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Copper (Cu) plays a crucial role as a trace element in various physiological

processes in humans. Nonetheless, free copper ions accumulate in the brain

over time, resulting in a range of pathological changes. Compelling evidence

indicates that excessive free copper deposition contributes to cognitive decline

in individuals with Alzheimer’s disease (AD). Free copper levels in the serum

and brain of AD patients are notably elevated, leading to reduced antioxidant

defenses and mitochondrial dysfunction. Moreover, free copper accumulation

triggers a specific form of cell death, namely copper-dependent cell death

(cuproptosis). This article aimed to review the correlation between copper

dysregulation and the pathogenesis of AD, along with the primary pathways

regulating copper homoeostasis and copper-induced death in AD. Additionally,

the efficacy and safety of natural and synthetic agents, including copper chelators,

lipid peroxidation inhibitors, and antioxidants, were examined. These treatments

can restore copper equilibrium and prevent copper-induced cell death in AD

cases. Another aim of this review was to highlight the significance of copper

dysregulation and promote the development of pharmaceutical interventions to

address it.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition characterized by cognitive
memory impairment and is the primary form of senile dementia, representing 60–70% of
all dementia cases (Gao et al., 2022; Huang, 2023). As the population ages, the incidence
of Alzheimer’s has steadily increased, resulting in substantial societal and financial burdens
(Huang, 2023). Earlier studies estimate that around 152 million individuals worldwide will
develop AD by 2050, emphasizing the urgent need for effective drug therapies (Zhang et al.,
2021). Currently, drugs can only alleviate the symptoms of AD and do not cease or alter its
progression. Therefore, it is critical to discover efficient remedies for this condition that pose
a notable obstacle for humanity.

Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-beta (Aβ)
plaques and tau neuronal tangles in the brain (van der Kant et al., 2020; Gao et al., 2022).
However, the etiology and pathogenesis of AD have remained elusive due to the intricate
pathological changes (Kaur D. et al., 2021). Two clinical trials targeting Aβ plaques as a
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therapeutic intervention for AD have not yielded positive
outcomes, suggesting that Aβ plaques may not be the optimal target
(Salloway et al., 2014). Therefore, the current research is focused on
identifying additional pathomechanisms relevant to AD.

In recent decades, an increasing number of studies have linked
copper (Cu) dyshomeostasis to the pathogenesis of AD (Squitti
et al., 2014; Talwar et al., 2017; Pal et al., 2021a). Cu is a redox-
active metal that participates in several metabolic processes in
the brain under physiological conditions (Lei et al., 2021). It is
either present as protein-bound Cu or non-protein-bound Cu
(free Cu) in human tissues, and exerts its effects in the free form
(Zhang et al., 2016). Construction of a premature aging model
(CuSO4-SIPS) using copper sulfate (CuSO4) demonstrates the role
of Cu in age-related functional decline and advancement in age-
related diseases (Matos et al., 2015, 2017). Furthermore, higher
levels of free Cu have been observed in the serum of patients
with AD than in non-AD subjects, with a greater proportion of
exchangeable Cu in the brains of patients with AD (Desai and Kaler,
2008; James et al., 2012; Squitti et al., 2014). Furthermore, high
consumption of copper sulfate pentahydrate by mice is causally
linked to cognitive impairment, suggesting a potential correlation
between Cu exposure and AD (Noda et al., 2013; Chen et al., 2022;
Zhang et al., 2023).

Cuproptosis is a recent term coined to refer to cell death
caused by the aggregation of lipoylated proteins and proteotoxic
stress from excessive accumulation of Cu (Tsvetkov et al., 2022).
The literature reports a potential correlation between a higher
proportion of labile Cu levels and oxidative damage in the brains of
patients with AD (James et al., 2012), which is intricately associated
with cuproptosis. Therefore, this review focuses on the impact of
free Cu and cuproptosis on cognitive functions, as well as potential
therapeutic interventions. We believe that a better understanding
of the mechanism by which Cu and cuproptosis promote AD
development will help in delineating the pathogenesis of the disease
and offering insights into effective treatment strategies.

2 Copper and cuproptosis

Copper is known to participate in the physiological functioning
of the human body (Jomova et al., 2022; Tsvetkov et al.,
2022). However, excessive accumulation of free Cu is linked
to several pathological conditions, including neurodegenerative
disorders, cancer, and cardiovascular diseases (Chen et al., 2022).
In Chan et al. (1978) reported that a healthy fibroblast medium
containing Cu concentrations above 30 µg/mL induced cell death.
Although Cu concentrations in human serum are considerably
lower (Barceloux, 1999), Chan et al. (1978) reported that Cu
dysregulation contributes to the underlying pathology.

