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Vascular dementia (VD) is a prevalent cognitive disorder among the elderly. Its 
pathological mechanism encompasses neuronal damage, synaptic dysfunction, 
vascular abnormalities, neuroinflammation, and oxidative stress, among others. 
In recent years, extracellular vesicles (EVs) derived from mesenchymal stem 
cells (MSCs) have garnered significant attention as an emerging therapeutic 
strategy. Current research indicates that MSC-derived extracellular vesicles 
(MSC-EVs) play a pivotal role in both the diagnosis and treatment of VD. 
Thus, this article delves into the recent advancements of MSC-EVs in VD, 
discussing the mechanisms by which EVs influence the pathophysiological 
processes of VD. These mechanisms form the theoretical foundation for their 
neuroprotective effect in VD treatment. Additionally, the article highlights the 
potential applications of EVs in VD diagnosis. In conclusion, MSC-EVs present 
a promising innovative treatment strategy for VD. With rigorous research and 
ongoing innovation, this concept can transition into practical clinical treatment, 
providing more effective options for VD patients.
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1 Introduction

Dementia is characterized by an acquired progressive cognitive decline in memory and 
other cognitive domains, that are severe enough to interfere with daily living or occupational 
functioning (Livingston et al., 2020). Vascular dementia (VD) ranks second only to Alzheimer’s 
disease (AD) as a cause of dementia, representing approximately 15% of total cases of dementia 
(O’Brien and Thomas, 2015). Other terms for VD include vascular cognitive impairment 
dementia and multi-infarct dementia (Akhter et al., 2021). In 2019, an estimated 55.2 million 
people globally were afflicted with dementia. Projections suggest that by 2030, the number of 
dementia patients will increase to approximately 78 million, with the global cost associated 
with dementia surging to 1.7 trillion US dollars (WHO, 2021). As the global population ages, 
the incidence of dementia is increasing significantly, predicting a twofold increase in AD and 
other related dementias by 2050 (Guest and Smith, 2021). Currently, the effective treatment 
options of VD are still limited (O’Brien and Thomas, 2015). As a prevalent neurodegenerative 
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disease in older individuals (Hase et al., 2020), VD’s association with 
vascular, neuronal, and synaptic dysfunctions complicates its 
treatment. With a rapidly aging global population, there is an 
escalating urgency for VD treatment solutions. Thus, researchers are 
compelled to investigate innovative diagnostic and therapeutic 
strategies to address this challenge.

Mesenchymal stem cells (MSCs) have become a focal point in 
medical research. Nonetheless, their clinical application faces hurdles 
like storage issues, reduced cell viability post-transplantation, 
inefficient targeting, dose determination to sustain therapeutic effects, 
and cellular aging due to in vitro expansion (Regmi et  al., 2019; 
Al-Khawaga and Abdelalim, 2020; Yen et al., 2020; Yu et al., 2020). An 
increasing body of research suggests that MSCs do not solely operate 
through cell differentiation; they also mediate myriad biological effects 
through their secreted extracellular vesicles (MSC-EVs) (Asgarpour 
et al., 2020). Moreover, MSC-EVs offer several advantages over MSCs, 
including enhanced targeted delivery, reduced immunogenicity, and 
superior reparative potential. Consequently, MSC-EVs could 
introduce novel therapeutic pathways, ushering in exciting prospects 
for clinical application (Tang et al., 2021).

The primary aim of this paper is to unearth the potential 
applications of MSC-EVs in VD diagnosis and treatment. By 
systematically analyzing the bioactive components within EVs and 
their roles in neuroprotection, anti-inflammation, and antioxidation, 

we intend to underscore their viability in VD therapy. This study will 
also emphasize the prospective role of EVs in the early detection of 
VD, particularly their potential as biomarkers. Additionally, we will 
probe current challenges and forthcoming research avenues, steering 
the precise and efficient use of MSC-EVs in advancing VD treatments. 
In essence, through a thorough exploration of MSC-EVs’ role in VD 
treatment, we  aim to lay the groundwork to tackle this clinical 
challenge, offering enhanced therapeutic alternatives for patients and 
fostering the health and wellness of an aging population.

2 Overview of MSCs and EVs

EVs are widely studied in biomedical applications due to their 
biocompatibility, appropriate size, and low immunogenicity, which 
collectively contribute to an extended circulation time (Peng and Mu, 
2016; Yue et al., 2023). The general term “EVs” contain various types 
of membrane-enclosed vesicles, including exosomes, extracellular 
autophagic vesicles, and apoptotic bodies, and these can have 
overlapping size ranges (Davidson et al., 2023). Their diameters are 
30–150 nm, 200–1,000 nm and 800–5,000 nm, respectively (He et al., 
2018). However, there is currently no precise method to distinguish 
and isolate exosomes from other EVs (Théry et  al., 2018). Many 
studies have convincingly shown that both exosomes and microvesicles 
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contain specific proteins and nucleic acids that act as vectors for 
intercellular communication factors (Davidson et al., 2023; Du et al., 
2023). They have since been established as being secreted by neural 
progenitor cells (Marzesco et al., 2005), MSCs (Lai et al., 2010), CD34+ 
stem cells (Sahoo et al., 2011), and other progenitor cell types. EVs are 
intraluminal vesicles formed by the inward budding of the endosomal 
membrane during the maturation of multivesicular bodies (MVBs). 
They act as intermediaries within the endosomal system and are 
released when MVBs fuse with the cell surface (van Niel et al., 2018). 
They are also characterized by specific marker proteins such as the 
tetraspanins CD63, CD81, and CD9 (McAndrews and Kalluri, 2019; 
Figure 1). They facilitate the transportation of various biochemical 
substances, including cytokines, mRNA, miRNA, and protein (Wang 
et al., 2023). Serving as mediators for cell-to-cell communication, they 
transport proteins, lipids, nucleic acids, and other components to 
neighboring or distant cells (Li S. P. et al., 2018). The protein content 
of EVs has been thoroughly identified through various proteomic 
methods (Welton et al., 2010). Mass spectrometry reveals over 4,000 
distinct proteins present in EVs (Tickner et al., 2014). EVs also exhibit 
high stability in various body fluids, including blood, urine, pleural 
effusion, peritoneal effusion, cell supernatant, milk, saliva, and 

