of outliers can introduce unwanted bias, 
which affect estimates derived from linear regression models. Although a 
variety of data transformations can be  utilized to mitigate these problems, 
these approaches are also associated with various caveats. By contrast, a 
robust regression approach does not impose distributional assumptions on 
data allowing for results to be  interpreted in a similar manner to that derived 
using a linear regression analysis. Here, we demonstrate the utility of applying 
robust regression to the analysis of data derived from studies of human brain 
neurodegeneration where the error distribution of a dependent variable does 
not meet the assumption of normality. We  show that the application of a 
robust regression approach to two independent published human clinical 
neuropathologic data sets provides reliable estimates of associations. We also 
demonstrate that results from a linear regression analysis can be biased if the 
dependent variable is significantly skewed, further indicating robust regression 
as a suitable alternate approach.
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Introduction

Linear regression and the assumption of 
normality

Linear regression analysis is among the most used statistical 
approaches to examine associations between continuous variables 
including the field of neuroscience. This statistical approach is a 
standard function available in statistical software packages with 
outputs that are interpreted in terms of per-unit increases or decreases 
making data interpretation accessible to investigators with varying 
levels of statistical training and expertise.

Despite the simplicity and accessibility of linear regression 
analyses, an important, but often ignored, assumption is that the 
dependent variable error follows a Gaussian, or normal, distribution 
(Lang, 2004; Strasak et al., 2007). Although some degree of skewness 
in the distribution of a dependent variable can be tolerated without 
invalidating the results of a given model (Ghasemi and Zahediasl, 
2012), linear regression models generated from data with highly 
skewed or bimodal distributions likely yield spurious or invalid results 
(Hoekstra et  al., 2012). This problem is amplified in studies with 
relatively small sample sizes where the magnitude of associations may 
be unduly increased or decreased due to the degree of skewness in the 
dependent variable (Hoekstra et al., 2012).

Determining whether a variable meets the 
assumption of normality

Several established visual and quantitative approaches are used to 
assess whether a variable meets the assumption of normality (Ghasemi 
and Zahediasl, 2012). Although the most common qualitative approach 
is to create a histogram of the dependent variable and determine 
whether the shape of the histogram is consistent with a Gaussian 
distribution, quantitative approaches to test the assumption of 
normality are also useful. The Shapiro–Wilk test (Shapiro and Wilk, 
1965) uses statistical significance to indicate whether a variable’s error 
profile follows a Gaussian distribution. For the Shapiro–Wilk test, value 
of ps that are ≤0.05 indicate that the variable’s error is not consistent 
with a normal distribution and may not be amenable to the use of 
parametric statistics (e.g., linear regression). Since the Shapiro–Wilk 
test is sensitive to the highest and lowest values in large datasets 
(n > 500), it may erroneously indicate that a data set does not meet the 
assumption of normality even though visual inspection indicates 
otherwise (Uttley, 2019). Parametric tests, including linear regression, 
are fairly robust to deviations from normality in large sample sizes 
(Schmider et al., 2010) which allows for results to remain valid despite 
some degree of skewness in the datasets (Schmider et  al., 2010; 
Ghasemi and Zahediasl, 2012; Rochon et al., 2012). Despite the 
availability of visual and statistical tools to examine the normality of a 
variable, the question remains how to analyze data that do not meet the 
assumption of normality, particularly with smaller sample sizes.

Logarithmic transformation of data

A common approach to handling skewed data is to apply a 
logarithmic (log) transformation of values that will result in the data 

meeting the assumption of normality (Feng et  al., 2013). Since 
log-transformations have the effect of moving the center of the 
distribution from left to right (Feng et al., 2013), this method should 
only be  used when the data are right-skewed. Data shown in 
Figures 1A,B illustrate how the application of a log-transformation on 
right skewed data shifts the shape of the distribution so that it is closer 
to a Gaussian distribution.

The application of Shapiro–Wilk tests on each data set confirmed 
that the raw data do not meet the assumption of normality (Figure 1A, 
P < 0.001), while log-transformation of the data supports normality 
(Figure  1B, P  = 0.20). Conversely, for left-skewed distributions 
log-transformation only exacerbates the skewness of the variable 
(Feng et al., 2013). There are also instances where data are so heavily 
right-skewed that log-transformed values will not meet the 
assumption of normality (Ravaglia et al., 2006).