Tsvetkov et al. (2022) reported that excessive Cu2+ induces a
new form of cell death, which is distinct from all other known
apoptotic mechanisms, referred to as cuproptosis. Cuproptosis
is mediated by protein lipoylation, and FDX1 serves as the
upstream regulator. Thus, both ferredoxin 1 (FDX1) and protein
lipoylation mediate cuproptosis. Under physiological conditions,
protein lipoylation participates in the tricarboxylic acid (TCA)
cycle (Solmonson and DeBerardinis, 2018). Previous studies have
shown a correlation between mitochondrial metabolism and

susceptibility to cuproptosis. Specifically, cells with an active
TCA cycle exhibit increased protein lipoylation, and the lipoyl
moiety acts as a Cu binder, further promoting protein lipoylation
aggregation, Fe–S cluster protein loss, and heat shock protein
(HSP)70 induction, ultimately causing acute protein toxic stress
(Tsvetkov et al., 2022). Cuproptosis has been associated with several
pathological conditions, including neurodegenerative diseases,
Wilson’s disease, cancer, and cardiovascular disease (Chen et al.,
2022).

3 Copper homeostasis and
cuproptosis in the pathogenesis of
AD

Copper has been implicated in the maintenance of normal
brain functions, and deviations from appropriate levels, whether
insufficient or excessive, can cause several disorders (Madsen
and Gitlin, 2007). Excessive Cu accumulation can result in
Cu toxicity, leading to apoptosis, astrocytosis, and damage to
the hippocampus (Kalita et al., 2018). Therefore, maintaining
normal Cu levels is essential for optimal memory and learning.
A significant amount of free Cu is present in the serum of
patients with cognitive impairment and AD (Squitti et al., 2005,
2017; Rozzini et al., 2018). Moreover, a meta-analysis revealed a
positive correlation between serum Cu levels and the risk of AD
(Li et al., 2017). Excessive accumulation of Cu could contribute
to the development of AD by mediating cuproptosis, oxidative
stress, synaptic damage, Aβ plaque deposition, and neuronal death
(Figure 1).

3.1 Copper causes oxidative stress within
the CNS

The central nervous system (CNS) is greatly affected by
Cu exposure (Rossi-George and Guo, 2016; Barca et al., 2019).
A recent study demonstrated that Cu inhibits the expression of
enzymatic antioxidants, namely superoxide dismutase (SOD) and
glutathione peroxidase (GPX), in the brain tissue of mice (Zhang
et al., 2023), indicating the induction of oxidative damage. In
addition, Cu increased the levels of malondialdehyde (MDA),
a lipid peroxide, in the hippocampus of rats with cognitive
impairment, suggesting lipid damage (Zhang et al., 2023). In
another study, Cu exposure elevated the levels of hippocampal
nitric oxide and oxidative stress (OS), increased hippocampal
tissue lipid peroxidation (LPO) levels, and decreased SOD and
catalase (CAT) activities (Lamtai et al., 2020). Furthermore, Cu
toxicity induces neuronal death and astrocyte proliferation in the
hippocampus through glutamate and oxidative stress pathways,
causing impaired memory and learning ability (Kalita et al., 2018).
Thus, Cu-induced cognitive impairment is intricately associated
with the induction of oxidative damage in the hippocampus (Kalita
et al., 2018; Lu et al., 2022).

Copper exists in different oxidation states (Cu2+ and Cu+)
during the Cu cycle, resulting in the dysregulation of Cu steady-
states, which is hypothesized to be one of the key mechanisms
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FIGURE 1

Alzheimer’s disease (AD) and copper ions. Copper is transported into brain cells through membrane copper transporter protein CTR1 and exits
through ATP7A. The effect of copper on the development of AD encompasses a varied and intricate array of outcomes. (1) Copper regulates the
expression of amyloid precursor protein (APP) and the aggregation of tau, both of which contribute to oxidative damage. (2) Accumulation of
copper can result in cuproptosis and reduced activity in the cAMP-response element-binding (CREB) pathway, potentially leading to impaired
synaptic plasticity and cognitive abilities. (3) Copper is closely linked to synaptic plasticity via the regulation of long-term potentiation (LTP) and
neurotransmission. (4) The excessive accumulation of copper impacts microglial phagocytosis of Aβ and the release of pro-inflammatory cytokines.
(5) IFN-γ boosts copper uptake by increasing copper-dependent translocation of ATP7A from Golgi to cytoplasmic vesicles as well as by
upregulating the expression level of the copper importer, CTR1. This leads to a significant alteration in copper homeostasis.