cerebrospinal fluid (CSF) (Skog et  al., 2008). Over the past two 
decades, the scientific interest in EVs has surged, with annual citations 
leaping from 28 in 1996 to 24,765 in 2016, marking EVs as a current 
research hotspot (Marban, 2018).

MSCs are pluripotent stem cells known for their self-renewal and 
multi-directional differentiation capabilities. Initially isolated from 
bone marrow (Schulman et  al., 2018), they can differentiate into 
various cell types under different stimuli (Narakornsak et al., 2016). 
Due to their versatile differentiation potential and self-renewal ability, 
MSCs hold promising research and application prospects in tissue 
engineering, regenerative medicine, and immunotherapy (Merimi 
et al., 2020). As a therapeutic modality, MSCs have been successfully 
applied to numerous diseases (Margiana et al., 2022). Moreover, MSCs 
orchestrate immune responses by secreting immunomodulatory 
factors paracrinally, fostering new blood vessel formation, supplying 
nutrients to damaged neurons, and promoting nerve tissue repair and 
regeneration (Harrell et al., 2021). Given their extensive functions in 
nerve cells, including self-renewal, anti-inflammatory action, signal 
transduction, differentiation (Torres Crigna et  al., 2018), potent 
immunosuppressive, vasoregulatory properties, and no ethical 
controversies (Salgado et al., 2015), MSCs have potential applications 

FIGURE 1

EVs are intraluminal vesicles formed by budding inward from the endosomal membrane during the maturation of MVBs, which are intermediates in the 
endosomal system. MVBs can be fused to autophagosomes or lysosomes for degradation. Exocytosis results in the release of EVs. (A) EVs contain 
different forms of cell surface proteins, signaling proteins, nucleic acids, amino acids, metabolites, and proteins. (B) Role of mesenchymal stem cell 
(MSC)-EVs in vascular dementia (VD): MSC-EVs have neuroprotective, angiogenic, and synapse-protective effects and can also reduce the progression 
of VD by reducing neuroinflammation and oxidative stress.
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in a variety of treatments related to neurodegenerative diseases (Torres 
Crigna et al., 2018). As a result, they have emerged as a focal point in 
neurodegenerative diseases (Shariati et al., 2020). More than 2,000 
patients at different stages of neurodegenerative diseases have received 
MSC treatments, with most reporting positive outcomes (Ghasemi 
et al., 2023). However, the exact paracrine action mechanism of MSCs 
remains elusive. Recent studies suggest that in addition to secreting 
various soluble factors, MSCs release a significant number of EVs. 
These EVs play a pivotal role in intercellular communication, 
influencing not just normal physiological processes but also the 
development and progression of diseases (Rani et al., 2015).

As alluded to earlier, many of the immunomodulatory effects 
attributed to MSCs are due to the properties of MSC-EVs (Rani et al., 
2015). These EVs are released from the plasma membrane into the 
extracellular environment, exerting biological effects through 
paracrine and endocrine mechanisms (Harrell et  al., 2019a). For 
instance, miRNA concentrations in EVs surpass those in parental cells 
and body fluids (Sun et al., 2018). Once MSC-EVs enters the receptor 
cells, miRNA is released to further target and silence the mRNA of 
related proteins, thus affecting the physiological function of the 
receptor cells (Wang et al., 2022). miRNA, especially miR-146 and 
miR-21, can modulate the phenotype, function, and activity of nerve 
and immune cells (Harrell et al., 2019a) and miR-132-3p can change 
synaptic dysfunction (Ma et al., 2022). Therefore, it is considered to 
be a crucial factor in the beneficial role of MSC-EVs in the treatment 
of neuroinflammatory diseases and neurodegenerative diseases. The 
therapeutic potential of MSC-EVs has been explored in a plethora of 
neurodegenerative disease models, including AD, VD, multiple 
sclerosis, stroke, neuroinflammation, traumatic brain injury, spinal 
cord injury, and status epilepticus (Guy and Offen, 2020). 
Furthermore, employing MSC-EVs can sidestep the adverse reactions 
triggered by the exogenous administration of MSCs (Guy and Offen, 
2020). Hence, MSC-EVs are viewed as a promising alternative to 
MSCs in treating inflammatory and degenerative 
neurological disorders.

