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and the limbic circuit in the control of emotions and motivation. 
Dysfunction in elements of these circuits may contribute to diseases 
ranging from classical movement disorders, such as Parkinson’s 
disease (PD), to neuropsychiatric conditions, such as Tourette syn-
drome or addiction.

The anatomy of individual connections within these circuits 
has been described in considerable detail. Within the basal ganglia, 
the striatum and STN serve as input stations, while GPi and SNr 
serve as output stations. Glutamatergic efferents from cortex and 
thalamus project to the striatum and STN in a topographically 
organized manner (Alexander et al., 1986, 1990; Middleton and 
Strick, 2002; Kelly and Strick, 2004; Mallet et al., 2007; Wichmann 
and Delong, 2007). The input and output nuclei of the basal ganglia 
are connected through two main pathways, i.e., the monosynaptic 
GABAergic “direct” pathway and polysynaptic “indirect” pathway. 
The indirect pathway involves GABAergic projections from the 
striatum to GPe and from GPe to the STN, as well as excitatory 
glutamatergic projections from the STN to GPe, GPi, and SNr.

At the most basic level of analysis, the polarities of the con-
nections within the direct and indirect pathways oppose one 
another. Activation of the striatal neurons of the direct pathway 
have predominately net inhibitory effects on GPi/SNr activity, 
while activation of the striatal neurons of the indirect pathway 
have net excitatory effects on them. This scheme is too simplistic, 
however, as the interactions between and within the two pathways 
may shape firing patterns independent of firing rates (e.g., oscil-
latory and burst patterns of discharge, in the GPi/SNr; Galvan and 
Wichmann, 2008).

The GPi and SNr send topographically organized GABAergic 
projections to the thalamus and brainstem. Motor circuit out-
put from the GPi and SNr reaches the anterior portion of the 
ventrolateral thalamic nucleus (VLa), which then project back 

IntroductIon
The basal ganglia consist of the striatum, the external and internal 
segment of the globus pallidus (GPe and GPi, respectively), the 
subthalamic nucleus (STN), and the substantia nigra pars com-
pacta and reticulata (SNc and SNr, respectively). It is well known 
that the functions of these structures are strongly modulated by 
the neuromodulator dopamine. The striatum has long been the 
focus of investigation into dopamine’s effects on basal ganglia func-
tion, as the dopamine concentration in this nucleus surpasses that 
in other basal ganglia nuclei. Recent research has demonstrated 
that dopamine is also present in basal ganglia areas outside of the 
striatum, and has strong effects on the neuronal activities in these 
nuclei. In this review we will first briefly describe relevant features 
of the general circuit anatomy of the basal ganglia, followed by a 
summary of the current state of our knowledge of the anatomical 
and functional features of the dopamine supply to the extrastriatal 
basal ganglia.

cIrcuIt anatomy of the basal ganglIa
The basal ganglia are components of larger functionally and ana-
tomically segregated circuits that also involve the cerebral cortex 
and thalamus (Alexander et al., 1986, 1990; Hoover and Strick, 
1993; Middleton and Strick, 1997, 2002; Kelly and Strick, 2004; 
Mallet et al., 2007; Wichmann and Delong, 2007). The “motor” 
circuit originates in the frontal cortical motor areas and involves 
motor portions of the striatum, GPe, STN, GPi, SNr, and thalamus, 
returning to the frontal cortex. “Associative” and “limbic” circuits 
originate from the prefrontal associative and limbic cortices and 
involve related areas in the basal ganglia and thalamus separate 
from those occupied by the motor circuit. While the motor circuit 
is thought to be involved in the control of movement, the associa-
tive circuit may play a role in the control of executive functions, 
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to motor areas of the frontal cortex. In contrast, associative cir-
cuit output from the SNr and GPi, reaches the thalamic ventral 
anterior (VA) nucleus, which sends efferents to the dorsolateral 
prefrontal cortex and the lateral orbitofrontal cortices (Hoover 
and Strick, 1993; Haber et al., 1995; Kaneda et al., 2002; Romanelli 
et al., 2005). Collaterals of the GPi/SNr projection to the ven-
tral thalamus reach the intralaminar thalamic centromedian and 
parafascicular nuclei (CM/PF), as well as brain stem targets such 
as the pedunculopontine nucleus, and the reticular formation 
(Smith et al., 2009).

strIatal actIons of dopamIne
It has been known for many decades that the neurotransmitter 
dopamine is present in high concentrations in the basal ganglia. 
The dopamine supply to these structures originates in the midbrain 
dopaminergic nuclei, the SNc and ventral tegmental area. The stria-
tum is the most prominent release site for dopamine in the basal 
ganglia, influencing the overall balance of activity along the direct 
and indirect pathways via different types of dopamine receptors 
(Gerfen et al., 1990). D1-like receptors (D1LR, including D1- and 
D5-receptors; Clark and White, 1987; Neve, 1997) are found on 
striatal neurons that give rise to the direct pathway, while D2-like 
receptors (D2LRs, including D2-, D3-, and D4-receptors; Neve, 
1997) are found on striatal neurons that give rise to the indirect 
pathway (see, for instance, recent studies in transgenic mice; Heintz, 
2001; Day et al., 2006; Wang et al., 2006). Activation of D1LRs on 
direct pathway neurons is thought to facilitate corticostriatal trans-
mission, while activation of D2LRs on indirect pathway neurons 
appears to reduce corticostriatal transmission (Gerfen et al., 1990; 
Gerfen, 1995). According to traditional models of the basal ganglia, 
the dopamine-mediated increase in activity of the inhibitory direct 
pathway, in conjunction with the dopamine-mediated reduction 
of activity in the net excitatory indirect pathway leads to an overall 
reduction of activity of GPi/SNr neurons, acting to disinhibit tha-
lamocortical projection neurons. In addition to the regulation of 
transmission along direct and indirect pathways, striatally released 
dopamine is also implicated in the modulation of learning and 
neuronal plasticity through processes such as long-term depres-
sion (LTD) or potentiation (LTP), acting at glutamatergic synapses 
(Aosaki et al., 1994; Cragg, 2003; Picconi et al., 2003; Wang et al., 
2006; Calabresi et al., 2007; Kreitzer and Malenka, 2007; Schultz, 
2007; Flajolet et al., 2008; Kreitzer and Malenka, 2008; Pawlak and 
Kerr, 2008).

The duration of action and diffusion of dopamine are to some 
extent regulated by dopamine transporter- (DAT-) mediated 
uptake (Blakely and Bauman, 2000; Cenci and Lundblad, 2006; 
Rice and Cragg, 2008). In rodent studies, it has been shown that 
DAT concentrations and dopamine clearance rates differ among 
striatal territories, with a dorso-ventral gradient (Missale et al., 
1985; Kuhr et al., 1986; Stamford et al., 1988; Letchworth et al., 
2001). Given the topographical organization of the striatum, such 
differences may affect the physiologic role and significance of 
dopamine in different behavioral domains. For instance, physi-
ological data indicate that the time course of DA signaling may 
determine the pattern of dopamine-glutamate interaction in 
different areas of the striatum (Calabresi et al., 2000; Wickens 
et al., 2003).