underlying brain injury (Zhang et al., 2023). Copper can generate
reactive free radicals through the Fenton reaction and directly
interact with Aβ plaques and amyloid precursor protein (APP),
thereby promoting the synthesis and aggregation of Aβ plaques
(Kitazawa et al., 2016). Furthermore, Cu can bind to Aβ plaques,
thereby directly contributing to the generation of reactive oxygen
species (ROS) (Cheignon et al., 2018). The overproduction of ROS
can trigger oxidative damage in several biological macromolecules,
including the proteome, lipids, and DNA (Wu and Cederbaum,
2003; Tomanek, 2015; Pal et al., 2021b). In contrast, sequestering
Cu from Aβ peptides can hinder its accumulation and maximize
Aβ degradation (Cherny et al., 2001; Behbehani et al., 2012),
inhibit hydroxyl radical (OH) production and oxidative damage,
and ultimately decrease cell death (Chen et al., 2022).

The effects of Cu on memory function and oxidative stress in
rats are gender-dependent, with marginally greater effects observed
in female rats (Lamtai et al., 2020). This could be because estrogen
enhances Cu retention, rendering females more susceptible to
its neurotoxic effects (Amtage et al., 2014). However, further

investigation is warranted to elucidate potential gender differences
in the neurocognitive consequences of Cu.

Numerous studies have suggested that Cu-induced oxidative
stress and lipid peroxide production could be used as an
intervention target to prevent AD.

3.2 Copper increases the risk of AD

Copper can interact with several pathogenic factors, including
Aβ plaques and tau (Chen et al., 2022). In addition, it promotes
the toxic accumulation of Aβ plaques in the brain (Kitazawa et al.,
2016), thereby increasing the risk of AD.

The formation and accumulation of Aβ are central to AD
pathogenesis. These originate from Aβ precursor protein (AβPP),
which deposits in neuronal plaques, wherein AβPP regulates Aβ

synthesis (Selkoe, 2001; An et al., 2022). Cu binds to the Aβ protein
to form a stable complex (Atrián-Blasco et al., 2019) that generates
ROS (Atrián-Blasco et al., 2018) and exacerbates neuronal damage
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(An et al., 2022). Thus, Cu-promoted Aβ neurotoxicity could be
responsible for the pathogenesis of AD.

A study reported that Cu governs the conversion of AβPP
into Aβ (Becaria et al., 2006), thereby contributing to the
neurodegeneration in AD. In addition, Kitazawa et al. (2016)
stated that the Cu–Aβ complex downregulates the expression
of lipoprotein receptor-related protein 1 (LRP1), eventually
limiting the clearance of neurotoxic Aβ plaques and causing their
accumulation in the brain. In contrast, Cu chelators upregulate the
expression of ADAM 10 through the melatonin receptor (MT1/2)
and its associated downstream signaling pathways, causing marked
improvements in cognitive performance in AβPP/PS1 Tg mice
(Wang et al., 2018c). Moreover, Cu can phosphorylate tau proteins,
causing their aggregation and enhancing the formation of plaques
and pathological tangles in the brain (Kitazawa et al., 2009; Du et al.,
2014; Voss et al., 2014). Cognitive impairment in AD is attributed to
synaptic damage caused by p-tau, both structurally and functionally
(Polydoro et al., 2009; Tai et al., 2012).

3.3 Effects of copper on the CREB
signaling pathway

The accumulation of Cu in the brain is known to trigger
cuproptosis and reduce the phosphorylation of cAMP-response
element-binding protein (CREB), as well as downregulate the
expression of brain-derived neurotrophic factor (BDNF) and its
receptor, tropomyosin receptor kinase B (TrkB) (Zhang et al.,
2023). In turn, these changes lead to both structural and functional
alterations in neurons, which subsequently impairs synaptic
plasticity and cognitive abilities.