Another limitation of log transformations concerns data scaling 
and interpretation. Since log transformation is a form of scaling, the 
variable’s original unit of measure is no longer used following 
transformation (Bland and Altman, 1996). In studies involving a 
clinical or practical interpretation, reporting a dependent variable on 
the log scale has limited utility. For example, a total cholesterol value 
of 189 mg/dL is easily interpreted and has clinical and pathological 
meaning. However, a log-transformed total cholesterol value of 2.2764 
would not be useful for a practical interpretation.

Dichotomizing continuous variables

A common, yet methodologically unsound practice is to 
dichotomize a skewed continuous variable at a particular value in its 
distribution. This approach is not favored due to the loss in statistical 
power that results from collapsing a continuous variable into two 
categories (Kuss, 2013). Another caveat of dichotomization is that the 
selected cut point is often the mean, median, or some other arbitrary 
value. If the selection of a cut point does not have a scientific or clinical 
rationale, the result is difficult to interpret and limits its translation to 
another dataset containing the same variable. In cases where there is 
an established cut point for a continuous variable (e.g., hemoglobin 
A1c > 5.7; Mini Mental State Exam <26), dichotomization may 
be acceptable (Ragland, 1992), but the preferred analytic approach is 
to maintain the variable’s continuous scale.

Robust regression as an alternative to 
linear regression

While parametric tests like the t-test, analysis of variance 
(ANOVA), and Pearson correlation have non-parametric counterparts 
(e.g., Mann–Whitney, Kruskall-Wallis and Spearman correlation, 
respectively), a non-parametric counterpart to linear regression is 
lacking. Generalized linear models (GLMs) specify an underlying 
error distribution for a dependent variable used in estimating the 
regression model (Neuhaus and McCulloch, 2011). However, there are 
limits to the kinds of distributions that can be specified (Neuhaus and 
McCulloch, 2011). In addition, this model may be an impediment to 
a large number of investigators that lack training in advanced 
applied statistics.
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Robust regression analysis should be  used more widely in 
situations where a dependent variable’s error distribution does not 
lend itself to well-known parametric statisitcs. Although robust 
regression methodology has existed for several years (Wainer and 
Thissen, 1976; Hettmansperger et al., 2000; Cantoni and Ronchetti, 
2006; Maronna et al., 2006) and its interpretation is similar to linear 
regression, it is not typically part of graduate-level statistics and 
methodology courses taught in neuroscience programs.

The primary difference between linear regression and robust 
regression is that the former regresses individual datapoints using the 
mean of the dependent variable, while robust regression uses 
Maximum likelihood (M)-estimators as the regressor (Huber, 1964; 
Maronna and Yohai, 2000; Valdora and Yohai, 2014; Varin and 
Panagiotakos, 2019; Yang et al., 2019). A strength of M-estimators in 
robust regression is that it allows for valid associations to be drawn in 
the presence of outliers and significant skewness in a continuous 
dependent variable (Cantoni and Ronchetti, 2006).

Here, we show how robust regression can be used in datasets 
where a dependent variable’s error distribution does not meet the 
assumption of normality. Using two independent datasets from 
postmortem human brain tissue assays, we demonstrate how the use 
of linear regression with a skewed dependent variable yields biased 
estimates of associations. By contrast, we  discuss how robust 
regression enables reliable estimates when dependent variables 
are skewed.

Methods

Data sources

Dataset 1 comes from a study that investigated neurotrophin 
receptor expression via single population microarray analysis within 
the hippocampal CA1 sector (Ginsberg et al., 2019). These data were 
obtained in postmortem tissue samples from particpants of the Rush 
Religious Orders Study (RROS) that came to autopsy with an 
antemortem clinical diagnoses of no cognitive impairment (NCI, 
n = 13), mild cognitive impairment (MCI, n = 15), and Alzheimer’s 
disease (AD, n = 9; Ginsberg et al., 2019). Exclusion criteria included 
no other neurological diagnoses (e.g., Parkinson’s disease, Lewy body 

disease, hippocampal sclerosis or large cerebral infarcts). Participants 
were not taking cholinesterase inhibitors. Postmortem 
neuropathological evaluation, demographics and APOE genotype was 
available for each group. For the purpose of the present study, we 
analyzed data obtained for the BDNF TrkB and neurotrophin-3 
receptors TrkC receptors.