3 Role and application of MSC-EVs in 
the pathophysiological process of VD

Mangy underlying pathophysiological processes that lead to 
vascular brain injury in VD, including hypoperfusion, endothelial 
dysfunction, blood–brain barrier breakdown, synaptic dysfunction, 
inflammation, oxidative stress, hypoxia, and nerve cell injury (Hosoki 
et  al., 2023). VD is a multifaceted neurological disorder, with its 
progression involving various cell types and molecular processes. 
These mechanisms are interconnected and together drive the onset 
and progression of VD (O’Brien and Thomas, 2015). EVs play roles in 
intercellular communication and in the diagnosis and treatment of 
VD. Consequently, the investigation of MSC-EVs is of significant 
interest. MSC-EVs not only contain abundant bioactive molecules but 
also function as vital mediums for information transfer between cells 
(Joo et  al., 2023). They are believed to have a central role in VD 
diagnosis and treatment; for instance, MSC-EVs can deliver 
neuroprotective factors that encourage neuronal survival and repair, 
thus reducing neuronal damage and VD severity (Ma et al., 2022). 
Additionally, they can enhance regular communication between 
neurons by modulating synaptic plasticity. Moreover, MSC-EVs 

possess anti-inflammatory and antioxidative properties, potentially 
mitigating neuroinflammation and oxidative damage in VD (Harrell 
et al., 2021). Overall, MSC-EVs have roles in VD pathophysiology and 
may aid in the development of targeted treatments and neuroprotective 
strategies. We will delve into the pathophysiological roles of MSC-EVs 
in VD in the subsequent sections of this study.

3.1 Role of MSC-EVs in synaptic 
dysfunction and neuronal damage in VD

Similar to cognitive disorders such as AD, neuronal injury, and 
synaptic dysfunction are primary drivers of VD (Iadecola, 2013). 
Brain information processing demands a continuous, high energy 
supply (Faria-Pereira and Morais, 2022), with the majority being used 
to restore ion movement essential for neuron communication and 
neurotransmitter uptake. Cerebral ischemia in VD patients leads to 
neuronal hypoxia and insufficient energy supply, resulting in neuronal 
damage (Lopez-Domenech and Kittler, 2023), while synaptic 
dysfunction hampers the nervous system’s communication (Lepeta 
et al., 2016), affecting perception, movement, learning, and cognitive 
functions. Therefore, preserving neuronal density and promoting 
synaptic formation and plasticity are vital to improve cognitive deficits 
post-VD (Ma et al., 2022).

Recently, some experimental and clinical studies demonstrated 
that MSC-EVs were found to possess tissue repair and regenerative 
functions akin to MSCs (Yang Z et al., 2022). MSC-EVs can stimulate 
the axonal growth of neurons (Zhang et al., 2017). The utilization of 
EVs extracted from bone marrow mesenchymal stem cells of type 2 
diabetes mellitus rats (T2DM-MSCs-Exos) significantly improves 
axonal density and myelin phospholipid density (Venkat et al., 2020). 
Overexpression of specific miRNAs, such as miR-23a (Du et al., 2020), 
miR-200 (Fu et al., 2019), miR-133b (Li D et al., 2018), miR-17-92 
(Yang et al., 2017), and miR-132-3p (Ma et al., 2022), has been shown 
to enhance neural gene expression and myelination. Within this 
context, EVs transfer these miRNAs from the neuronal cell body to 
the axon, thereby facilitating axon outgrowth (Liu et al., 2023). For 
instance, Yang et  al. highlighted the miR-17-92 cluster’s role in 
neuronal and vascular plasticity, presenting it as a potential therapeutic 
strategy for injury to the central nervous system (Yang et al., 2017). 
Ma et  al. (2022) demonstrated that miR-132-3p could improve 
synaptic and cognitive functions, while also mitigating neuronal 
damage in VD mice, through the activation of the Ras/Akt/GSK-3β 
signaling pathway.

Additionally, MSC-EVs have roles in nerve injury repair. One 
study evaluated the impact of EVs derived from adipose-derived 
MSCs (adMSCs) on neuronal growth and discovered nerve growth 
factor mRNA transcripts such as BDNF, FGF-1, GDNF, IGF-1 and 
NGF, in adMSCs-derived extracellular vesicles for the first time. These 
findings suggest a potential therapeutic application of these EVs for 
tissue-engineered nerves (Bucan et al., 2019). EVs-contained growth 
differentiation factor-15 (GDF-15) has neuroprotective effects via the 
AKT/GSK-3β/β-catenin pathway (Xiong et  al., 2021). Chen et  al. 
found that EVs directly sourced from MSCs could inhibit astrocyte 
activation, recover the expression of genes associated with neuronal 
memory and synaptic plasticity, and enhance cognitive function 
(Chen et al., 2021). In vitro experiments, MSCs-derived exosomal 
miR-455-3p targeted PDCD7 to alleviate neuronal injury and injury 

https://doi.org/10.3389/fnagi.2024.1329357
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnagi.2024.1329357

Frontiers in Aging Neuroscience 05 frontiersin.org

of N2a cells (Gan and Ouyang, 2022). Such effects were also observed 
in non-human primate models. Here, MSC-EVs, delivered with EVs 
derived from MSCs, reduced physiological and morphological 
changes related to neuronal injury around lesions (Medalla et  al., 
2020). Exosome biogenesis mechanisms might also possess 
neuroprotective properties, with MSC-EVs potentially aiding in the 
clearance of misfolded proteins, thereby exerting detoxification and 
neuroprotection (Kalluri and LeBleu, 2020). In vitro experiments have 
shown that MSC-EVs promoted neural progenitor cell proliferation 
after stroke (Zhou et al., 2020).

In the context of MSC-EVs’ role in synaptic dysfunction and 
neuronal damage in VD, while the exact mechanisms warrant further 
exploration, current insights offer promising therapeutic avenues. 
These findings form a robust foundation for subsequent research, with 
the potential to revolutionize treatments for neurodegenerative 
diseases such as VD.