Furthermore, Cu ions can directly bind to fatty acylated
proteins in the mitochondrial tricarboxylic acid (TCA) cycle,
thereby stimulating abnormal oligomerization of fatty acylated
proteins. This results in a loss of Fe-S cluster proteins, causing
proteotoxic stress and, eventually, cuproptosis in neuronal cells.
Several studies have demonstrated that neuronal loss can cause
cognitive impairment (Hwang et al., 2006; Do Val-da Silva et al.,
2016; Esquerda-Canals et al., 2019). The key pathological processes
leading to cuproptosis are FDX1-mediated protein lipoacylation
and Cu reduction reactions.

Copper accumulation-induced oxidative damage can inhibit
CREB phosphorylation and impair CREB-mediated neuronal
excitability, which is vital for memory formation (Lisman et al.,
2018; Sharma and Singh, 2020; Lu et al., 2022). Phosphorylation
of CREB promotes neuronal survival and neutrophin-induced
differentiation (Bonni et al., 1995). BDNF is a neurotrophic factor
widely distributed throughout the brain, which largely regulates
synaptic maturation at morphological, molecular, and functional
levels (Nieto et al., 2013). Intracellular signaling, stimulated by
both BDNF and its receptor TrkB, contributes to neuronal survival,
morphogenesis, and plasticity (Numakawa et al., 2010). In addition,
CREB is known to mediate the neurotrophic and neuroprotective
impacts of BDNF (Fujino et al., 2009; Wang et al., 2018a),
BDNF promotes the phosphorylation of CREB by activating TrkB
(Pizzorusso et al., 2000), and CREB phosphorylation promotes the
transcription of the BDNF gene (Wang et al., 2018a). This sequence
of events is critical for the initiation and preservation of synaptic

functions. In addition, increasing the expression of CREB is known
to prevent cuproptosis (Zhang et al., 2023).

Because excessive accumulation of Cu in the hippocampus
can severely impair cognitive function through CREB in AD,
it is essential to maintain Cu homeostasis in the hippocampus.
Similarly, activating the CREB pathway and inhibiting neuronal
cell death in the AD brain tissue could potentially serve as novel
strategies to develop drugs against AD or intervene in it either by
delaying or halting its progression.

3.4 Effects of copper on microglia

Several studies have identified that pro-inflammatory pathways
in microglia are associated with abnormal Cu homeostasis and
AD (Zheng et al., 2010; Wang et al., 2018b). Although microglia
can phagocytize Aβ or Aβ-antibody complexes (Das et al., 2003;
Ennerfelt et al., 2022; Jäntti et al., 2022), an excessive accumulation
of Cu ions could hinder phagocytosis. This could be attributed to
the effect of Cu on the LDL receptor-related protein 1 (LRP1),
which is responsible for transporting Aβ protein (Singh et al., 2013).
Increased expression of LRP has been demonstrated to control Aβ

accumulation and neuroinflammation in AD (Deane et al., 2008).
Therefore, reduced microglial phagocytosis of Aβ and a decrease in
LRP1 expression increase the risk of AD following Cu exposure.

Interferon (IFN)-γ is the only cytokine in the IFN family
(Conlon et al., 2019) that elicits and facilitates inflammatory
responses (Langer et al., 2019; Karki et al., 2021; Yang et al.,
2022) and induces cellular death (Kano et al., 1997; Tirotta
et al., 2012). IFN-γ transcription and production are significantly
increased in reactive microglia and astrocytes surrounding the
Aβ deposits in the cerebral cortical region of the transgenic AD
mouse model (Abbas et al., 2002). Thus, IFN-γ could exert an
inflammatory effect on the formation of amyloid plaques and
activation of microglia and astrocytes. IFN-γ induces significant
changes in copper homeostasis by increasing copper-dependent
transport of ATP7A from the Golgi apparatus to cytosolic vesicles,
enhancing copper uptake and raising expression levels of the CTR1
copper importer (Zheng et al., 2010). The finding infer that pro-
inflammatory conditions associated with AD substantially alter
microglial copper transport, which may account for the fluctuations
in copper homeostasis in AD patients (Zheng et al., 2010).

The activation of nuclear factor (NF)-κB in microglia is
associated with oxidative stress, inflammatory response, and
apoptosis (Liu et al., 2020, 2021; Tastan et al., 2021). Copper
facilitates the activation of microglia and ensues neurotoxicity via
the phosphorylation and translocation of NF-κB p65. Paired helical
filament (PHF) tau and advanced glycation end products in AD
generate oxygen radicals that activate transcription via NF-κB,
increase Aβ protein precursors, and release Aβ peptides (Yan et al.,
1995).