Dataset 2 was derived from a study investigating the association 
between vesicular glutamate transporters and spinophilin with last 
ante-mortem clinical and postmortem neuropathological diagnoses 
as well as quantitative cyano-PiB- and X-34-stained amyloid plaque 
loads in the precuneus (Mi et  al., 2023). Antemortem clinical, 
demographic, APOE information and exclusion criteria were same as 
for Dataset 1. The dataset was comprised of NCI (n  = 19), MCI 
(n = 10), and mild AD (n = 7) cases from the RROS cohort and end 
stage AD (n = 10) cases from the University of Pittsburgh Alzheimer’s 
Disease Research Center.

Robust regression

The robust regression approach used for these analyses utilized 
the M-estimation approach (Huber, 1964) where the residual function 
of the regression model is minimized as opposed to the sum of 
squared errors which is used in typical linear regression models 
(Yohai, 1988; Yohai, 1991; Abonazel and Kamel, 2019; Awwad et al., 
2022). This allows for the regression estimates to be more resistant to 
the influence of outliers and allows their use when there is no scientific 
or methodologic reason to exclude the outliers (Abonazel and Kamel, 
2019; Awwad et al., 2022).

Statistical analysis

For the analysis of Dataset 1, TrkB expression was a dependent 
variable with a global cognitive score (GCS) comprised of a battery of 19 
cognitive tests (Ginsberg et al., 2019) as the independent variable in both 
linear and robust regression models. The second example used TrkC 
expression as the independent variable and entorhinal cortex 
neurofibrillary tangle (NFT) counts as the dependent variable (Ginsberg 
et al., 2019). The Shapiro–Wilk test was used to determine whether each 

FIGURE 1

The histograms showing the distribution of raw A and B log-transformed Homocysteine values. Since the raw data are right-skewed, the log-
transformed data yielded a Gaussian-like distribution allowing for the use of for parametric test. Homocysteine data are from Malek-Ahmadi et al. (2013).
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of the dependent variables met the assumption of normality. Visual 
inspection of the dependent variables’ distributions was presented as 
histograms. Dataset 1 regression models included age at death, sex, years 
of education, and APOE ε4 carrier status as covariates. Spearman 
correlations were also used to assess the possible influence of 
multicollinearity among the predictor variables in each model.

For Dataset 2, cyano-PiB- and X-34-stained amyloid plaque loads 
in precuneus were used as dependent variables with MMSE score as 
the independent variable (Mi et al., 2023). The Shapiro–Wilk test was 
used to determine whether each of the dependent variables met the 
assumption of normality. Visual inspection of the dependent variables’ 
distributions was also shown using histograms. Dataset 2 regression 
models included age at death, sex, and years of education as covariates.

For all regression models, the coefficients, standard errors of the 
coefficients, and respective value of ps were compared qualitatively 
between the linear and robust models to show how these parameters 
are impacted by the choice of regression model. Multiple r-squared 
(R2) values were also reported for each model as a measure of model 
fit. Although adjusted R2 values are the preferred method for assessing 
model fit when a regression model has multiple independent variables, 
adjusted R2 is not available for robust regression. Therefore, for 
consistency we used the simple multiple R2 for each model.

Permutation test linear regression models served as an additional 
reference for the robust regression models. Permutation tests lack any 
assumptions about the error distribution of a dataset and estimates are 
generated by re-sampling the raw data over many iterations to derive 
the p-values (Mangiafico, 2016). The Exact permutation method was 
used to test all possible permutations of the dependent variable.

Statistical analyses were carried out using the ‘robust’, ‘robustbase’, 
and ‘lmPerm’ packages in R 4.1.3 (R Core Team, 2022).

Results

Dataset 1

Demographic, cognitive, and neuropathologic data for the NCI, 
MCI, and AD cases are shown in Table 1.