3.2 MSC-EVs and vascular injury in VD

Vascular damage is a fundamental pathological aspect of VD 
(Kalaria, 2018; Chang Wong and Chang Chui, 2022). MSC-EVs have 
been recognized for establishing specific microenvironments that 
regulate vessel density and function (Watt et al., 2013; Bronckaers 
et al., 2014). They foster the healing of ischemic tissue-linked disorders 
through proteins that induce angiogenesis (Anderson et al., 2016). 
Notably, MSC-EVs contain potent angiogenic paracrine effectors 
(Anderson et al., 2016). These molecules can influence endothelial cell 
behavior either through receptor binding or intracellular signaling 
pathway modulation. For instance, EVs vascular endothelial growth 
factor (VEGF) can attach to endothelial cell receptors and activate 
subsequent signaling pathways, facilitating endothelial cell 
proliferation and migration (Olejarz et al., 2020). Additionally, EVs 
transforming growth factor-β (TGF-β) can prevent endothelial cell 
apoptosis and promote tube formation. Research has shown that 
MSC-EVs derived from bone marrow can support angiogenesis, 
inhibit IFN-γ secretion by peripheral blood monocytes, and contain 
immune-related microRNAs [miR-let-7a (Cho et al., 2015), miR-301 
(Li et al., 2019), miR-22 (Wang X et al., 2020), etc.]. They can foster 
the development of blood vessels and network structures in human 
umbilical vein endothelial cells (Heo and Kim, 2022). Furthermore, 
specific exosome-released microRNAs (miR-132 and miR-146a) 
upregulate pro-angiogenic gene expression and enhance human 
umbilical vein endothelial cell growth and tube formation. 
adMSC-EVs also play a critical role in angiogenesis, with miR-125a in 
adMSCs being transferred to endothelial cells through EVs, thereby 
regulating endothelial cell angiogenesis through direct inhibition of 
its target, delta-like 4 (DLL4), which, in turn, fosters tip cell 
specialization (Liang et  al., 2016). MSC-EVs can also bolster 
neovascularization by influencing angiogenesis-related signaling 
pathways. microRNA in EVs can regulate the activity of angiogenesis-
related signaling pathways by targeting the mRNA of specific genes. 
For instance, EVs miRNA-126 can target and downregulate the 
SPRED1 gene, activating the RAS/MAPK signaling pathway to 
promote angiogenesis (Fish et al., 2008; Rom et al., 2021; Figure 2).

It is crucial to note that this field remains under active 
investigation. More clinical studies are essential to ascertain the safety 
and efficacy of MSC-EVs in treating vascular damage in 

VD. Nonetheless, current studies hint at the promising potential of 
MSC-EVs in addressing vascular damage related to VD.

3.3 MSC-EVs and neuroinflammation in VD

Several studies have demonstrated that neuroinflammation is a 
pivotal process in the progression of most neurodegenerative diseases 
(Tejera et al., 2019). Neuroinflammation refers to an immune response 
mediated by glial cells in the central nervous system, the primary 
location of innate immunity (Tian et al., 2022). This inflammatory 
response plays a significant role in the etiology of VD (Belkhelfa et al., 
2018), contributing to its onset and development. Evidence exists of 
an inflammatory reaction in the brains of VD patients, with 
inflammatory factors released by activated microglia and astrocytes 
(Yang Y et  al., 2022) potentially leading to neuronal damage and 
cognitive dysfunction. Furthermore, neuroinflammation might also 
promote the deposition of Aβ amyloid and subsequent neuronal death 
(Ising et al., 2019), thereby worsening the severity of VD.

Microglia, the primary immune response cells in the 
inflammatory response of the central nervous system (Shields et al., 
2020), play a dual role in regulating the inflammatory response 
during pathophysiological changes (Yang Y et  al., 2022). These 
activated microglia can exhibit two phenotypes: a classically 
activated proinflammatory M1 and an alternatively activated anti-
inflammatory M2 phenotype (Orihuela et al., 2016). M1 microglia 
release nitric oxide (NO) and proinflammatory cytokines [tumor 
necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-15 (Gao and 
Hong, 2008)], intensifying neuroinflammation, hindering 
synaptogenesis, compromising cognitive function (Wang et  al., 
2018), and facilitating VD progression. Conversely, M2 cells 
produce Aβ-degrading enzymes (NEP), insulin-degrading enzymes 
(IDE), and anti-inflammatory cytokines (IL-10 and TGF-β), which 
reduce Aβ deposition, diminish inflammation (Subhramanyam 
et al., 2019), and shield neurons from damage. Ding and colleagues 
discovered that MSC-EVs can modulate microglial activity and 
decrease their inflammatory reactions, guiding microglial 
polarization toward an immunosuppressive M2 phenotype 
(Subhramanyam et  al., 2019). Specifically, miRNAs such as 
miR-216a-5p (Liu et al., 2020), miR-125a (Chang et al., 2021) and 
miR-146a-5p (Zhang et al., 2021) present in MSC-EVs can reduce 
the levels of inflammatory factors and pro-inflammatory microglia 
after acute injury in the central nervous system and can promote 
the conversion of the M1 phenotype to the M2 phenotype. 
Furthermore, treatment with T2DM-MSC-EVs significantly 
reduces the expression of activated microglia, M1 macrophages, as 
well as the inflammatory factors MMP-9 and MCP-1. The MiR-9/
ABCA1 pathway may play a crucial role in the attenuation of 
inflammation induced by T2DM-MSC-EVs (Venkat et al., 2020). 
These miRNAs contribute to anti-inflammatory property and nerve 
injury recovery effect. The miRNA carried by MSC-EVs act through 
specific pathways; for instance, MSC-EVs suppress NF-κB 
phosphorylation by targeting TNF receptor-associated factor 6 
(TRAF6) and IL-1 receptor-associated kinase 1 (IRAK1) in 
microglia through miR-146a-5p (Zhang et al., 2021). Being a pivotal 
inducible transcription factor in microglia, NF-κB significantly 
influences immune and inflammatory regulation within the central 
nervous system. Most anti-inflammatory medications operate by 
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inhibiting this pathway (Kaltschmidt et  al., 2005). Inhibition of 
NF-κB signaling curtails the gene expression of inducible NO 
synthase, TNF-α, IL-1β, and IL-6, thereby preventing the formation 
of the M1 phenotype in MSC-EVs-treated microglia (Nakano et al., 
2020). In MSC-EVs-treated a-βpp/PS1 mice, levels of NEP, IDE, 
IL-10, and TGF-β were notably elevated, whereas inflammatory 
factors (TNF-α and IL-1β) were significantly reduced. In vitro 
experiments also confirmed this alternative microglia activation by 
MSC-EVs (Ding et al., 2018).