The promoter activity of apolipoprotein E (APOE), which is
intricately linked to the development of AD, is dependent on NF-
κB (Du et al., 2005). APOE impedes microglial response, blocks Aβ

clearance, hastens Aβ aggregation, affects tau pathology and tau-
mediated neurodegeneration, and compromises synaptic integrity
and plasticity, thereby contributing to the development of AD
(Yamazaki et al., 2019).
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3.5 Effects of copper on nerve synapses

Synaptic damage is the primary cause of cognitive impairment
in AD (Polydoro et al., 2009; Tai et al., 2012). A study reported
that Cu, an essential element, could exert a biphasic impact on
the initiation of neurotransmission to uphold sufficient synaptic
function (Opazo et al., 2014). Physiologically, Cu is essential for
normal synaptic functions by improving neurotransmission via
modification of the arrangement of neuronal proteins, such as by
facilitating the accumulation of postsynaptic density protein (PSD)
95 protein (Opazo et al., 2014). Excessive Cu exposure is known
to impact both pre- and post-synaptic regulatory mechanisms
(Zhang et al., 2023). Copper sulfate (5 mg/kg) has been reported to
substantially enhance the population spike (PS) amplitude elicited
by hippocampal Schaffer collateral fiber stimulation and repress
long-term potentiation (LTP) and paired-pulse index (PPI) in
the hippocampal CA1 zone. Conversely, higher concentrations
(10 mg/kg and 15 mg/kg) of copper sulfate fail to exert any
significant effects on PS amplitude, LTP, or PPI inception (Jand
et al., 2018). Another study reported that Cu administration caused
a concentration-dependent increase in the total Cu content in
the hippocampus. However, hippocampal-free Cu only increased
after the administration of lower concentrations (0.2 mg/Kg)
of Cu(OAc)2 and decreased after the administration of higher
concentrations (2 mg/Kg and 20 mg/Kg) (Zhang et al., 2016). This
could be attributed to higher concentrations of Cu that stimulate
responses in Cu-binding proteins (Zhang et al., 2016).

Several studies have reported that Cu impedes long-term
potentiation and reduces synaptic plasticity (Doreulee et al.,
1997; Leiva et al., 2003; Goldschmith et al., 2005). Goldschmith
administered high doses of copper (dissolved in water) (8–
10 mg/day) to rats and observed inhibition of LTP onset, with
a significant reduction in synapse sensitivity and facilitation
(Goldschmith et al., 2005). Similarly, Leiva et al. (2003, 2009)
investigated the effect of long-term copper sulfate administration
(1 mg/kg) on hippocampal LTP, and the findings align with the
previously mentioned results. Overall, these findings indicate that
copper exerts an effect on synaptic function (Gaier et al., 2013).

In addition, Cu-induced dysregulation of acetylcholine (ACh),
glutamate, γ-aminobutyric acid (GABA), and other synaptic
transmitters, is strongly associated with cognitive abnormalities
and behavioral changes in AD (Pal et al., 2013; Pavandi et al., 2014;
Zhang et al., 2016; Kaur S. et al., 2021). Copper is released into
the synaptic cleft, where it inhibits excitatory neurotransmission
by blocking glutamate receptors (Opazo et al., 2014). However,
its excessive accumulation significantly decreases the levels of
dopamine, 5-hydroxytryptamine, and GABA and increases those
of glutamate (Kaur S. et al., 2021). Glutamate contributes
to neurological disorders by binding with glutamate receptors
(Traynelis et al., 2010). An excessive amount of glutamate has
been demonstrated to induce oxidative stress and activate caspase-
3 and glial fibrillary acidic protein (GFAP) (Kalita et al., 2018).
The overabundance of extracellular Glu and subsequent excessive
activation of ionic Glu receptors eventually cause neuronal cell
death (Lamtai et al., 2020). In addition, excessive accumulation
of Cu decreases the serum acetylcholinesterase activity and causes
neuronal degeneration (Pal et al., 2013). A recent study concluded
that exposure to copper downregulates the expression of serotonin

(5-HT), dopamine (DA), and GABA in the hippocampus of mice
(Zhang et al., 2023).