Both TrkB expression and entorhinal cortex NFT load did not meet 
the assumption of normality (p = 0.002 and p < 0.001, respectively; 
Table  2). GCS did not correlate with age (r  = −0.27, p  = 0.10) or 
education (r = 0.21, p = 0.21) and did not differ between males and 
females (p = 0.20). The linear regression model for GCS as a predictor 
of TrkB expression yielded a statistically significant association (β = 0.33, 
SE = 0.16, p = 0.04, R2 = 0.42) while the robust model indicated that this 
association was not statistically significant (β = 0.34, SE = 0.35, p = 0.34, 
R2 = 0.40; Table 3). While the two models produced similar regression 
coefficients and R2 values, the SE for the robust model was more than 
twice that of the linear model. In addition, the p-values of the 
associations in the two models diverged substantially and led to two 
very different interpretations. These differing results demonstrate that 
findings from the linear regression models are likely biased by the highly 
skewed distribution of TrkB expression values. In particular, the larger 
SE value in the robust regression model indicates that it is capturing 
more of the variability associated with the regression coefficient 
compared to the linear model. Residual plots for the linear and robust 
regression models are shown in Figures  2A,B revealed a lack of 
correlation between the fitted and residual values. For the permutation 

linear regression models, the regression coefficients were the same as 
those in the regular linear regression models. However, the GCS and 
TrkB association was no longer statistically significant (p = 0.06; Table 4) 
while the R2 value was nine percentage points lower. For the GCS and 
TrkB permutation model the results were achieved after five 
permutations while the TrkC and entorhinal cortex NFT permutation 
model required six permutations.

The analyses examining the association between TrkC expression 
and entorhinal cortex NFT load also showed that the results of the linear 
and robust regression models differed due to the dependent variable’s 
non-Gaussian distribution (Figures 3A,B). TrkC did not correlate with 
age (r = −0.18, p = 0.27) or education (r = −0.08, p = 0.65) and did not 
differ between males and females (p = 0.44) The linear model results 
indicated a statistically significant association between TrkC expression 
and entorhinal cortex NFT load (β  = −15.18, SE = 6.50, p  = 0.03, 
R2 = 0.46) while the results from robust model were not statistically 
significant (β = −12.13, SE = 6.10; p = 0.06, R2 = 0.32; Table 3). Here, the 
robust regression model yielded a smaller regression coefficient and 
accounted for far less variance in the dependent variable than the linear 
model. Although the SE values were comparable, it is important to note 
that the linear model’s value of p indicated a statistically significant 
association but not for the robust model. This also exemplifies how the 
results of a linear model are biased when the error distribution of the 
dependent variable does not meet the assumption of normality. Residual 
plots for the linear and robust regression models and indicate a lack of 
correlation between the fitted and residual values (Figures 2C,D). The 
permutation linear regression models yielded results that were identical 
to the regular linear regression model except for the R2 value, which was 
nine percentage points lower.

It is important to note that the original analyses consisted 
primarily of non-parametric Spearman correlations intended to 
address specific hypotheses (Ginsberg et  al., 2019). The analyses 
presented here do not contradict the findings of the original study but 
show how robust regression may be used as an alternative to linear 
regression when the error distribution of a dependent variable does 
not meet the assumption of normality.

Dataset 2

Demographic, cognitive, and neuropathologic data for the NCI, 
MCI, and AD cases are shown in Table 1.

Both cyano-PiB and X-34 load in the precuneus cortex failed to 
meet the assumption of normality (p < 0.001 for both, Table 2) as their 
respective histograms indicated significant right-skewness 
(Figures  3C,D). Cyano-PiB did not correlate with age (r  = 0.01, 
p = 0.97), but did show a weak correlation with education (r = −0.32, 
p  = 0.03). Males and females did not differ on cyano-PiB load 
(p = 0.69). When the MMSE is used as a predictor of cyano-PiB load 
both the linear model (β = −0.32, SE = 0.06, p < 0.001, R2 = 0.54) and 
the robust model (β = −0.18, SE = 0.05, p < 0.001, R2 = 0.21) yielded a 
significant association (Table  3). Although both models revealed 
statistically significant associations, we found major differences in the 
regression coefficients and R2 values. Specifically, the values in the 
linear model were substantially larger than those in the robust model 
indicating that the skewed distribution of cyano-PiB values led to 
inflated estimates in the linear model. Residual plots for the linear and 
robust regression models indicated a lack of correlation between the 
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fitted and residual values (Figures 4A,B). Although the p-values of 
both models indicate statistically significant associations, the strength 
of the associations in each model differed substantially with the robust 
model providing a more conservative estimate and accounted for less 
variance in the dependent variable. These differences highlight the 
need to de-emphasize interpretations that are based primarily on 
p-values. The permutation model yielded results identical to the 

regular linear regression model except that the R2 value was five 
percentage points lower (Table  4). The permutation models for 
cyano-PiB and X-34 both achieved their results in five permutations.