Adenosine monophosphate-activated protein kinase (AMPK) is 
among the foremost endogenous neuroprotective agents against 
inflammatory reactions. Its activation results in the increased 
phosphorylation of endothelial NO synthase, promoting nerve 
regeneration (García-Prieto et al., 2015). Activation of the AMPK 
signaling pathway also promotes microglial polarization toward the 
M2 phenotype. Additionally, it can modulate NF-κB activity through 
downstream proteins, such as sirtuin-1 and Forkhead box O3, thereby 
restricting the release of inflammatory agents and exerting an anti-
inflammatory effect (Wang et  al., 2013). This reduces the 
neuroinflammatory response. Evidence suggests that MSC-EVs 
provide neuroprotection by suppressing NF-κB and stimulating the 
AMPK signaling pathway to alleviate neuroinflammation (Han et al., 
2021; Figure 3).

Several studies have indicated that CD4 + T cells infiltrate the 
central nervous system during neurodegeneration (Korn and 

Kallies, 2017). These activated CD4 + T cells can readily penetrate 
the blood–brain barrier (BBB) (Engelhardt and Ransohoff, 2005). 
Upon reaching the injury site, these cells perform various functions 
based on their phenotype (Luckheeram et al., 2012). Their actions 
may be  linked to the elimination of intracellular pathogens, 
consequently resulting in neuroinflammation and neuronal 
damage within the central nervous system (Solleiro-Villavicencio 
and Rivas-Arancibia, 2018). MSC-EVs can mitigate this 
neuroinflammation by suppressing the activity of infiltrating 
CD4 + T cells at the site of brain inflammation in vivo (Alvarez 
et  al., 2018). In conclusion, MSC-EVs may play a role in the 
pathophysiology of VD by influencing the evolution of 
neuroinflammation. Nonetheless, these connections require 
further exploration in research. Grasping these interconnections 
can pave the way for more effective treatments.

3.4 The role of MSC-EVs in the oxidative 
stress of VD

Oxidative stress damage is characterized by a situation where 
oxygen and its derivative free radicals surpass a cell’s inherent 
antioxidant defense capacity (Bisht et al., 2017). Reactive oxygen 
species (ROS) release-induced oxidative stress is pivotal in neuronal 
death and the onset of neurodegenerative diseases (Tournier et al., 

FIGURE 2

Mesenchymal stem cell (MSC)-Exos participate in the vascular repair process in vascular dementia (VD) through a variety of ways.
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2023). Cerebrovascular diseases (CSVD) lead to cerebral ischemia, 
hypoxia, vascular endothelial injury, and ensuing inflammatory 
responses, which give rise to oxygen free radicals, culminating in 
oxidative stress (Chukanova et  al., 2022). Concurrently, 
atherosclerosis stands as a key risk factor and pathological hallmark 
of VD (Wolters and Ikram, 2019), with oxidative stress central to 
the key mechanism of pathological changes of atherosclerosis 
(Kattoor et al., 2017). Hence, oxidative stress is postulated as a chief 
factor in VD’s foundational mechanisms, and augmented damage 
is suggested as a central process behind cognitive lapses in VD 
(Iadecola, 2013).

MSC-EVs exhibit unique advantages in suppressing oxidative 
damage through their antioxidative activity (Zhang W et al., 2023). 
MSC-EVs and EVs -derived agents possess potent antioxidant 
capabilities, capable of neutralizing excess ROS (Xia et  al., 2021) 
within cells through antioxidant enzymes and molecules, including 
glutathione peroxidase (GPX). This can alleviate oxidative stress or 
boost calcium influx, thus curtailing proinflammatory factor 
concentrations and dampening ROS production (Wang T et  al., 
2020). Research indicates that EVs contain a series of upregulated 
antioxidant miRNAs, such as miR-215-5p, miR-424-5p, miR-31-3p, 
miR-193b-3p, and miR-200b-3p. This suggests a crucial role of EVs 