extrastrIatal actIons of dopamIne
external pallIdal segment
Anatomical studies
The GPe is a component of the indirect pathway, receiving 
GABAergic inputs from the striatum (Chang et al., 1981; Filion 
and Tremblay, 1991; Sidibe and Smith, 1996; Raz et al., 2000), and 
sending GABAergic projections to STN, GPi, and SNr (Moriizumi 
et al., 1992; Parent and Hazrati, 1995a,b). Several studies have 
shown that the primate globus pallidus (GP) receives dopaminer-
gic inputs that are differentially distributed in GPe and GPi, with 
dopamine fibers arborizing profusely in the GPi and more sparsely 
in dorsal portion of the GPe (Parent and Smith, 1987; Lavoie et al., 
1989; Parent et al., 1989; Hedreen, 1999). Some of these fibers are 
passing through the pallidum en route to the striatum. However, 
retrograde and anterograde labeling studies in rats and monkeys 
have shown that at least some of these fibers arise as a nigropallidal 
projection that is separate from the nigrostriatal projection (Fallon 
and Moore, 1978; Lindvall and Bjorklund, 1979; Smith et al., 1989; 
Gauthier et al., 1999; Jan et al., 2000; Smith and Kieval, 2000; 
Anaya-Martinez et al., 2006). Low levels of dopamine (Pifl et al., 
1990) as well as DAT immunoreactivity and DAT ligand binding 
have also been detected in postmortem studies on human GPe 
tissue (Ciliax et al., 1999; Porritt et al., 2005) and rodent GP, the 
rodent homologue of the primate GPe (Ciliax et al., 1995; Coulter 
et al., 1995) indicating the presence of terminals of a dopaminergic 
projection in the GPe.

Dopamine receptors are found at pre- and postsynaptic loca-
tions in GPe (Table 1). Most of the presynaptic dopamine recep-
tors are thought to be D2LRs, and are located on terminals of the 
GABAergic striatopallidal projection (Parent and Smith, 1987; 
Gerfen et al., 1990; Deng et al., 2006). Using electron microscopy 
we recently confirmed the presence of presynaptic D2-receptors 
in the monkey GPe on putatively GABAergic axons and terminals, 
with sparse labeling of putatively glutamatergic terminals (unpub-
lished observation). A previous rat study identified D4-receptors 
primarily on axons and on a few putatively glutamatergic terminals 
in GP (Rivera et al., 2003).

There is also evidence for postsynaptic expression of D2LRs 
in GPe. For example, D2- and (less) D3-receptor mRNA has been 
found in the human GPe (Murray et al., 1994). However, another 
study did not confirm D3-receptor mRNA expression in mon-
keys (Quik et al., 2000). In rats, D2-receptor mRNA was found, 
particularly in pallidal cells projecting to the striatum (Marshall 
et al., 2001; Hoover and Marshall, 2004). Low levels of D2-receptor 
protein labeling have been detected in human GPe (Levey et al., 
1993) and in postsynaptic structures in the rat (Yung et al., 1995). 
Scattered cell bodies in the rat GP showed immunoreactivity for 
D2-, D3-, and D4-receptor (Khan et al., 1998). In the monkey, both 
D3- (Quik et al., 2000) and D4-receptors (Mrzljak et al., 1996) 
have been found. The latter are associated with the parvalbumin-
positive GABAergic neurons which project predominantly to the 
basal ganglia output nuclei (Mrzljak et al., 1996).

In addition to these D2LRs, lower levels of D1LRs have been 
detected, in axons and terminal boutons forming symmetric, puta-
tively GABAergic synapses in the rodent GP (Levey et al., 1993; 
Yung et al., 1995). D5-receptors were identified in the rodent GP 
and monkey GPe (Ciliax et al., 2000; Khan et al., 2000).
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Table 1 | Dopamine receptor localization in the extrastriatal basal ganglia.

  D1LRs D2LRs

Structure Synaptic D1 D5 D2 D3 D4 

 location

GPe Pre Axons, GABA 

terminals R (Levey 

et al., 1993; Yung 

et al., 1995)

GABA terminals R (Levey 

et al., 1993), M 

(unpublished 

observations)

Axons, terminals R 

(Rivera et al., 2003)

Glutamate terminals M 

(unpublished 

observations)

Post Perikarya R (Ciliax et al., 

2000; Khan et al., 2000), M 

(Ciliax et al., 2000)

Dendrites R (Yung et al., 

1995) Perikarya R (Khan 

et al., 1998)

Perikarya R (Khan 

et al., 1998)

Perikarya R (Khan 

et al., 1998), M 

(Mrzljak et al., 1996)

STN Pre Terminals M 

(Rommelfanger 

et al., 2010)

Terminals M 

(Rommelfanger et al., 

2010)

Terminals M 

(Rommelfanger et al., 

2010)

Post Dendrites R (Baufreton 

et al., 2003), M 

(Rommelfanger et al., 

2010)

Perikarya R (Ciliax et al., 

2000), M (Ciliax et al., 

2000)

GPi Pre Axons R (Yung et al., 

1995), M (Kliem 

et al., 2010)

Axons M (Kliem et al., 

2010)

GABA and glutamate 

terminals M (unpublished 

observations)

GABA terminals R 

(Rivera et al., 2003)

GABA terminals R 

(Yung et al., 1995)

Post Dendrites M (Kliem et al., 

2010)

Perikarya M (Mrzljak 

et al., 1996)

Perikarya R (Ciliax et al., 

2000), M (Ciliax et al., 

2000; Kliem et al., 2010)

SNr Pre GABA terminals R 

(Levey et al., 1993; 

Yung et al., 1995; 

Caille et al., 1996)

GABA and glutamate 

terminals M (unpublished 

observations)

Axons, glutamate 

terminals R (Rivera 

et al., 2003)

Axons M (Kliem 

et al., 2010), R (Caille 

et al., 1996)

Post Dendrites M (Kliem et al., 

2010), R (Khan et al., 2000)

(Ventral SNr) neurons R 

(Yung et al., 1995)

Perikarya M (Mrzljak 

et al., 1996)

Perikarya M (Ciliax et al., 

2000; Kliem et al., 2010), R 

(Ciliax et al., 2000; Khan 

et al., 2000)

Dendrites R (Rivera 

et al., 2003)

Only studies verifying the presence of receptor protein are included in this table.
H, human; M, monkey; R, rodent.
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Studies of behavioral effects
In general, activation of D1LRs or D2LRs in the rodent GP appears 
to facilitate movement. In support of this notion, local intra-pallidal 
infusions of D1LR or D2LR antagonists were found to induce aki-
nesia in rats, likely by blocking the effects of endogenous dopamine 
on these receptors (Hauber and Lutz, 1999). Similarly, intra-pal-
lidal infusion of D1LR agonists (Sanudo-Pena and Walker, 1998) 
increased general movement. Other studies have demonstrated that 
infusion of D1LR agonists, D2LR agonists (Koshikawa et al., 1990), 
or amphetamine (Costall et al., 1972a,b) induces stereotypic jaw 
movements. The behavioral effects of dopamine receptor activation 
in the GPe have not been examined in other species.

subthalamIc nucleus
Anatomical studies
The STN consists of glutamatergic neurons that send most of their 
projections to GPe, GPi, and SNr (Smith and Parent, 1988). The 
activity of STN cells is strongly regulated by its afferents, includ-
ing inhibitory GABAergic inputs from the GPe and glutamatergic 
inputs from the cerebral cortex (Mink, 1996; Nambu et al., 1996, 
2002; Takada et al., 2001). Smaller projections from the intralami-
nar nuclei of the thalamus to the STN have also been described 
(Sugimoto et al., 1983; Lanciego et al., 2004).