The analyses for MMSE and X-34 load also demonstrated that 
estimates for the strength of association can differ widely depending 
on whether a linear or robust regression model is performed. X-34 did 
not correlate with age (r  = −0.02, p  = 0.88), but showed a weak 

TABLE 1 Demographic, clinical, and neuropathologic characteristics of rush religious orders study cases used in Dataset 1 (A) and Dataset 2 (B).

A

NCI
(n =  13)

MCI
(n =  15)

AD
(n =  9)

Age at death (years) 82.95 ± 7.70 85.29 ± 4.51 86.84 ± 6.55

Education (years) 17.46 ± 4.07 19.13 ± 2.17 17.56 ± 1.67

Sex (M/F) 7/6 6/9 2/7

APOE ε4 carrier status (+/−) 1/12 7/8 8/1

MMSE 27.85 ± 1.57 26.80 ± 2.73 20.22 ± 4.06

Global cognitive score (z-score) 0.02 ± 0.27 −0.43 ± 0.25 −1.59 ± 0.37

Post-mortem interval (hours) 7.45 ± 8.19 6.92 ± 4.01 7.57 ± 3.57

Brain weight at autopsy (grams) 1,245.77 ± 170.39 1,239.73 ± 212.03 1,123.75 ± 152.59

CERAD

No AD

Possible AD

Probable AD

Definite AD

7

2

2

2

1

2

5

7

0

0

3

6

Braak Stage

0-II

III-IV

V-VI

5

8

0

2

8

5

1

2

6

B

NCI
(n  =  19)

MCI
(n  =  10)

AD
(n  =  17)

Age at death (years) 85.84 ± 5.47 87.27 ± 5.35 83.86 ± 7.72

Education (years) 17.71 ± 2.87 17.60 ± 2.17 16.35 ± 3.24

Sex (M/F) 7/12 4/6 8/9

APOE ε4 carrier status (+/−) 3/16 4/5* 8/8*

MMSE 28.53 ± 1.58 26.10 ± 3.51 16.35 ± 3.24

Global cognitive score (z-score) −0.04 ± 0.29 −0.54 ± 0.36 −1.46 ± 0.40

Post-mortem interval (hours) 6.06 ± 2.41 6.44 ± 3.00 7.09 ± 3.51

Brain weight at autopsy (grams) 1,209.84 ± 140.50 1,186.70 ± 96.41 1,190.24 ± 95.75

CERAD

No AD

Possible AD

Probable AD

Definite AD

4

4

10

1

2

0

6

2

0

0

4

13

Braak Stage

0-II

III-IV

V-VI

8

10

1

1

7

2

0

6

11

NCI, no cognitive impairment; MCI, mild cognitive impairment; AD, Alzheimer’s disease; mean ± standard deviation; MCI and AD groups each had one case where APOE genotype data was 
not available.
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correlation with education (r = −0.33, p = 0.02). Males and females did 
not differ on cyano-PiB load (p = 0.82). Both the linear model for the 
MMSE and X-34 (β = −0.37, SE = 0.07, p < 0.001, R2 = 0.52) and the 
robust model (β  = −0.24, SE = 0.05, p  < 0.001, R2  = 0.15; Table  3) 
demonstrated a statistically significant association. However, there was 

a notable difference in the numeric value of the regression coefficients 
and a 3.5-fold difference in the R2 value. Residual plots for the linear 
and robust regression models indicate a lack of correlation between 
the fitted and residual values (Figures 4C,D). The permutation model 
yielded results identical to the regular linear regression model except 

FIGURE 2

All of the plots indicate a lack of correlation between the fitted values and residuals from each model (A - Cyano-PiB and MMSE Linear Model; B - 
Cyano-PiB and MMSE Robust Model; C - X-34 and MMSE Linear Model; D - X-34 and MMSE Robust Model).