miRNAs in antioxidative stress (Luo et al., 2021). Liu et al. discerned 
an upsurge in Nrf2 and HO-1 expressions post MSC-EVs treatment, 
consequently augmenting the cells’ antioxidant potential and 
ameliorating cognitive deficits in mice (Liu et al., 2022). Moreover, as 
previously noted, MSC-EVs can temper neuroinflammation—a 
prevalent instigator of oxidative stress—potentially lessening 
oxidative stress intensity through inflammation reduction. For 
instance, they can exert their effects through various pathways, 
including the NF-kB signaling pathway (Yan et al., 2022) and the 
Nrf2/Keap1 signaling pathway (Tang et al., 2023). Additionally, they 
have the ability to modulate mitochondrial membrane potential and 
mitigate mitochondrial ROS production (Xian et al., 2019). Zhang 
et al. demonstrated through experiments that MSC-Exo treatment 
significantly ameliorated the elevated levels of oxidative stress (Zhang 
X et al., 2023). In addition, MSC-EVs can ameliorate oxidative stress 
by reducing ROS generation, mitigating DNA damage, normalizing 
calcium signaling, and modulating mitochondrial alterations. 
Furthermore, they enhance antioxidant capacity (Wang T et  al., 
2020). Numerous studies suggest that EVs derived from MSCs could 
be  protective in modulating oxidative stress in VD. However, 
extensive research is imperative to pinpoint the precise mechanism 
and efficacy.

FIGURE 3

Mesenchymal stem cell (MSC)-Exos are involved in the process of neuroinflammation in vascular dementia (VD). Activated microglia have two 
phenotypes: the classically activated pro-inflammatory M1 phenotype and the alternatively activated anti-inflammatory M2 phenotype. Substances in 
MSC-EVs can regulate the activity of microglia through related pathways, induce the polarization of microglia to the immunosuppressive M2 
phenotype, or directly inhibit the release of inflammatory factors to alleviate neuroinflammation, and improve VD.
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4 Potential role of mesenchymal stem 
cell extracellular vesicles in VD 
diagnosis

The diagnosis of VD usually involves multiple aspects, including 
clinical assessments, cognitive evaluations, biomarker analyses, 
imaging, and laboratory testing (Frantellizzi et al., 2020). Nonetheless, 
the diagnostic criteria for VD lack uniformity, and varied medical 
entities or researchers might employ distinct diagnostic criteria, which 
may lead to differences in outcomes. Concurrently, these diagnostic 
techniques come with inherent challenges and constraints. They could 
be swayed by subjectivity, practitioner expertise, and the specificity 
and sensitivity of biomarkers might be restricted. Occasionally, they 
might be confounded with other ailments, such as AD (Maclin et al., 
2019). Intracranial ultrasound, a non-invasive, replicable, and 
inexpensive and cost-effective method (Siniscalchi et  al., 2021) is 
widely adopted in current clinical practice. However, it still has 
challenges such as being limited by the skull and intracranial anatomy 
and not being able to fully observe deep arteries. As such, there is an 
imperative to identify a low-risk, high-accuracy, non-invasive 
biomarker to compensate for the prevailing inadequacies in VD 
detection methodologies.

There is a growing interest in EVs as potential diagnostic agents 
reflecting disease states (Joo et al., 2023). MSC-EVs carry a plethora 
of bioactive molecules, which may serve as potential biomarkers for 
early diagnosis and disease monitoring. The expression of exosomal 
miRNA-223-3p is elevated in the plasma of patients with CSVD, 
especially at the onset of cognitive impairment (Zhao et al., 2021). 
Consequently, EVs miRNA-223-3p could be a potential biomarker for 
CSVD. Additionally, Ma et al. (2022) discovered that in early VD mice, 
levels of MSC-EVs and miR-132-3p were significantly diminished. 
Re-injecting miR-132-3p-rich MSC-EX restored synaptic and 
cognitive functions, suggesting miR-132-3p levels could serve as an 
early diagnostic indicator (Ma et al., 2022). EVs miR-154-5p levels are 
elevated in VD patients (Han et al., 2022). A decrease in miR-154-5p 
results in reduced ROS and increased superoxide dismutase in 
endothelial progenitor cells, indicating that EVs miR-154-5p might 
be  a viable biomarker and therapeutic target (Han et  al., 2022). 
Changes in miRNA expression in CSF or peripheral blood EVs might 
reflect the onset and progression of VD. Using TaqMan low-density 
array and single TaqMan assays, miR-10b*, miR29a-3p, and 
miR-130b-3p were identified and confirmed to be  significantly 
downregulated in VD patients compared with unaffected controls 
(NC), and the receiver operating characteristic curve showed that the 
reduction in its levels can also distinguish patients with VD and AD 
from those with NC (Ragusa et al., 2016). As acquiring CSF EVs is 
highly traumatic nature of CSF exosome acquisition, the selection of 
peripheral blood EVs miRNAs as specific markers is more 
advantageous than the selection of CSF EVs miRNAs (Cui et  al., 
2021). EVs miRNAs present a more favorable option; although EVs 
miRNAs offer diagnostic potential, large-scale clinical studies are 
essential to ascertain their utility in conditions such as 
VD. Furthermore, it is crucial to examine whether peripheral blood 
EVs miRNA levels are influenced by factors such as gender, race, 
inflammatory agents, lifestyle, and age (Cui et al., 2021). This could 
be further validated by integrating cognitive and imaging data.