Anatomical studies have demonstrated that the STN receives 
sparse collaterals from the nigrostriatal pathway which pass the 
nucleus at its dorsal surface (Lavoie et al., 1989; Hedreen, 1999; 
Augood et al., 2000; Francois et al., 2000). These inputs form sym-
metric synapses on dendrites of STN neurons in rats (Cragg et al., 
2004) and monkeys (Smith and Kieval, 2000). In postmortem 
human brains, terminal-like tyrosine hydroxylase-positive elements 
were identified along the STN’s dorsal surface (Cossette et al., 1999). 
Anatomical studies using retrograde (Rinvik et al., 1979; Campbell 
et al., 1985; Francois et al., 2000) or anterograde tracers (Hassani 
et al., 1997; Gauthier et al., 1999; Francois et al., 2000) in rats and 
monkeys support the existence of an SNc–STN projection. Others 
have detected DAT binding in the rodent STN (Coulter et al., 1995) 
and found that DAT blockade in rodent slices of STN increases 
dopamine release as measured by voltammetry (Cragg et al., 2004). 
We have also noted low levels of DAT immunoreactivity in the mon-
key STN (unpublished observations) suggesting that dopamine 
terminals may be found in the STN.

Dopamine receptors exist in the STN (Smith and Kieval, 2000; 
Smith and Villalba, 2008), but their distribution and relative 
expression level need further investigation (Table 1). Receptor 
binding studies have demonstrated D1LRs in the rat and human 
STN (Boyson et al., 1986; Dawson et al., 1986, 1988; Mansour 
et al., 1992; Parry et al., 1994; Augood et al., 2000). Similarly, 
binding studies using ligands for D2LRs (Bouthenet et al., 1987; 
Johnson et al., 1994), or ligands preferring D1-, D2-, D3-, or 
D4-receptors (Flores et al., 1999) have detected binding targets 
in the rat STN. Using electron microscopy, we have recently 
identified presynaptic D1- and D2-receptors in the monkey STN 
(Rommelfanger et al., 2010).

The available data on dopamine receptor mRNA is contradictory, 
but suggest that a portion of the dopamine receptors in the STN 
are postsynaptically expressed. Several authors have described the 
presence of the mRNA for D1-, D2-, and D3-receptors (Flores et al., 

Functional studies
Substantia nigra pars compacta lesions in rodents and monkeys 
reduce dopamine levels in GPe (Parent et al., 1990; Jan et al., 2000; 
Fuchs and Hauber, 2004). Furthermore, in vivo microdialysis 
 studies in rats have shown that dopamine is released in the GP, 
that local administration of high-potassium solutions increases 
dopamine concentrations in pallidal dialysates, and that the release 
is inhibited by reverse dialysis of the sodium channel blocker 
 tetrodotoxin, or by the use of low-calcium-medium, supporting 
the notion that dopamine is released in a spike-dependent fash-
ion at this site (Dewar et al., 1987; Pifl et al., 1990; Hauber and 
Fuchs, 2000).

Given the predominance of D2LRs in GPe, it is likely that most 
actions of dopamine in GPe are mediated via D2LRs. Activation 
of pallidal D2LRs has been shown to increase the activity of GPe 
neurons (see Table 2). For instance, activation of D2LRs in the 
rat GP increases the expression of the immediate early gene c-fos 
(Billings and Marshall, 2003), and infusions of the non-specific 
dopamine receptor agonist apomorphine into the rat GP increases 
pallidal neuron activity (Napier et al., 1991). Our recent studies 
in primates have also demonstrated that the neuronal activity in 
GPe was increased after intra-GPe infusions of the D2LR agonist 
quinpirole (Hadipour Niktarash et al., 2008), and that infusions of 
the D2LR antagonist sulpiride lowered pallidal firing rates, suggest-
ing that the pallidal D2LRs are occupied by endogenous dopamine 
under normal conditions (unpublished observations).

While some of the pallidal effects of D2LR ligands may be 
mediated by postsynaptic D4-receptors (Shin et al., 2003), most 
of them are likely due to presynaptic modulation of GABAergic 
transmission. GABA release in GPe originates from terminals of the 
“indirect” striatopallidal pathway, and from local axon collaterals of 
pallidal neurons (Parent et al., 1999, 2000; Kita et al., 2004). Given 
the high activity levels of pallidal neurons (DeLong, 1971; Anderson 
and Horak, 1985; Miller and DeLong, 1987; Tremblay et al., 1989; 
Matsumura et al., 1995; Nambu et al., 2000; Raz et al., 2001; Kita 
et al., 2004; Starr et al., 2005), it is likely that most of the pallidal 
GABA stems from local axon collaterals. To what extent collateral 
interactions influence pallidal activities remains unclear. Early stud-
ies in anesthetized rats showed that iontophoresis of dopamine or 
of amphetamine, a dopamine releasing agent, reduces GABAergic 
transmission in the pallidum (Bergstrom and Walters, 1984). 
Microdialysis studies showed that activation of D2LRs decreased 
GABA release in the rat GP while activation of D1LRs increased 
GABA release (Floran et al., 1990, 1997). Subsequent patch clamp 
recordings of GP neurons in rat brain slice demonstrated that acti-
vation of presynaptic D2LRs decreases GABA-A receptor-mediated 
currents in the pallidum (Cooper and Stanford, 2001).

Dopamine receptor activation may also modulate the gluta-
matergic inputs to the GPe from the STN (Kita and Kitai, 1987; 
Robledo and Feger, 1990; Smith et al., 1990; Hazrati and Parent, 
1992; Shink et al., 1996; Nambu et al., 2000) or CM/PF (Mouroux 
et al., 1997; Yasukawa et al., 2004). In vitro patch clamp studies in 
rodent brain slices have suggested that activation of presynaptic 
D1LRs facilitates glutamate release (Hernandez et al., 2007) while 
activation of D2LRs reduces it (Hernandez et al., 2006). These 
effects are not mutually exclusive, indicating that the involved 
receptors may be located on different axon terminals.
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1999), and for D5-receptors in the rat STN (Svenningsson and Le 
Moine, 2002; Baufreton et al., 2003). Other studies have confirmed 
the expression of modest amounts of mRNA for D2-receptors, 
but not of D1-receptors (Mansour et al., 1992; Hurd et al., 2001) 
or D3-receptors (Quik et al., 2000). Neither D1- nor D2-receptor 

mRNA expression was found in the human STN (Augood et al., 
2000). Postsynaptic D5-receptor protein expression has been 
identified at the light and electron microscope level in rats and 
monkeys (Ciliax et al., 2000; Baufreton et al., 2003; Rommelfanger 
et al., 2010).

Table 2 | Functional effects of dopamine receptor agonists.