4 Potential therapeutic avenues

4.1 Copper chelators

Heavy metals are known to initiate free radical-mediated
chain reactions, causing oxidative deterioration of biomolecules,
lipid peroxidation, protein oxidation, and oxidation of nucleic
acids (Flora et al., 2013). Free metals significantly contribute to
the pathomechanisms of AD. Because patients with AD often
experience disruptions in metal homeostasis and OS within their
brains (Sestito et al., 2019), metal chelators could be used as
a potential therapeutic strategy to prevent excessive free Cu
from contributing to redox reactions. Metal chelators have been
demonstrated to significantly reduce the generation of ROS and
hydroxyl radicals (Csire et al., 2020).

Clioquinol (CQ) is a mild metal chelating agent in the body
for iron, Cu and zinc (Cahoon, 2009). For example, a 9-week CQ
treatment inhibited and could have reversed the accumulation of
Aβ deposits in APP 2,576 transgenic animals. Furthermore in vitro
experiments demonstrated that CQ blocked the interaction of
Cu2+ and Zn2+ within brain Aβ plaques, thus reversing metal ion-
induced aggregation (Cherny et al., 2001). However, several studies
have reported that CQ does not exhibit a significant advantage over
alternative chelators in effectively treating AD (Adlard et al., 2008;
Sun et al., 2022). Furthermore, clinical trials of CQ for AD have
been unsuccessful (Ho et al., 2022).

5,7-Dichloro-2-(dimethylamino)methyl-8-hydroxyquinoline
(PBT2) is a second-generation derivative of 8-OH quinoline
(Lannfelt et al., 2008) that has been developed as an ion carrier
(Bush, 2008; Cahoon, 2009). It has demonstrated satisfactory
efficacy in phase IIa clinical trials (Bush, 2008). However, the
results of existing clinical trials are questionable including phase
IIa trials. For example, there exists a bias toward reporting
outcomes of clinical trials of therapeutic Cu chelators as positive
and beneficial for patients (Drew, 2017). In addition, a recent study
demonstrated that PBT2 could not chelate Cu(II) from Aβ(1-42)
than CQ and B2 Q. Therefore, it can be hypothesized that PBT2
has a poor anti-AD effect (Summers et al., 2022). Further studies
are required to completely and accurately assess the protective
properties of PBT2 in AD.

Tetrathiomolybdate (TTM) is a kind of chelating agent that can
inhibit Cu absorption, has a rapid onset of action, and does not
cause neurological deterioration (Ejaz et al., 2020). Although TTM
is toxic following injection into the hippocampus, the formation
of metal ion/TTM complexes with Cu2+ reduces the toxicity
(Armstrong et al., 2001). TTM can form a high-affinity triple
complex with Cu and albumin, chelating Cu in the bloodstream
(Yu et al., 2006). However, ammonium preparations have been
considered highly unstable for routine use (Ejaz et al., 2020).
Moreover, TTM is not effective when used as a single agent (Yu
et al., 2006) and its clinical applicability remains limited (Weiss
et al., 2017).

Bis-choline TTM (WTX101) is an orally available Cu protein-
binding molecule that targets Cu in hepatocytes and reduces
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plasma non-ceruloplasmin-bound copper (NCC) by forming a
triple complex with albumin and enhances biliary Cu excretion, and
is more stable than TTM (Weiss et al., 2017).

Weiss et al. (2017) conducted a Phase II study to evaluate the
efficacy and safety of WTX101 in the initial or early treatment
of patients with Wilson’s disease (WD). The results suggested
that low-dose WTX101 could be a promising novel treatment
for WD (Weiss et al., 2017). Molybdenum accumulates in the
major organs of Sprague–Dawley rats following repeated oral
administration of bis-choline TTM. Therefore, it is hypothesized
that prolonged exposure could result in adverse pathophysiological
cellular functions (Foster et al., 2022).

Sun et al. (2022) designed specific Cu chelators [tetradentate
monoquinolines (TDMQs)] and investigated changes in protein
profiles expressed in 5xFAD mice following oral treatment
with TDMQ20. The results implied that TDMQ20, a Cu
chelator, functions on the cholinergic system and mediates Cu
homeostasis in the brains of patients with AD and inhibits
the deleterious oxidative stress catalyzed by Cu–Aβ complexes,
thereby improving cognitive and behavioral performance in AD
rats (Sun et al., 2022). In another study, Zhao et al. (2021)
demonstrated that TDMQ20 reduced memory impairment in
a mouse model of AD. However, there exists a dearth of
extensive clinical trials assessing the effects of TDMQ20 in human
subjects.