Moreover, MSC-EVs contain a range of neuroprotective and 
vascular protective molecules, including GDF-15 (Xiong et al., 2021), 

VEGF (Olejarz et al., 2020), and TGF-β. Changes in these molecules 
may occur early in VD and could relate to neuronal and synaptic 
dysfunction, as well as vascular damage. As mentioned previously, VD 
often entails an increased inflammatory response that might 
exacerbate VD symptoms. MSC-EVs can mitigate this inflammatory 
response by delivering anti-inflammatory molecules. Monitoring 
changes in molecules such as NEP, IDE, IL-10, and TGF-β (Ding et al., 
2018), or the neuroprotective factor AMPK (García-Prieto et  al., 
2015), might assist in assessing the inflammation’s severity and 
progression, supporting diagnostic efforts.

It has been demonstrated that MSC-EVs can serve as clinical 
diagnostic markers in other domains. Exosome counts are notably 
higher in cancer patients compared to healthy people (Suchorska and 
Lach, 2016). As a result, EVs RNA has been extensively employed in 
diagnostic and prognostic studies of various cancers (Zhu et al., 2019). 
The reliability of MSC-EVs as clinical diagnostic markers in other 
areas bolsters the plausibility of their use in VD diagnosis.

In summary, the potential utility of MSC-EVs as biomarkers in 
VD diagnosis is highly anticipated. Monitoring bioactive molecule 
changes within MSC-EVs could furnish valuable insights for early VD 
diagnosis, disease monitoring, and therapeutic effect evaluation. 
However, more research is needed to validate these potential 
biomarkers and ascertain their clinical feasibility and accuracy.

5 Prospects of MSC-EVs in the 
treatment of VD

5.1 Feasibility of MSC-EVs in the treatment 
of VD

MSC-EVs have emerged as a preferred treatment for various 
diseases, presenting a safe and effective alternative to stem-cell-free 
therapy (Wang Z. G. et al., 2020). MSC-EVs therapies are simpler to 
administer and safer than whole-cell-based therapies (Keshtkar et al., 
2018). EVs are more stable and modifiable than MSCs and pose no 
tumor formation risk. Given their nano-size and lipid bilayer 
structure, EVs can readily traverse biological barriers to reach target 
organs (Ma et al., 2020). It is noteworthy that the composition of 
MSC-EVs can be  manipulated by pre-treating MSCs in vitro to 
produce disease-specific, MSC-based immunosuppressive products. 
This innovative strategy could introduce a novel cell-free therapeutic 
approach for autoimmune and inflammatory diseases (Harrell et al., 
2019a). Because of their compact size, minimal immunogenicity, 
extended half-life, neuroprotective effects (Yari et al., 2022), and ease 
of procurement, MSC-EVs are emerging as prominent delivery 
vectors (Vizoso et al., 2019). Various preclinical studies have revealed 
the preventive or therapeutic potential of MSC-EVs in diverse disease 
animal models (Yaghoubi et al., 2019). Specifically, MSC-EVs have 
demonstrated therapeutic roles in colorectal, liver injury, pulmonary 
inflammation, kidney, autoimmune and inflammatory eye diseases, 
and heart diseases (Harrell et  al., 2019a). They have also shown 
efficacy in neurodegenerative disease rat models, including reducing 
pathology and ameliorating cognitive dysfunction in VD (Ma et al., 
2022). Thus, MSC-EVs present a promising therapeutic avenue for VD.

MSC-EVs can restore neuronal memory and synaptic plasticity by 
releasing small vesicles containing bioactive molecules (Chen et al., 
2021). They promote the proliferation, migration (Olejarz et al., 2020), 
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and tube formation of endothelial cells, activate angiogenesis-related 
signaling pathways, and release angiogenic regulators. This facilitates 
the angiogenesis process, improves cognitive dysfunction, and reduces 
the symptoms of VD.

Furthermore, the widely used antioxidant catalase cannot 
be delivered to the brain due to the BBB. MSC-EVs, capable of being 
specifically modified, can traverse the BBB and deliver therapeutic 
molecules (antioxidant catalase) to damaged regions reaching 
previously inaccessible areas and evade immune system to avoid 
clearance once inside the membrane layer (Xia et al., 2021). After 
crossing the BBB, MSC-EVs mitigate oxidative stress using antioxidant 
enzymes and molecules. They also enhance the expression of Nrf2 and 
HO-1, boosting cellular antioxidant capacity, and ameliorating 
cognitive impairment (Liu et al., 2022).