Structure Effects of dopamine or non-specific D1LR/

D2LR agonists

D1LR agonist effects D2LR agonist effects

GPe Increases firing rate (Napier et al., 1991) Increases glutamate release (Hernandez 

et al., 2007)

Increases firing rate (Hadipour Niktarash 

et al., 2008; unpublished observations)

Decreases GABA transmission (Bergstrom and 

Walters, 1984)

Increases GABA release (Floran et al., 

1990)

Increased c-fos (Billings and Marshall, 2003)

Decreases GABA release (Floran et al., 1997)

Increases GABA release (Floran et al., 1990) Decreases GABA-A currents (Cooper and 

Stanford, 2001; Shin et al., 2003)

Decreases glutamate release (Hernandez 

et al., 2007)

STN Increases firing rate (Ni et al., 2001; Zhu et al., 

2002; Cragg et al., 2004)

Increases firing rate (Mintz et al., 1986; Ni 

et al., 2001; Rommelfanger et al., 2010)

Increases firing rate (Rommelfanger et al., 

2010)

Decreases GABA transmission (Shen and 

Johnson, 2000; Cragg et al., 2004; Baufreton 

and Bevan, 2008)

Increases oscillations (Shen and Johnson, 

2000; Cragg et al., 2004)

Decreases bursting (Baufreton and Bevan, 

2008)

Increases bursting (D5) (Baufreton et al., 

2003)

Decreases firing rate (Hassani and Feger, 

1999)

Decreases GABA release (Floran et al., 2004)

Decreases GABA-A currents (Shen and 

Johnson, 2000; Cragg et al., 2004; Baufreton 

and Bevan, 2008)

Decreases firing rate (Hassani and Feger, 

1999)

Decreases glutamate transmission (Shen and 

Johnson, 2000)

Decreases firing rate (Campbell et al., 1985; 

Hassani and Feger, 1999)

GPi Increases GABA release (Floran et al., 1990) Decreases firing rate (Kliem et al., 2007a)

Increases GABA release (Ferre et al., 1996; 

Kliem et al., 2007a)

Increases oscillations (Kliem et al., 2007a)

Increases bursting (Kliem et al., 2007a)

Decreases firing rate (Hadipour Niktarash 

et al., 2008; unpublished observations)

SNr Decreases multiunit activity (Timmerman and 

Abercrombie, 1996)

Decreases firing rate (Timmerman and 

Abercrombie, 1996; Kliem et al., 2007a)

Decreases firing rate (unpublished 

observations)

Increases GABA release (Floran et al., 1990) Increases GABA release (Timmerman and 

Westerink, 1995; Rosales et al., 1997; 

Matuszewich and Yamamoto, 1999; Trevitt 

et al., 2002; Acosta-Garcia et al., 2009)

Inhibits GABA transmission (Martin and 

Waszczak, 1996)

Decreases GABA release (Matuszewich and 

Yamamoto, 1999), (D4) (Acosta-Garcia et al., 

2009)

Increases oscillations (Kliem et al., 2007a)

Increases bursting (Kliem et al., 2007a)

Increased firing rate (Waszczak, 1990; 

Martin and Waszczak, 1994)

Decreases GABA transmission (Miyazaki 

and Lacey, 1998; Radnikow and Misgeld, 

1998)

Increases glutamate release (Rosales 

et al., 1997)

Increases glutamate transmission 

(Ibanez-Sandoval et al., 2006)

Decrease GABA transmission (Waszczak, 

1990)
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Studies of behavioral effects
Few studies have investigated the behavioral effects of dopamine 
receptor ligands in the STN. The available studies suggest that agents 
acting at D1LRs have stronger behavioral effects than agents acting 
at D2LRs. Activation of D1LRs in the STN resulted in  orofacial 
dyskinesias in normal and dopamine-depleted rats (Parry et al., 
1994; Mehta et al., 2000). In normal animals, bilateral STN infu-
sions of D1LR- but not D2LR antagonists induced catalepsy in 
one study (Hauber, 1998). No such information is available from 
primate experiments.

Internal pallIdal segment
Anatomical studies
GPi activity is indirectly under the control of dopamine released 
in the striatum, via the direct and indirect pathways. In addition, 
the primate GPi receives its own diffusely arborizing dopaminergic 
input (Parent and Smith, 1987; Lavoie et al., 1989; Parent et al., 
1989; Hedreen, 1999), as demonstrated through the detection of 
dopamine in GPi (Pifl et al., 1990; Hornykiewicz, 1998), by the pres-
ence of DAT in ligand binding studies, and through immunohisto-
chemical investigations on human postmortem tissue (Marcusson 
and Eriksson, 1988; Ciliax et al., 1999; Porritt et al., 2005), monkey 
(Gnanalingham et al., 1995) GPi and in the rodent entopeduncular 
nucleus, the rat homologue to the monkey GPi (Ciliax et al., 1995; 
Coulter et al., 1995). Retrograde and anterograde tract tracing stud-
ies in rodents and monkeys have demonstrated that dopaminergic 
terminals in GPi do not arise from collaterals of the nigrostriatal 
tract, but from a separate population of SNc neurons that directly 
innervate the GPi (Fallon and Moore, 1978; Lindvall and Bjorklund, 
1979; Smith et al., 1989; Parent et al., 1990; Schneider and Dacko, 
1991; Gauthier et al., 1999; Jan et al., 2000).

Most of the available evidence suggests that dopaminergic effects 
in GPi are primarily mediated via D1LRs (Table 1). In rats, D1LR 
binding (Fremeau Jr. et al., 1991) and D1-receptor protein (Levey 
et al., 1993; Yung et al., 1995) were found in the entopeduncular 
nucleus (the rat homologue to the monkey GPi), predominately at 
presynaptic locations, on axons and putatively GABAergic termi-
nals. In primates, receptor binding studies have demonstrated the 
presence of D1LRs in GPi (Richfield et al., 1987; Besson et al., 1988), 
which was recently confirmed by our ultrastructural studies (Kliem 
et al., 2010). Most of the D1- and D5-receptor labeling was found 
in unmyelinated pre-terminal axons, with additional postsynaptic 
D5-receptor labeling in dendrites and glial processes in rodents and 
monkeys (Ciliax et al., 2000; Kliem et al., 2010).

Receptor binding studies have demonstrated that the level 
of D2LRs is much lower than that of D1LRs in the primate GPi 
(Richfield et al., 1987; Besson et al., 1988). D3-receptor binding (but 
not mRNA) was also demonstrated in the monkey GPi (Quik et al., 
2000), and D2- and D3-receptor mRNA and binding sites have been 
identified in the human GPi (Gurevich and Joyce, 1999). Studies 
in rats and monkeys have documented D4-receptor protein in the 
GPi (Mrzljak et al., 1996; Rivera et al., 2003). Using electron micro-
scopy, we recently found that D2-receptors in the monkey GPi are 
almost exclusively presynaptic, with some receptors at presumably 
glutamatergic (i.e., forming asymmetric synapses) terminals (unpub-
lished observations). Experiments in D2-receptor knockout mice 
have suggested that at least some of the presynaptic D2-receptors are 

Functional studies
Early studies of dopamine receptor activation in the STN sug-
gested that dopamine receptor activation in the STN may act to 
decrease STN neuronal activity. Campbell et al. (1985) showed 
that iontophoretic application of dopamine or apomorphine in 
vivo decreased the activity of most STN neurons, while the non-
specific dopamine receptor antagonist haloperidol increased neu-
ronal firing. Other in vivo studies showed that microinjections of 
apomorphine or agonists acting at D1LRs or D2LRs into the STN 
reduced STN firing (Hassani and Feger, 1999). In vitro brain slice 
recording studies showed that dopamine reduces glutamatergic 
currents in the STN (Shen and Johnson, 2000).

However, more recent studies have supported the view that 
dopamine facilitates rather than inhibits neuronal firing in the STN 
(Table 2), via actions on D1LRs and D2LRs. Thus, activation of 
postsynaptic D1LRs were shown to increase STN activity (Baufreton 
et al., 2005a). This was specifically demonstrated for postsynaptic 
D5-receptors whose activation appears to potentiate burst firing 
in a subgroup of STN neurons (Baufreton et al., 2003).

