
NEUROANATOMY

Neurochemical diversity
It has now been widely agreed that the PPN is composed by a 
mixture of neurons of different sizes, of different neurochemical 
phenotype and with distinct connectivity. Cholinergic neurons 
represent a minority of the neurons in the PPN and are intermin-
gled amongst a large number of GABAergic and glutamatergic 
neurons, which are heterogeneously distributed across its rostro-
caudal axis (Mena-Segovia et al., 2009; Wang and Morales, 2009). 
A parasagittal view of the PPN illustrates the different distributions 
of the neuronal populations and therefore better represents the 
anatomical organization of the PPN. Using external landmarks such 
as the substantia nigra (SN) and the superior cerebellar peduncle, 
which maintain a constant spatial relationship with the PPN across 
different medio-lateral levels, it is possible to follow the distribu-
tion of the cell types that compose the PPN. GABAergic neurons 
are more densely concentrated in the rostral PPN, compared to 
cholinergic and glutamatergic neurons. In the rat they are detect-
able from the rostral border of the PPN (limiting the caudal part 
of the SN) and their density decreases dramatically at a level about 
1.2–1.5 mm further caudal (Mena-Segovia et al., 2009; Figure 1). 
Such a drop in the density of GABAergic neurons coincides with 
a change in the cytoarchitecture and organization of cholinergic 
neurons: bipolar-shaped cholinergic neurons tend to be organ-
ized in a layer-like structure close to the SN, where GABAergic 
neurons are several times more abundant. Following the decline in 
the number of GABAergic neurons, rounded-shaped cholinergic 
neurons show a distinct configuration. Instead of lying in the layer-
like arrangement, cholinergic neurons show an apparently random 
distribution and an increased number of processes. The change in 
density of cholinergic neurons, however, is not as marked as that 
of the GABAergic neurons or the glutamatergic neurons. In con-
trast to the rostral PPN, the caudal part of the nucleus has a larger 
proportion of glutamatergic neurons (Wang and Morales, 2009). 
Until now, no other neurochemical cell types have been identified 

iNtroductioN
The pedunculopontine nucleus (PPN) is located in the upper brain-
stem and has an irregular shape delimited by the borders of its 
population of cholinergic neurons. The PPN has been conserved in 
evolution across species and is present in early mammals and amphib-
ians (Marin et al., 1998; Grillner et al., 2008). Defined in humans in 
1982 (Olszewski and Baxter, 1982), it is considered a part of the reticu-
lar activating system and, as a reticular structure, it has been argued 
that PPN has no clear boundaries. One of the main characteristics of 
neurons of the PPN is their long-range axonal projections, reaching 
numerous targets across the brain, from distant forebrain structures 
(Woolf and Butcher, 1986; Hallanger and Wainer, 1988a) to the spinal 
cord (Rye et al., 1988; Spann and Grofova, 1989). Although initially 
considered to function as a relay nucleus within ascending activating 
systems, increasing evidence on the neuronal heterogeneity of the 
PPN and its local synaptic organization, suggest that this high level 
of connectivity with functionally distinct neuronal systems underlies 
an integrative function rather than a role as a simple relay nucleus. 
An example of this heterogeneous connectivity is the way the PPN 
is integrated into basal ganglia circuits: distinct functional types of 
neurons in the PPN innervate basal ganglia and, in turn, basal ganglia 
projects back to PPN and innervate different neuronal populations. 
This remarkable interconnectivity has been the subject of previous 
reviews that have stressed that most structures of the basal ganglia 
project to, and receive inputs from, the PPN (Pahapill and Lozano, 
2000; Mena-Segovia et al., 2004). In the present review we will discuss 
recent evidence on the heterogeneous distribution of neurochemical 
subtypes of neurons within the PPN and correlate this with data on 
their connectivity. We will make use of the large amount of informa-
tion available that describe the anatomical relationship that the PPN 
maintains with the basal ganglia and that provide evidence of a topo-
graphical organization. We will also correlate such organization with 
the connectivity of the PPN with other neuronal systems to integrate 
a theory supporting functional domains in the PPN.
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(or very slow firing) neurons whose firing is independent of the 
cortical activity (Ros et al., 2010). These putative glutamatergic 
neurons have a different axonal trajectory and pattern of innerva-
tion from those of cholinergic neurons, although some targets are 
shared by both types (notably, the basal ganglia). Other neurons 
that have not been characterized in terms of their neurochemical 
nature include tonic firing neurons and irregular firing neurons; 
it is likely that at least one of these subtypes are GABAergic (Ros 
et al., 2010). The correlation between neurochemical subtypes and 
electrophysiological properties recorded in in vitro experiments is 
more limited. Three types of neurons have been described on the 
basis of their membrane properties (A-current type, low-threshold 
spikes type and mixed A-current plus LTS type; Leonard and Llinas, 
1994; Takakusaki et al., 1997; Saitoh et al., 2003), although this 
classification does not seem to be related to their neurochemical 
nature (and therefore not to their synaptic targets). The different 
membrane properties, however, are likely to underlie some of the 
functional differences within each cell subtype.