TABLE 2 Summary data for dependent variables used in the linear and robust regression models.

NCI MCI AD Shapiro–Wilk p-value*
Dataset 1

Trk2 Expression 1.93 ± 0.55 1.12 ± 0.54 0.92 ± 0.30 0.002

2.06 (1.56, 2.21) 0.87 (0.69, 1.67) 0.76 (0.71, 1.03)

Entorhinal Cortex NFT 

Count

10.62 ± 9.99 24.13 ± 19.13 35.00 ± 20.43 <0.001

5.00 (2.75, 20.00) 20.00 (12.75, 31.75) 34.00 (22.75, 42.25)

Dataset 2

Cyano-PiB Load 1.47 ± 2.12 1.16 ± 1.00 6.11 ± 5.73 <0.001

0.12 (0.00, 3.02) 0.88 (0.23, 1.99) 3.93 (1.89, 8.47)

X-34 Load 1.84 ± 2.47 2.24 ± 1.64 7.83 ± 7.21 <0.001

0.45 (0.00, 4.01) 2.13 (1.74, 2.67) 5.60 (1.96, 12.13)

NCI, no cognitive impairment; MCI, mild cognitive impairment; AD, Alzheimer’s disease; mean ± standard deviation; median (interquartile range); *p-values that are <0.05 indicate the data 
do not meet the assumption of normality.
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for the R2 value, which was five percentage points lower (Table 4). Like 
the cyano-PiB example, the differences between the linear and robust 
models for the MMSE and X-34 association indicate the improtance 
of considering whether the assumption of normality for a dependent 
variable is met before using a linear regression model.

It should be noted that the analyses in Mi et al. (2023) used the 
MMSE as the dependent variable with cyano-PiB and X-34 as 
independent variables. Here, we  used cyano-PiB and X-34 as the 
dependent variables since their distributions are more like those of 
other biological variables used in neuroscience studies.

FIGURE 3

All of these distributions are likely to yield invalid results if used as a dependent variable in a linear regression model. Histograms for TrkB Expression (A), 
Entorhinal Cortex NFT Count (B), Cyano-PiB Load (C), and X-34 Load (D).

TABLE 3 Comparison of regression statistics for linear and robust regression models.

Linear regression results Robust regression results

Coefficient SE P-value R2 Coefficient SE P-value R2

Dataset 1

Global cognitive 

score and Trk2 

expression

0.33 0.16 0.04 0.42 0.34 0.35 0.34 0.40

Trk3 expression 

and entorhinal 

cortex NFT load

−15.18 6.50 0.03 0.46 −12.13 6.10 0.06 0.32

Dataset 2

MMSE and 

cyano-PiB load

−0.32 0.06 <0.001 0.54 −0.18 0.05 <0.001 0.21

MMSE and X-34 

load

−0.37 0.07 <0.001 0.52 −0.24 0.05 <0.001 0.15
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Discussion

Using two different independent datasets from published 
postmortem neurodegenerative disease studies (Ginsberg et al., 2019; 
Mi et al., 2023), we demonstrated how robust regression can be used 
as an alternative to linear regression when the error distribution of a 

dependent variable does not meet the assumption of normality. The 
examples used in the present study show how estimates for regression 
coefficients, SE, p-values, and R2 values can be significantly biased 
using linear regression models when the dependent variable does not 
meet the assumption of normality.

While it is known that parametric tests are robust to small 
deviations of the normality assumption (Schmider et  al., 2010; 
Ghasemi and Zahediasl, 2012), this assertion assumes that there are 
no outliers and that the sample size is large. This is important as many 
translational neuroscience studies use smaller sample sizes. Although 
the examples evaluated had samples sizes of n = 37 and n = 46, which 
some may consider to be sufficiently large for a linear regression, the 
distributions of the dependent variables in these examples shows that 
their skewness precludes the use of linear regression. A more reliable 
estimate was obtained using a robust regression.