There is also strong evidence for D2LR-mediated facilitation 
of STN activity. These may involve postsynaptic effects, as dem-
onstrated by Zhu et al. (2002), but also prominent activation of 
presynaptic D2LRs. For example, activation of D2LRs in the STN 
was shown to reduce GABA-A receptor-mediated currents in STN 
neurons by reducing GABA release (Shen and Johnson, 2000; Floran 
et al., 2004). Studies by Cragg et al. (2004) showed that dopamine 
release occurs in the STN, and that dopamine depolarizes neurons, 
increases spontaneous spike generation, and reduces the magnitude 
and frequency of evoked GABA-A receptor-mediated inhibitory 
postsynaptic potentials in the STN. More recent in vitro brain slice 
recording studies confirmed that D2LR activation increases STN 
activity via a reduction of GABA release, and that this may result not 
only in firing rate changes, but also in a reduction of rebound burst-
ing activities in this nucleus (Baufreton and Bevan, 2008; Johnson, 
2008). Baufreton et al. (2005b) have proposed that the combined 
actions of dopamine on D1LRs and D2LRs on STN cells leads to 
increased firing and reduced bursting in most STN neurons (see 
also section on the effects of dopamine depletion below).

Facilitatory effects of dopamine receptor activation have 
also been demonstrated in several in vivo studies. For example, 
intra-subthalamic infusions of dopamine or of the D1LR agonist 
SKF38393 activated STN neurons in rats (Mintz et al., 1986; Ni 
et al., 2001). We have recently carried out preliminary studies 
indicating that activation of D1LRs or D2LRs in the monkey STN 
increases the firing rates of STN neurons, and that D1LR activa-
tion decreases bursting activities of these neurons (Rommelfanger 
et al., 2010).

The discrepancy between studies demonstrating inhibitory and 
facilitatory effects of dopamine in the STN may in part be explained 
by differences in the location of the recorded neurons within the 
STN, the choice of anesthetics, or the pharmacological properties of 
the drugs used in these studies. For example, dopamine binds with 
higher affinity to D3-, D4-, and D5-receptors than to D1-receptors 
(Sunahara et al., 1991; Missale et al., 1998), and SKF38393 is a par-
tial rather than full agonist at D1LRs (Twery et al., 1994; Kreiss et al., 
1996; Gleason and Witkin, 2004), complicating the interpretation 
of some of the earlier studies.
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substantIa nIgra pars retIculata
Dopamine release in the SNr
Studies in the 1970s showed that dopamine release in the substan-
tia nigra differs from that in the other basal ganglia nuclei in that 
the release is dendritic, rather than axonal (Korf et al., 1976; Leviel 
et al., 1979). Dendrites of SNc neurons may supply dopamine to SNr 
neurons from up to several hundred microns away, (Bjorklund and 
Lindvall, 1975; Nieoullon et al., 1978; Arsenault et al., 1988; Hausser 
et al., 1995). There continues to be debate regarding some of the 
characteristics of dendritic dopamine release. For instance, some 
studies have documented that dendritic release can be reduced by 
blockade of sodium channels with tetrodotoxin (Araneda and Bustos, 
1989; Santiago and Westerink, 1991; Westerink et al., 1994; Cragg and 
Greenfield, 1997), and increased by depolarizing agents (Rice et al., 
1994), and that release is calcium-dependent (Ford et al., 2010), sug-
gesting that it may be mediated by action potentials. However, other 
authors concluded that the dendritic release of dopamine in the SNr 
is independent of action potentials (Robertson et al., 1991) and not 
stimulated by amphetamine (Bernardini et al., 1991; Robertson et al., 
1991; Hoffman and Gerhardt, 1999; Gerhardt et al., 2002).

Another area of disagreement pertains to the question whether 
nigral dopamine release is vesicular. Early studies did not identify 
storage vesicles for dopamine in SNc dendrites (Reubi and Sandri, 
1979; Wassef et al., 1981), but more recent studies have reported 
otherwise. Pleiomorphic vesicles have been detected in the sym-
metrical dendrodendritic synapses of SNc neurons (Groves and 
Linder, 1983) and have been shown more recently to express the 
vesicular monoamine transporter (Nirenberg et al., 1996). Vesicular 
storage of dopamine at the level of the SN is also supported by evi-
dence that the nigral release of dopamine is sensitive to reserpine, a 
compound that depletes vesicular dopamine pools (Elverfors et al., 
1997), as well as compounds that interfere with vesicular fusion and 
release (i.e., the 25 kDa synaptosome-associated protein SNAP-25; 
Bergquist et al., 2002). In addition, dendritic dopamine signaling 
can be terminated via the DAT as DAT blockade can enhance nigral 
dopamine levels (Robertson et al., 1991; Santiago and Westerink, 
1992; Cragg et al., 1997; Cragg et al., 2001). Dendritic DAT immu-
noreactivity in SNc and SNr has been detected in rodent (Nirenberg 
et al., 1996) and human tissue (Ciliax et al., 1999).

Anatomical studies
Receptor binding studies (Richfield et al., 1987) and immunohisto-
chemical studies of the distribution of dopamine receptor protein 
(Levey et al., 1993; Yung et al., 1995; Kliem et al., 2010) have shown 
that the rat and monkey SNr contains predominantly pre- and 
postsynaptic D1LRs (Table 1). D1-receptor  immunoreactivity 
associated with the SNr was shown to extend into the ventral SNc 
(Yung et al., 1995). These receptors have been described as being 
expressed mostly on putative GABAergic terminals of the direct 
striatonigral pathway (Levey et al., 1993; Bergson et al., 1995; Yung 
et al., 1995; Caille et al., 1996; Kliem et al., 2010), supported by the 
finding that striatal lesions reduce or abolish D1LR binding in the 
SNr (Beckstead, 1988; Berger et al., 1991). Postsynaptic D1-receptor 
localization has been suggested, on the basis of the detection of 
D1-receptor mRNA (Fremeau Jr. et al., 1991). D5-receptors have 
also been identified in rodents and monkeys in postsynaptic loca-
tions (Ciliax et al., 2000; Khan et al., 2000; Kliem et al., 2010).

 autoreceptors (Mercuri et al., 1997; Koeltzow et al., 1998). Presynaptic 
D4-receptors in the rat entopeduncular nucleus may be located on 
GABAergic striatopallidal terminals (Rivera et al., 2003).

Functional studies
Overall, dopamine appears to decrease the neuronal activity in 
the GPi, likely via activation of D1LRs (Table 2). We found that 
microinjections of a D1LR agonist into the monkey GPi reduces GPi 
firing rates, and increases neuronal burst discharges and oscillatory 
firing in the 3–15 Hz range of frequencies. Interestingly, blockade of 
D1LRs in these studies resulted in increased spontaneous neuronal 
activity, suggesting that the D1LRs are occupied by endogenous 
dopamine under normal conditions (Kliem et al., 2007a). Because 
most D1LRs are found presynaptically on putatively GABAergic 
terminals (see above), it is likely that the D1LR agonist infusions 
into GPi acted through a facilitation of GABA release. Microdialysis 
studies have, in fact, directly shown that GABA levels in the entope-
duncular nucleus (in rats) or GPi (in monkeys) increase in response 
to activation of D1LRs (Ferre et al., 1996; Kliem et al., 2007a), 
and that GABA release is reduced upon D1LR antagonist admin-
istration (Floran et al., 1990). Increased GABA levels may act to 
hyperpolarize GPi cells, lowering GPi firing and triggering rebound 
bursts, as in GPe and STN (Nambu and Llinas, 1994; Overton and 
Greenfield, 1995; Beurrier et al., 1999; Bevan et al., 2002; Kass and 
Mintz, 2006). The source(s) of the GABAergic inputs whose activ-
ity is regulated via D1LRs in GPi is not entirely certain, but it is 
likely that these fibers originate largely from the striatal medium 
spiny neurons that give rise to the direct pathway. Activation of 
postsynaptic D5-receptors and subsequent activation of GPi cells 
may also occur, counteracting some of the changes in GABA release 
induced by presynaptic D1LR activation.