In addition to potential side effects and instability, numerous
objective reasons restrict the use of Cu chelators (Table 1). Certain
chelators for Cu are hydrophilic and require small hydrophobic
molecules to cross the blood–brain barrier (BBB) (Kenche and
Barnham, 2011). However, nanoparticle delivery systems could
be promising and intriguing methods for metal chelation in AD
treatment (Bonda et al., 2012). This novel technology has been used
in multiple studies to treat different illnesses (Hernando et al., 2016;
Xiao et al., 2022; Guadarrama-Escobar et al., 2023). Furthermore,
Cu is known to maintain proper physiological functions (Opazo
et al., 2014; Jomova et al., 2022; Tsvetkov et al., 2022). However,
chelating agents involve the risk of depleting the body’s essential Cu
levels (Andersen, 2004), adding to the limitation on chelator usage.
Thus, it is imperative to explore safer Cu chelators.

TABLE 1 Potential therapies targeting copper in AD.

Category Drug Limitations

Copper chelators CQ Unsuccessful clinical trials

PTB2 Clinical trials could be biased

TTM Unstable efficacy

WTX101 Molybdenum accumulation

TDMQ20 No large-scale clinical trials have been
conducted to assess safety

Antioxidants Lazaroids Failure to sustain cytoprotection during
advanced stages of cellular injury

Curcumin Induces pharmacokinetic changes

ECGG Affects drug effects

Quercetin Affects drug effects

RES Affects drug effects

4.2 Antioxidants

The generation of ROS and accumulation of lipid peroxides
have been known to contribute to cuproptosis. It could be feasible
to employ antioxidants to impede cuproptosis to treat AD.

In Hall (1992) discovered a range of efficient lipid peroxidation
inhibitors known as “lazaroids,” which can alleviate such
peroxidation in the brain tissue and impede the degeneration
of motor nerve fibers, contributing to the treatment of AD.
However, the inability of the Lazaroid compound to sustain
cytoprotective effects during the advanced stages of cellular injury
could be ascribed to its restricted clinical effectiveness (Huang
et al., 2001). Another study demonstrated that a combination
of multi-antioxidant nutritional supplements improved the
memory and cognitive functions of adults living in the community
(Chan et al., 2010).

Natural polyphenols, including resveratrol, epigallocatechin
gallate, and curcumin, are potential therapeutic agents in treating
oxidative stress, reducing extracellular amyloid deposition, and
managing AD (Jayasena et al., 2013).

Curcumin is extracted from turmeric and possesses therapeutic
properties, including anti-inflammatory, neuroprotective,
neurotoxic metal chelating, anti-amyloidogenic, and antioxidative
effects on mitochondria and DNA (Lakey-Beitia et al., 2017;
Khayatan et al., 2023; Maghool et al., 2023). This natural extract
also modifies microglia activity and inhibits acetylcholinesterase,
making it an effective treatment for AD (Tang and Taghibiglou,
2017). However, its potential therapeutic value may be limited by
its low bioavailability (Tang and Taghibiglou, 2017). There may be
hope for curcumin-based treatments for AD in the future, provided
that the issue of poor bioavailability can be effectively addressed
(Tang and Taghibiglou, 2017).

A study demonstrated that green tea extract, epigallocatechin-
3-gallate (EGCG) can reduce the toxicity of metal-free Aβ and
metal-Aβ plaques and exhibit a distinctive anti-amyloidogenic
reaction to metal-aβ plaques (Hyung et al., 2013). However, several
studies have demonstrated that high concentrations of EGCG can
cause liver toxicity (Wang et al., 2015a,b).

Quercetin belongs to the flavonol class of flavonoids; it is one of
the most effective plant antioxidants (Brüll et al., 2015). Quercetin
protects neural cells by attenuating neuroinflammation (Bournival
et al., 2012) and inhibiting Aβ aggregation and tau phosphorylation
(Khan et al., 2019), anti-oxidative, anti-lipid peroxidative,
and acetylcholinesterase inhibitory activities (Rishitha and
Muthuraman, 2018). However, its limited penetration via the
BBB restricts its efficacy against neurodegenerative diseases
(Khan et al., 2019).