In summary, each main neuronal type in the PPN is composed 
of at least two subtypes; the PPN is thus a highly heterogeneous 
structure at the cellular, molecular, and electrophysiological levels. 
The different neuronal types are heterogeneously distributed in the 
PPN, perhaps delineating functional territories (rostral and caudal) 
determined by a greater density of GABAergic axons arising from 
the rostral PPN in contrast to a greater density of cholinergic and 
glutamatergic axons arising from the caudal PPN, thus producing 
contrasting effects on their target structures.

iNterNal structure aNd coNNectivity: the case for 
subdivisioNs of the PPN
The notion that the PPN is not homogeneous in terms of its cel-
lular organization is not recent; the PPN was originally divided in 
pars dissipata (rostral) and pars compacta (caudal) on the basis of 
the density of cholinergic neurons (Olszewski and Baxter, 1982), 
which were believed to be the most representative, if not the only, 
neuronal type in the PPN (Rye et al., 1987). Other subdivisions 
included rostral, middle, and caudal thirds, and the inclusion of 
an area referred to as the midbrain extrapyramidal area (MEA) 
which receives a dense innervation from the basal ganglia but 
lies outside the cholinergic borders of the PPN (Steininger et al., 
1992). While all of these subdivisions are based on identifiable 
characteristics in the anatomy of the PPN, it is perhaps the ros-
tral and caudal division that is the most appropriate since it is 
based on the distribution of all known cell types rather than 
only the cholinergic neurons. Indeed, GABAergic neurons pro-
vide a unique distribution that correlates with the cholinergic 
pars dissipata and pars compacta subdivisions (Mena-Segovia 
et al., 2009). The rostro-caudal division is also the basis for 
many anatomical studies describing afferents and efferents to 
and from the PPN, as discussed in the following sections, but 
essentially does not rely on cell density (as the terms dissipata 
and compacta denote).

The idea of two functionally distinct regions of the PPN is sup-
ported by the distribution of its cell types defined on the basis 
of neurochemistry and the connectivity of the PPN with other 
neuronal systems. Thus, two neurochemically distinct projections 
arising from rostral and caudal PPN diverge, innervating distinct 

although differences have been observed within each neuronal type 
in relation to the co-expression of other neurochemical markers 
and their firing properties.

In different regions of the brain including hippocampus (Acsady 
et al., 1993; Somogyi and Klausberger, 2005), cortex (Staiger et al., 
2004), and basal ganglia (Parent et al., 1996), neurons that express 
calcium-binding proteins have been shown to have distinct func-
tional properties despite the fact that they may use the same trans-
mitter. They have thus proved to be useful markers to distinguish 
sub- populations of neurons. Calcium-binding proteins have also 
been reported to be expressed by neurons in the PPN in monkeys 
(Cote and Parent, 1992; Fortin and Parent, 1999) and rats (Dun et al., 
1995), and indeed, calbindin and calretinin are expressed by a similar 
number of neurons to that of cholinergic neurons in the rat PPN 
(Martinez-Gonzalez et al., 2009). Although they are rarely expressed in 
cholinergic neurons, they are commonly expressed by GABAergic and 
glutamatergic neurons suggesting functional subtypes of GABAergic 
and glutamatergic neurons.