There is relatively little evidence supporting D2LR-mediated 
effects in GPi. Peripheral administration of D2LR agonists 
decreases neuronal firing in human GPi cells (Hutchinson et al., 
1997). Peripheral exposure to D2LR antagonists increases Fos-like 
immunoreactivity in the entopeduncular nucleus in normal rats 
(Wirtshafter and Asin, 1995), and reduces firing abnormalities in 
the entopeduncular nucleus in parkinsonian animals (Ruskin et al., 
2002). It is likely that these drug effects are in large part secondary to 
activation or inactivation of striatal D2LRs, and are transmitted to 
GPi via the indirect pathway. In our recent experiments in monkeys, 
local activation of D2LRs in the GPi also resulted in decreased fir-
ing rates (Hadipour Niktarash et al., 2008), and blockade of these 
receptors increased firing rates (unpublished observations). The 
results of these local microinjection studies can perhaps be explained 
through activation of presynaptic D2LRs on glutamatergic termi-
nals, although other mechanisms of action cannot be excluded.

Studies of behavioral effects
Very few studies have examined the behavioral effects of dopamine 
receptor activation in the GPi. Studies in human subjects have indi-
cated that decreased dopamine levels in GPi, as measured with 
raclopride displacement positron emission tomography (PET), 
were associated with faster motor learning (Garraux et al., 2007). 
Studies using (18)F-DOPA PET in patients with PD suggested that 
pallidal (18)F-DOPA uptake may be increased in early stages of the 
disease, perhaps as a compensatory change (Whone et al., 2003).
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tradictory conclusions (see Table 2). In rodents local application 
of agonists at D2LRs was shown to block the inhibitory effects 
of striatal stimulation on SNr neurons (Waszczak, 1990; Martin 
and Waszczak, 1996) and to reduce GABA release (Matuszewich 
and Yamamoto, 1999). Other studies have shown that activation 
of nigral D4-receptors inhibits dopamine-induced GABA release 
in rat brain slices, an effect that was reversed by lesions of the pal-
lidum (Acosta-Garcia et al., 2009). In contrast, we have recently 
found that injections of the D2LR agonist quinpirole decreases 
firing rates of neurons in the monkey SNr, which may be explained 
through an inhibitory effect on glutamatergic afferents from the 
STN (Hadipour Niktarash et al., 2008).

There is also limited evidence that dendritic dopamine release 
may inhibit SNc neuron activity, and may, thus, indirectly affect 
dopamine release in the striatum, presumably resulting in second-
ary effect on the basal ganglia via direct and indirect pathways 
(Lacey et al., 1987; Pucak and Grace, 1994).

Studies of behavioral effects
The activation of dopamine receptors in the rat SNr has been 
shown to increase movement. Thus, infusions of agonists at 
D1LRs into the rodent SNr result in increased movement, drug-
seeking behaviors, and an enhanced startle response (Meloni and 
Davis, 2004). Bilateral infusions of D1LR antagonists into the SNr 
were also shown to decrease lever-pressing and general locomotor 
activity (Jackson and Kelly, 1983a,b; Kelly et al., 1987; Trevitt et al., 
2001), while unilateral injection of the D1LR antagonist inhib-
ited amphetamine-induced stereotypies (Yurek and Hipkens, 
1993; Lee et al., 1995; Timmerman and Abercrombie, 1996) and 
induced contralateral circling (Asin and Montana, 1988). In 
contrast, D1LR and D2LR antagonists impaired rod-balancing 
performance in normal rats (Bergquist et al., 2003). Irreversible 
blockade of dopamine receptors in the rat SNr was shown to 
increase electromyographic (EMG) activity and may contribute 
to the development of rigidity in parkinsonism (Crocker, 1995; 
Hemsley and Crocker, 1998) likely mediated via effects on D1LRs 
(Hemsley and Crocker, 2001). Depletion of dopamine release 
from SNc neurons through local intranigral administration of 
the VMAT2 inhibitor tetrabenazine was shown to impair motor 
performance in rats without altering striatal dopamine release 
(Andersson et al., 2006).

extrastrIatal dopamIne loss In parkInsonIsm
While the degeneration of the dopaminergic nigrostriatal tract is the 
hallmark pathology of PD, substantial dopamine loss also occurs in 
basal ganglia areas outside of the striatum in patients with PD and 
in animal models of the disorder. For instance, a study of dopamine 
loss in monkeys rendered severely parkinsonian by  injections of 
the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP) demonstrated that striatal dopamine loss of 
>99% was accompanied by dopamine loss in the extrastriatal basal 
ganglia of up to 90% (Pifl et al., 1990). Significant reductions of 
dopamine in the GP, SNr, and STN were also detected in the post-
mortem studies on brain tissue from PD patients (Hornykiewicz, 
1998). The dopamine loss in PD is accompanied by significant 
DAT loss in the striatum and, to a lesser extent, extrastriatal regions 
(Leenders et al., 1990; Porritt et al., 2005).

There are fewer reports of D2LRs in the SNr (Table 1). 
D2-receptor protein has been identified in neurons in the ventral 
SNr in rats (Yung et al., 1995). Furthermore, mRNA distribution 
and receptor binding studies have shown D2- and D3-receptors in 
human SNr neurons (Gurevich and Joyce, 1999). D2-receptors were 
also detected in cell bodies and dendrites of SNc neurons extending 
into the SNr (Yung et al., 1995) suggesting that D2 autoreceptors 
in the SNc may regulate dopamine release within the SNr. We have 
recently demonstrated the presence of presynaptic D2-receptors in 
the monkey SNr on putatively GABA- and glutamatergic synapses 
(unpublished observations). In addition, D4-receptor protein has 
been identified with electron microscopy in neurons of the monkey 
SNr (Mrzljak et al., 1996), and at pre- and postsynaptic locations 
in the rat SNr (Rivera et al., 2003).

Functional studies
Most of the available studies in rodents agree that dopamine in the 
SNr acts primarily at presynaptic D1LRs, and that activation of 
these receptors reduces SNr firing via facilitation of GABA trans-
mission from striatonigral (i.e., direct pathway) fibers (Table 2). 
Our recent primate recording experiments have confirmed that 
the local activation of D1LRs in the SNr reduces the activity of SNr 
neurons (Kliem et al., 2007a). Furthermore, local D1LR activation 
influenced the discharge patterns of SNr neurons, increasing oscil-
lations in the low frequency ranges (3–15 Hz range of frequencies) 
and increasing bursting (Kliem et al., 2007a,b), perhaps through 
the induction of rebound bursts due to GABA-mediated hyperpo-
larization of SNr cells, as has been demonstrated to occur in GPe 
and STN (Nambu and Llinas, 1994; Overton and Greenfield, 1995; 
Beurrier et al., 1999; Bevan et al., 2002; Kass and Mintz, 2006). 
Increased GABA release upon activation of D1LRs was shown in 
microdialysis studies, and is also supported by electrophysiologic 
experiments (Floran et al., 1990; Timmerman and Westerink, 1995; 
Rosales et al., 1997; Radnikow and Misgeld, 1998; Matuszewich and 
Yamamoto, 1999; Trevitt et al., 2002; Acosta-Garcia et al., 2009). 
Although it has also been shown that endogenous dopamine inhib-
its SNr neurons in anesthetized (Timmerman and Abercrombie, 
1996) and awake, behaving rats (Windels and Kiyatkin, 2006), we 
did not find convincing pharmacological evidence for a significant 
dopaminergic “tone” in our recent primate experiments (Kliem 
et al., 2007a; unpublished observations).