Resveratrol (RES) is an effective antioxidant, scavenger of ROS,
and a metal chelator (Olas and Wachowicz, 2005). A previous
study demonstrated that RES treatment protected high-fat diet
(HFD)-induced insulin resistance (IR) rats from diet-induced IR
and elevated the expression of sirtuin 1 (SIRT1) and sirtuin
3 (SIRT3), mitochondrial DNA, and mitochondrial biogenesis
(Haohao et al., 2015). In addition, RES enhances mitochondrial
antioxidant enzyme activity, thereby reducing oxidative stress
(Haohao et al., 2015).

Naturally occurring polyphenols possess considerable
therapeutic potential due to their intrinsic antioxidative and
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chelating properties. In addition, certain polyphenols can
potentially cross the BBB through chemical modification of
their structure (Grabska-Kobyłecka et al., 2023). However,
potential interactions between antioxidants and other medications
should be considered as patients with AD could have additional
underlying conditions requiring long-term treatment (Table 1).
For instance, resveratrol can influence the effectiveness of other
medications by inhibiting intestinal enzymes such as CYP3A4 or
P-glycoprotein, especially in drugs with higher first-pass effects,
such as specific calcium channel blockers, sildenafil, midazolam,
and nefazodone (Detampel et al., 2012). In addition, quercetin
and EGCG have been reported to display a similar effect (Choi
and Burm, 2009; Choi et al., 2011; Tang et al., 2023). Curcumin
can cause changes in pharmacokinetics during its simultaneous
use with pharmacological agents such as cardiovascular drugs,
antidepressants, anticoagulants, antibiotics, chemotherapeutic
agents, and antihistamines (Bahramsoltani et al., 2017).

4.3 Other therapeutic targets

It has been established that Cu can activate the NF-κB signaling
pathway, causing increased production of several inflammatory
factors (Liu et al., 2020, 2021; Tastan et al., 2021) and APOE activity
activation (Du et al., 2005), ultimately driving AD progression.
Therefore, the application of NF-κB inhibitors could hinder the
activity of NF-κB-induced APOE, consequently obstructing the
progression of AD.

Reports have stated that p53 can inhibit glucose uptake and
glycolysis, promoting a metabolic shift in the TCA cycle and
oxidative phosphorylation and contributing to Cu toxicity (Li et al.,
2023; Xiong et al., 2023). In addition, p53 regulates the biogenesis
of Fe-S clusters and glutathione (GSH) (Ho et al., 2022; Xiong et al.,
2023), thereby mitigating or enhancing Cu toxicity (Xiong et al.,
2023)—two processes crucial for cuproptosis. Thus, p53-related
therapeutic targets could be associated with cuproptosis, although
its detailed mechanism of regulating Cu toxicity requires further
research.

Alternatively, because Cu significantly contributes to the
complex pathological mechanisms underlying AD, treating patients
with multiple heterozygous compounds acting simultaneously on
different biological targets could be a promising approach (Dias
and Viegas, 2014). For instance, a clinical trial demonstrated
that administering a nutritional formulation containing folic acid,
α-tocopherol, B12, S-adenosylmethionine, N-acetylcysteine, and
acetyl-L-carnitine to patients with AD for over a year effectively
delayed AD progression (Remington et al., 2016).

5 Conclusion and future
perspectives

The majority of clinical studies based on the mainstream
hypothesis of AD pathogenesis have not yielded significantly
positive outcomes. Therefore, it is essential to unravel the complex
pathophysiological mechanisms underlying AD and discover and
develop novel AD therapeutic targets and drugs. Despite the
potential of Cu-chelating agents, lipid peroxidation inhibitors,

antioxidants, and other molecules to prevent homeostatic disorders
and cuproptosis, we need to identify drugs that can effectively
cross the BBB with minimal systemic side effects. In this regard,
nanomedicine delivery systems present a promising avenue for
AD therapy. However, it is crucial to emphasize the possibility
of drug–drug interactions in patients simultaneously taking
multiple medications.

Major challenges for forthcoming studies entail
comprehensively identifying the roles of copper in AD pathogenesis
and potential druggable targets. Our team has been dedicated to
investigating methods to improve cognitive capabilities for an
extended period. Our next goal is to develop a copper-targeted
therapy for the treatment of AD. We aimed to provide a scientific
basis for the clinical development of novel treatment approaches
for AD, which is a promising and challenging process.

In conclusion, our review of the mechanisms of oxidative
stress, cuproptosis death, amyloid deposition, neuronal death, and
synaptic damage in AD caused by Cu dysregulation demonstrated
that Cu and cuproptosis are promising therapeutic avenues for
the future treatment of AD through the development of safe and
effective Cu-chelating drugs.
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