Significant differences have been observed also in terms of the 
in vivo firing properties of PPN neurons. Cholinergic neurons show 
two types of firing patterns: slow-firing cholinergic neurons that 
are associated to the cortical upstate during slow oscillations, and 
fast-firing cholinergic neurons that are correlated to the cortical 
downstate during slow oscillations (Mena-Segovia et al., 2008). 
No neurochemical markers of these subtypes have been identified. 
Neurons that have been identified as non-cholinergic and have 
been assigned as putative glutamatergic neurons because they give 
rise to asymmetric synaptic contacts in their targets, also show 
two main subtypes: fast-firing neurons that are associated with the 
cortical slow oscillations (Mena-Segovia et al., 2008), and quiescent 

Figure 1 | Schematic representation of the distribution of distinct 
neuronal populations in the PPN. GABAergic neurons are highly 
concentrated in the rostral PPN, whereas cholinergic, glutamatergic (not 
shown), calbindin- and calretinin-expressing neurons are more abundant in the 
caudal PPN. The PPN was divided into 300 μm segments and cell density was 
evaluated throughout its rostro-caudal extent (Martinez-Gonzalez et al., 2009; 
Mena-Segovia et al., 2009). The difference in the rostro-caudal distribution of 
GABAergic neurons correlates with the differences in cytoarchitecture of the 
cholinergic neurons traditionally used to identify PPN regions (i.e., pars 
dissipata and pars compacta). As shown in this figure, the rostral PPN is an 
area of high neuronal density. SN, substantia nigra.
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The SN pars compacta (SNc) and pars reticulata (SNr) are 
interconnected with the PPN (Saper and Loewy, 1982; Woolf and 
Butcher, 1986). In the rat and monkey, SNc dopaminergic neu-
rons receive direct glutamatergic and cholinergic input from PPN 
neurons (Sugimoto and Hattori, 1984; Clarke et al., 1987; Scarnati 
et al., 1987; Gould et al., 1989; Bolam et al., 1991; Futami et al., 1995; 
Oakman et al., 1995; Charara et al., 1996). These projections emit 
collaterals that innervate the medial reticular formation in the cat 
(Nakamura et al., 1989). Furthermore, the activation of the PPN can 
elicit an excitatory effect on SN neurons in the rat (Scarnati et al., 
1984, 1987), evoking monosynaptic glutamatergic and cholinergic 
excitatory postsynaptic potentials in dopamine neurons (Futami 
et al., 1995) and non-dopamine neurons (Rohrbacher et al., 2000). 
In the monkey, the neurons that project to the SN are concentrated 
in the rostral PPN and about 25% of these are cholinergic. However, 
very few projecting neurons are located in the caudal PPN (Lavoie 
and Parent, 1994). In the rat, cholinergic and non-cholinergic neu-
rons that arborize within the SNc are preferentially located in the 
rostral PPN (Takakusaki et al., 1996). These projections are mostly 
ipsilateral (Oakman et al., 1995, 1999).

The ventral tegmental area (VTA) also receives substantial cholin-
ergic innervation from the PPN in the rat and monkey (Sugimoto 
and Hattori, 1984; Oakman et al., 1995; Charara et al., 1996; Geisler 
and Zahm, 2005). In monkeys, retrograde tracing experiments have 
shown the existence of glutamatergic and GABAergic afferents from 
the PPN to the VTA (Charara et al., 1996). In the rat, neurons 
that send projections to the VTA are concentrated in the caudal 
PPN, project bilaterally and involve cholinergic (Sugimoto and 
Hattori, 1984; Oakman et al., 1995), GABAergic and glutamatergic 
axons (Mena-Segovia et al., 2005). In vitro, stimulation of corti-
cal and PPN afferents to the VTA induce glutamatergic synaptic 
currents in VTA dopaminergic and non-dopaminergic neurons 
(Bonci and Malenka, 1999). More recently, it has been described 
that GABAergic and monosynaptic glutamatergic PPN inputs do 
not converge on the same VTA neurons (Good and Lupica, 2009). 
Nicotinic acetylcholine receptors (nAChR) can also modulate this 
excitatory synaptic transmission (Good and Lupica, 2009).