Not all studies have agreed that the activation of D1LRs 
increases GABA release and reduces the activity of neurons in the 
SNr. Presynaptic inhibition of GABA release upon exposure to 
D1LR agonists was seen by some authors (Martin and Waszczak, 
1994; Miyazaki and Lacey, 1998). These data corroborate previous 
in vivo studies in which the activity of SNr neurons was increased 
by iontophoretic application of D1LR agonist in anesthetized rats 
(Waszczak, 1990). It is possible that some of these excitatory effects 
of D1LR agonists arose from actions at non-GABAergic sites. For 
example, there is evidence that D1LR activation in the SNr may 
increase glutamate released by terminals originating from the 
STN (Rosales et al., 1997; Ibanez-Sandoval et al., 2006). It remains 
unclear why such effects were not seen in other studies.

In contrast to the large body of evidence describing the effects 
of D1LR activation in the SNr, there are few studies examining 
the effects of D2LR activation. These studies have come to con-
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dopaminergic cells from traditional graft sources, the use of higher 
yield stem cell therapies aimed at replacing dopamine in extrastriatal 
basal ganglia regions may be a worthwhile future clinical strategy.

gpi and snr
While there is evidence of dopamine loss in the GPi of humans 
with PD (Hornykiewicz, 1998) and of MPTP-treated monkeys (Pifl 
et al., 1990), the behavioral consequences of this loss are not fully 
understood. As mentioned above, PET studies in humans have 
suggested that dopamine loss in the GPi may be involved in some 
of the early compensatory changes in PD (Whone et al., 2003).

An involvement of dopamine loss in the substantia nigra is 
supported by experiments exploring the effects of nigral infu-
sions of dopamine receptor antagonists or reductions of nigral 
dopamine release in rats (see section on SNr above). These stud-
ies have suggested that actions of dopamine in the SNr may be 
involved in the control of normal movement and in the early 
compensation for striatal dopamine loss (Andersson et al., 2006). 
This is also suggested by behavioral experiments described earlier 
in this review wherein dopamine receptor activation can facilitate 
movement in rodents. It is unclear whether such motor effects 
would also occur in primates, as the primate SNr is more strongly 
involved in non-motor rather than motor behaviors (Parent and 
Hazrati, 1994; Haber and Fudge, 1997; Middleton and Strick, 
2002). However, intraventricular and intranigral infusions of 
glial derived nerve-growth factor (GDNF) were shown to reduce 
parkinsonian motor deficits in MPTP-treated monkeys, associ-
ated with increased dopamine levels in the SN and the GP, but 
not in the striatum (Gash et al., 1996). GDNF has been clinically 
tested, but the therapeutic value of the explored GDNF treatment 
strategies, specifically the chosen delivery method and targeting, 
remains controversial (Gill et al., 2003; Nutt et al., 2003; Slevin 
et al., 2005; Lang et al., 2006). It is perhaps worth noting that 
the available human studies have not specifically examined (in 
isolation) the use of GDNF in extrastriatal tissues.

Several groups have shown that intranigral grafts of embryonic 
mesencephalic tissue attenuate rotational behavior and other behav-
ioral abnormalities in 6-OHDA-treated rats (Nikkhah et al., 1995a,b; 
Olsson et al., 1995; Yurek, 1997; Johnston and Becker, 1999; Mukhida 
et al., 2001; Palmer et al., 2001) and in MPTP-treated monkeys (Starr 
et al., 1999; Collier et al., 2002). Furthermore, dual intrastriatal and 
intranigral grafts of fetal dopaminergic tissue in humans helped to 
improve parkinsonism in PD patients, although not with greater 
benefit than intrastriatal grafts (Mendez et al., 2002).

effects of clInIcally used drug treatments at  
extrastrIatal sItes
One of the factors that determines whether clinically used dopamin-
ergic antiparkinsonian drugs act at basal ganglia sites outside of the 
striatum is the availability and functional integrity of dopamine 
receptors at these sites in the parkinsonian state. There are, in fact, 
some reports of changes in the density of extrastriatal dopamine 
receptors in parkinsonian animals and in patients with PD. For 
instance, altered D1LR- and D2LR binding has been demonstrated 
in the STN (Flores et al., 1999; Murer et al., 1999; Mehta et al., 2000) 
and SN (Narang and Wamsley, 1995). Furthermore, the fraction of 
membrane-bound D1LRs in SNr and GPi appears to increase in 

gpe
Loss of the nigropallidal projection has been demonstrated in patients 
with PD and in animal models of the disorder (Jan et al., 2000). The 
nigropallidal system may be more strongly affected in MPTP-treated 
vervet monkeys (Bergman et al., 1994; Jan et al., 2000) than in MPTP-
treated macaques (Parent et al., 1990; Schneider and Dacko, 1991). 
This difference may contribute to the differences in the sensitivities of 
these species to the effects of MPTP (Pifl et al., 1992). Intra-pallidal 
infusions of dopamine were shown to partially restore motor deficits 
in rats whose midbrain dopaminergic system was damaged through 
infusions of 6-hydroxydopamine (6-OHDA) into the medial forebrain 
bundle (Galvan et al., 2001). Interestingly, despite the predominance 
of D2LRs in the GP, intra-pallidal injections of agonists at D2LRs had 
no effect (El-Banoua et al., 2004). In 6-OHDA-treated rats, grafts of 
fetal mesencephalic cells into the GP were shown to result in behav-
ioral recovery (Bartlett and Mendez, 2005).

subthalamIc nucleus
There is substantial dopamine loss in the STN in MPTP-treated 
monkeys (Pifl et al., 1990; Rommelfanger et al., 2010) and in human 
PD patients (Hornykiewicz, 1998) which may contribute to the 
expression of motor signs. In addition, unilateral 6-OHDA lesions 
of the rat STN may result in contralateral muscle rigidity (Flores 
et al., 1993).

Recent studies in rodent brain slice preparations have suggested 
that the reduction of dopaminergic transmission in the parkinso-
nian state results in a lack of activation of D2LRs and D1-receptors 
which, in turn, contributes to the development of irregular dis-
charges in the STN (see section on STN above). As D5-receptors 
are constitutively active, even in the absence of dopamine (Tiberi 
and Caron, 1994; Demchyshyn et al., 2000), D5-receptor activation 
in the dopamine-depleted state may contribute to the development 
of burst discharges in the STN (Baufreton et al., 2005b), a feature 
of parkinsonism in monkeys (Bergman et al., 1994) and humans 
(Hutchison et al., 1998).

The STN may be a target for dopaminergic drug treatments. 
For instance, intra-STN infusions of D1LR agonists reduced the 
motor asymmetry in rats with ipsilateral 6-OHDA lesions of the 
SNc (El-Banoua et al., 2004). The contribution of D5-receptor 
activation to neuronal bursting in the STN has been exploited in 
recent experiments in which the dopamine receptor antagonist 
flupenthixol reduced bursting activities of STN neurons in the 
dopamine-depleted state, presumably through actions on consti-
tutively active D5-receptors (Chetrit et al., 2010).