5.2 Advantages and challenges of EVs in VD 
therapy

MSC-EVs have been extensively researched in various drug 
delivery studies because of their immune properties, tumor-homing 
abilities, and elastic properties (Sun et al., 2021). Their natural origin 
allows them to function well in vivo. As cell-free entities, MSC-EVs 
address the myriad safety concerns associated with long-term viable 
MSC transplantation. Such concerns encompass uncontrolled cell 
differentiation, malignant transformations, and rejection due to 
allogeneic immune response activation from MHC-mismatched 
receptors (Harrell et al., 2021). The BBB is an important barrier for 
drug delivery to the brain, thus prevents most substances from 
entering the brain from the bloodstream, allowing only minute 
molecules can cross the BBB (Teleanu et al., 2022) to precisely control 
the brain microenvironment and neural activity (Han, 2021). It 
severely hinders the delivery of drugs to the brain and the efficiency 
of various systemic therapies for brain disorders (Han, 2021). 
MSC-EVs, capable of being specifically modified, can deliver 
therapeutic molecules to damaged regions and traverse the BBB, 
reaching previously inaccessible areas (Xia et al., 2021). For instance, 
EVs -associated miR-105 can downregulate the expression of zonula 
occludens-1 (ZO-1), a fundamental component of tight junctions. 
This impairs endothelial barrier function (Zhou et al., 2014), enabling 
MSC-EVs to deliver therapeutic molecules precisely. However, despite 
these promising experimental results, substantial research is still 
required to universalize MSC-EVs as a treatment for VD for a broader 
population. The production and purification techniques of MSC-EVs 
demand further refinement, given their intricate nature and the 
specialized laboratory techniques, which may limit the feasibility of 
large-scale production and clinical application (Hettich et al., 2020). 
Challenges exist in targeting MSC-EVs, drug delivery efficiency, and 
delivery mode (Harrell et  al., 2019b). Although intravenous (IV) 
injection is the most common route of delivery (Wiklander et al., 
2015), EVs in the bloodstream are easily cleared by macrophages, 
resulting in a short half-life (from minutes to hours) (Xu et al., 2021). 
In addition, EVs administered through this pathway have off-target 
effects, and they are more likely to reach the kidneys, liver, and spleen 
when administered. In vivo neuroimaging studies have shown that 
nasal administration of EVs derived from MSCs allows them to cross 
the BBB more efficiently than IV administration. Intranasal 
administration of MSC-EVs has been evaluated as a noninvasive and 

effective route to the brain (Long et al., 2017). Comparative studies are 
needed to analyze the functional efficiency of various administration 
routes within the same model (Guy and Offen, 2020). In addition, 
some studies used only one dose, and it is necessary to explore the 
possible dose-dependent protective effects of MSC-ev and MSC-EVs 
(Xia et al., 2019; Sun et al., 2021; Hedayat et al., 2023) Additionally, 
variations in the isolation and application processes in different 
studies could lead to diverse effects from identical regulatory proteins 
and miRNAs. For consistent outcomes from MSC-EVs and MSC-EVs, 
further exploration and research are required (Guillen et al., 2021). In 
summary, while MSC-EVs hold promise for treating VD, many 
scientific, technical, and clinical challenges remain before they become 
a standard clinical practice. With continuous scientific advancement 
and deepened research, these hurdles are expected to be  cleared, 
leading to more effective treatment options for VD patients.

5.3 Clinical experiments of MSC-EVs in VD

A recent search on ClinicalTrials.gov (as of October 19, 2023) with 
the keyword “stem cell EVs” revealed 39 studies. However, no study 
was found when “vascular dementia” was included in the “condition 
or disease” search field. Nevertheless, our article has analyzed and 
demonstrated the potential of stem cell-derived EVs in treating 
VD. Given the promising results from clinical trials in other diseases, 
such as gastrointestinal fistulas (Nazari et al., 2022), COVID-19 (Zhu 
et al., 2022), we believe that clinical trials for VD using mesenchymal 
stem-cell-derived EVs may yield optimistic outcomes.

6 Future research directions and 
challenges

In recent years, MSC-EVs therapy has become a novel treatment 
alternative for numerous diseases (Mendt et al., 2018). Globally, the 
number of companies interested in MSC-EVs as a therapeutic tool has 
reached 134 year by year (Lotfy et al., 2023). EVs from MSCs show 
promising potential in diagnosing and treating VD. However, the 
functional mechanisms of EVs are not yet fully understood. Further 
research is imperative to exploit the therapeutic role of MSC-EVs 
(Keshtkar et  al., 2018). Moreover, standardized protocols for the 
isolation of EVs should be developed to increase their purity while 
maintaining biologically active cargo contents. Although the 
quadrangular proteins CD9, CD63, and CD81 are often used as 
biomarkers for exosome isolation, they cannot be reliably used for 
immunoaffinity isolation of EVs because the expression of these 
proteins varies widely across different cell types (Torres Crigna et al., 
2021). Therefore, a common biomarker for EVs isolated from different 
cell types, including stem cells, needs to be identified in future studies. 
Concurrently, it is crucial to delve into the large-scale cultivation and 
isolation technology of MSCs, refine methods for the long-term 
preservation of EVs, the rapid and accurate determination of EVs 
concentration, the quality control of EVs, purification, and 
transplantation conditions (Tang et al., 2021) and establish standards 
for the characterization and drug delivery (Keshtkar et  al., 2018). 
Despite its potential, the clinical application of MSC-EVs remains 
limited. Key parameters need addressing for the translation of 
MSC-EVs therapy from preclinical studies to the clinic needs to 
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address key parameters (Gimona et  al., 2017). With the rapid 
advancements in bioengineering and cell modification techniques, 
future endeavors in the exosome domain might focus on engineering 
or modifying the exosome surface and content, enhancing specificity 
for applications in complex medical fields (Mendt et al., 2019). While 
challenges persist, the prospects of EVs in both fundamental research 
and clinical applications are exciting and warrant further exploration.

7 Conclusion

MSC-EVs are increasingly utilized in clinical studies for various 
diseases and are viewed as a promising cell-free therapeutic avenue. 
Numerous clinical trials have reported their safety and potential 
efficacy. In conclusion, this research explored the possible application 
of MSC-derived EVs in the diagnosis and treatment of VD. It 
highlighted the involvement of MSC-EVs in the pathophysiology of 
VD and the potential diagnostic role of EVs in VD, positioning them 
as an emerging therapeutic strategy. Current challenges and future 
research avenues were also discussed. Through interdisciplinary 
collaborations and relentless research efforts, we aspire to offer more 
efficient treatment methods for VD patients, enhancing their quality 
of life.
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