Justification for the use of parametric tests when the sample size 
is n ≥ 30 is based on the Central Limit Theorem (CLT), which states 
that a distribution of several different means tends to be normal, or 
approximately normal, when sample sizes approach n = 30 (Kwak and 
Kim, 2017). This conceptualization of the CLT is a fundamental 
concept taught in introductory statistics courses and has led to a 
fallacy that a sample size of at least n = 30 that parametric tests can 
be used without regard to a dependent variable’s error distribution. 
The present examples demonstrate that this “n = 30 guideline” should 

FIGURE 4

All of the plots indicate a lack of correlation between the fitted values and residuals from each model (A - Cyano-PiB and MMSE Linear Model; B - 
Cyano-PiB and MMSE Robust Model; C - X-34 and MMSE Linear Model; D - X-34 and MMSE Robust Model).

TABLE 4 Results for permutation linear regression models.

Coefficient P-value R2

Dataset 1

Global cognitive 

score and Trk2 

expression

0.33 0.06 0.33

Trk3 expression 

and entorhinal 

cortex NFT load

−15.18 0.03 0.37

Dataset 2

MMSE and 

cyano-PiB load

−0.32 <0.001 0.49

MMSE and 

X-34 load

−0.37 <0.001 0.47

Permutation linear regression models do not produce SE values.
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not be used to determine whether the use of parametric statistical tests 
is appropriate. Simulation studies have shown that at sufficiently large 
sample sizes (n = 100–1,000) parametric tests are robust to significant 
deviations from the normality assumption (Knief and Forstmeier, 
2021). Since, in many areas of neuroscience obtaining sample sizes of 
these magnitudes is often impractical given that resources such as 
animals and human postmortem tissue are limited, many neuroscience 
studies are carried out with smaller sample sizes like those in current 
datasets (n = 37 and n = 46).

Another important aspect of the analyses presented here is that 
the robust regression models yielded more conservative estimates 
of associations and variance accounted for in the dependent 
variable. This observation was particularly striking in the regression 
models used for Dataset 2 where the robust regression coefficients 
R2 values were markedly lower than those in the linear models 
(Tables 3, 4). This example shows how the results of linear regression 
may provide artificially high estimates of associations when 
dependent variables do not meet the assumption of normality. The 
examples in Dataset 1 demonstrate an additional problem that 
arises when linear models are used when a dependent variable is 
significantly skewed. The value of ps from the linear models in 
Dataset 1 indicated statistically significant associations while the 
robust models yielded non-significant value of ps. In this example 
the regression coefficients did not differ substantially between the 
two models. However, differences in the models p-values would 
lead to very different conclusions about the statistical significance 
of the findings. In this regard, we acknowledge that the analyses for 
TrkC and entorhinal cortex NFT count may actually suggest the 
presence of a significant association given that both the linear and 
permutation models yielded p-values that were < 0.05 while the 
robust model’s p-value was 0.06. In the absence of a ground truth it 
is unclear whether the robust model represents the true estimate of 
the association and is a limitation of this study.

It is rare that dependent variables in translational neuroscience 
studies meet the assumption of normality (Sawada, 2021) and as a 
result robust regression can and should be more widely used in order 
to provide more accurate and reliable estimates, particularly when the 
sample size is small. A major impediment to the wider use of robust 
regression is that it is not typically included in graduate level statistics 
courses among neuroscience training programs. While robust 
regression methods may be  encountered through statistics and 
methodology seminars as well as from statistically focused faculty, 
incorporating robust regression into required statistics classes in 
neuroscience graduate programs will go a long way toward the 
on-going efforts to promote and enhance rigor and reproducibility in 
the field. To help facilitate the use of robust regression, we  have 
included the R code as Supplementary material (see 
Supplementary file). Readers will find that the syntax structure of the 
linear and robust models is similar with the main difference being the 
statistical function (lm versus lmRob) used in the analyses.

Conclusion

It is rare that dependent variables in neuroscience meet the 
assumption of normality allowing for the use of linear regression 
models. Given the highly skewed tendencies of these variables and 

in some instances modest sample sizes, robust regression is a 
viable alternative that should be used more often. Given the level 
of attention being paid to rigor and reproducibility of neuroscience 
findings, incorporating robust regression as part of course 
curricula for graduate programs in neuroscience will go a long way 
toward increasing the statistical rigor of published 
neuroscience studies.
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