Transplantation of dopaminergic tissue or stem cells into the 
STN alone (Anderson and Caldwell, 2007) or in combination with 
striatal or nigral transplants has resulted in improved forepaw use 
or rotational behaviors in dopamine-depleted rats (Mukhida et al., 
2001; Pavon-Fuentes et al., 2002; Inden et al., 2005), although this 
effect has been questioned by others (Pavon-Fuentes et al., 2002). 
The behavioral studies exploring the effects of injections or tissue 
grafts in rodents need to be replicated in monkeys before firm conclu-
sions regarding their significance can be drawn. Because of the very 
small size of the rat STN, agents or cells injected in this nucleus may 
inadvertently diffuse to the neighboring SNr. Other than the results 
listed above for the STN, there is little experience with the effects of 
stem cells into extrastriatal regions. Given the relatively low yield of 
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influencing diffusion, in these nuclei such as the distribution and 
density of dopamine receptors, and the expression pattern and 
concentration of DAT are not sufficiently known at this time.

The large body of literature that is reviewed in this article 
demonstrates that virtually all of the dopamine receptor sub-
types are expressed in each of the extrastriatal basal ganglia, albeit 
with different patterns of pre- or postsynaptic expression. With 
some exceptions, it appears that activation of D1LRs and D2LRs 
within the individual nuclei generates similar responses. For 
instance, our primate studies have demonstrated that activation 
of D1LRs in GPi and SNr leads to an inhibition of firing, most 
likely explained through increased GABA release in these nuclei. 
We also found that D2LR activation reduces neuronal activity 
in these nuclei, perhaps through reductions of glutamate release 
from STN inputs. Another example for the overall similarity of 
D1LR and D2LR activation would be the actions of dopamine 
in the STN. D1LR activation may increase the activity of STN 
neurons via postsynaptic effects, while D2LR activation could 
achieve the same effect through presynaptic inhibition of GABA 
release. The view that D1LR and D2LR effects are in some sense 
similar is obviously simplistic, but it may result in the recognition 
of overall response patterns of neurons in these nuclei to endog-
enous dopamine: the activity of GPe and STN neurons appears to 
be increased, while the activity of the basal ganglia output nuclei, 
GPi and SNr, appears to be reduced.

As mentioned above, there is clear evidence that dopamine is 
lost at extrastriatal sites in PD, and it is possible that the loss of 
dopamine at these sites contributes to the development of some 
aspects of parkinsonism. While the behavioral effects of activa-
tion or blockade of dopamine receptors at extrastriatal sites still 
needs to be clarified, it is clear that dopamine receptor activa-
tion in all of the nuclei discussed have strong effects on neuronal 
activities, even in the parkinsonian state. It seems therefore likely 
that these receptors mediate some of the beneficial and adverse 
effects of commonly used antiparkinsonian dopamine receptor 
agonist regimens.

In practical terms, the knowledge regarding dopaminergic 
effects at extrastriatal sites could be used for site-specific dopamin-
ergic therapies in PD patients. By targeting some of the known key 
steps in the pathophysiology of PD, some of the well-known side 
effects of existing dopaminergic treatments could potentially be 
avoided. For instance replacement of dopamine in STN or GPe may 
help us to reduce neuronal bursting activities, while  replacement 
of dopamine in GPi or SNr could reduce overall basal ganglia 
output. Given the ubiquitous presence of dopamine receptor sub-
types in the striatum and extrastriatal basal ganglia, it will be chal-
lenging to devise systemic pharmacological treatments to achieve 
dopaminergic effects at specific basal ganglia locations. However, 
such specificity could be achieved by surgical procedures to re-
establish dopaminergic stimulation in specific basal ganglia nuclei, 
through grafting, stem cell therapies, viral transfection methods, 
or even some of the newly developed optogenetic approaches 
targeting G-protein coupled receptors (Airan et al., 2009). Thus, 
understanding the functions of extrastriatal dopamine could not 
only provide a more comprehensive view of the role of dopamine 
in the basal ganglia, but also may prove therapeutically fruitful in 
the long-term.

dopamine-depleted animals (Kliem et al., 2010). In human studies, 
D1LR radioligand binding was decreased while the mRNA levels 
remained unchanged in the GPe (Hurley et al., 2001). Another 
study did not detect any changes in D1LR- or D2LR binding at 
these sites (Cortes et al., 1989).

There is little evidence that the function of D1LRs or D2LRs 
in the extrastriatal basal ganglia changes from the normal to the 
dopamine-depleted state. In our recent comparison of changes in 
neuronal firing rates and patterns in response to local administra-
tion of agonists at D1LRs or D2LRs in GPe, STN, GPi, and SNr, no 
response differences were detected between normal and parkinso-
nian animals (Kliem et al., 2010; unpublished observations). Taken 
together the extrastriatal basal ganglia could be targets for clinically 
used dopaminergic agonists, such as the commonly used agonists 
pramipexole and ropinirole. These D2LR-preferring agents may 
not only act in the striatum, but also at the level of the GPe or its 
afferents, and perhaps at glutamatergic synapses in GPi and SNr 
(see above). Activation of extrastriatal D2LRs may act to reduce the 
irregularity of neuronal firing (through actions in the STN) and 
the overall activity at the level of the basal ganglia output nuclei 
(through actions in SNr and GPi).

A more detailed understanding of the effects of extrastriatal 
dopamine activation could also lead to a better understanding of 
the mechanisms involved in the frequent non-motor side effects 
of D2LR agonist therapies, such as disturbances in the control of 
impulsivity (Isaias et al., 2008), fatigue or hallucinations (Stowe 
et al., 2008; Truong et al., 2008). Such effects are most likely due to 
striatal actions of these drugs; however, extrastriatal actions may 
also play a role. Thus, recent studies have suggested that the STN 
and probably other basal ganglia areas may be part of the circuitry 
regulating impulsivity (Uslaner and Robinson, 2006) and reward 
related behaviors (Baunez et al., 2005; Joshua et al., 2009; Rouaud 
et al., 2010).

concludIng remarks
It is now clear that not only the striatum, but also all of the extras-
triatal basal ganglia nuclei receive dopaminergic projections. While 
biochemical studies have shown measurable dopamine levels in 
all of these nuclei, our pharmacological studies in monkeys found 
evidence for an endogenous tone only in GPe and GPi.

The signals carried by the dopaminergic fibers to the extrastriatal 
basal ganglia may overlap with those carried to the striatum, but are 
probably not identical with them. For instance, because the STN 
receives collaterals of the nigrostriatal projection, it can be expected 
that the dopaminergic inputs to this nucleus carry some of the same 
information that is also transmitted from the SNc to the striatum. 
In contrast, the GPi and to a much lesser extent, the GPe receives 
a dopaminergic projection that is separate from that terminating 
in the striatum so that the signals it receives may differ from those 
that reach the striatum. There may also be substantial heterogeneity 
within the nuclei themselves. Thus, in monkeys, histological stud-
ies have demonstrated dopaminergic inputs to the dorsal regions 
of GPe and STN, while more ventral portions of these nuclei may 
receive fewer (or no) dopaminergic inputs. The actual “reach” of 
dopamine, and the timing and strength of its effects within each 
of these nuclei will, of course, not only be determined by the ana-
tomical innervation, but also by the range of diffusion. The factors 
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