Last but not least, a direct projection from the PPN to the stria-
tum (or caudate/putamen in primates) has been identified in the rat 
(Saper and Loewy, 1982) and in the monkey (Nakano et al., 1990).

thalamus
The thalamus is heavily innervated by the PPN in the rat (Saper and 
Loewy, 1982; Hallanger and Wainer, 1988a), cat and monkey (Parent 
et al., 1988), and a large proportion of this output is cholinergic 
(Sugimoto and Hattori, 1984; Sofroniew et al., 1985; Hallanger 
et al., 1987; Hallanger and Wainer, 1988a,b; Takakusaki et al., 1996; 
Oakman et al., 1999; Parent and Descarries, 2008). The projec-
tions are widespread, innervating several thalamic nuclei (Smith 
et al., 1988; Steriade et al., 1988; Kolmac and Mitrofanis, 1998), 
they are topographically organized in the cat (Steriade et al., 1988) 
and monkey (Lavoie and Parent, 1994), and arise from neurons 
that are predominantly located in the caudal PPN. In the cat and 
monkey, the majority of the thalamic nuclei receive less than 10% 
of their PPN innervation from the rostral PPN, with the excep-
tion of the mediodorsal thalamic nucleus, which receives up to 
20% of its innervation from the rostral PPN (Steriade et al., 1988). 

structures, but also converge in others. This functional dichotomy 
seems to be locally regulated, as suggested by the evidence of axonal 
collaterals of PPN neurons. Thus, a local synaptic network has been 
identified after tracing the axons of individually labeled neurons 
(Mena-Segovia et al., 2008; Ros et al., 2010). Both cholinergic and 
non-cholinergic neurons contribute to this connectivity, although 
the number of axonal varicosities was found to be greater in cholin-
ergic neurons. Interestingly, a large proportion of PPN projection 
neurons have axons that travel within the PPN in a rostro-caudal 
direction, providing local innervation that synaptically links the 
rostral and the caudal portions. This evidence of a local network of 
heterogeneous neurochemical nature supports the role of the PPN 
as an integrator between its input and output systems.

effereNt coNNectivity
Neurons of the PPN give rise to long axons that innervate several 
targets. The longest axons arise from cholinergic neurons and give 
rise to as many as five or six collaterals that innervate the basal gan-
glia, thalamus, tectum, and lower brainstem, among other regions 
(Mena-Segovia et al., 2008). The axons of non-cholinergic neurons 
are more restricted in terms of length and number of collaterals 
(typically two; Ros et al., 2010). Single-cell labeling experiments, 
have demonstrated that both cholinergic and non-cholinergic 
neurons project preferentially to the basal ganglia and that several 
divisions of the basal ganglia are innervated. Tracer studies have 
also produced extensive data on the connections of neurons in the 
PPN (Table 1).

basal gaNglia
Tracer experiments have shown that the STN receives input from 
the PPN in the cat (Nomura et al., 1980; Edley and Graybiel, 
1983), rat (Saper and Loewy, 1982; Hammond et al., 1983), and 
monkey (Carpenter et al., 1981; Lavoie and Parent, 1994). More 
recently, tractography studies have confirmed these findings in 
humans (Muthusamy et al., 2007). In the monkey and rat, the 
neurons that project to the STN are located in the caudal PPN 
(Carpenter et al., 1981; Martinez-Gonzalez et al., 2009; Kita and 
Kita, 2010). Such projections have been identified to include 
cholinergic, GABAergic, and glutamatergic components (Bevan 
and Bolam, 1995).

The entopeduncular nucleus (EP, in rat and cat, equivalent to 
the internal segment of the globus pallidus or GPi in the monkey) 
receives input from the PPN (Saper and Loewy, 1982; Jackson and 
Crossman, 1983; Woolf and Butcher, 1986; Shink et al., 1997), and 
these projections have an excitatory influence on EP neurons in 
the rat and cat (Gonya-Magee and Anderson, 1983; Scarnati et al., 
1988). A species-specific difference seems to exist regarding the 
density of these projections, since they have been reported to be 
larger in the monkey than in the cat (Edley and Graybiel, 1983). In 
the monkey, tracer injections in the GPi give rise to a large number 
of retrogradely labeled PPN neurons in the rostral PPN, around 
40% of which are cholinergic. In contrast, a restricted GPe injection 
produced a smaller number of labeled neurons in the PPN (Charara 
and Parent, 1994). This difference was confirmed by anterograde 
labeling, Phaseolus vulgaris leucoagglutinin injections in the PPN 
give rise to a much higher density of anterogradely labeled fibers 
in the GPi than in the GPe (Lavoie and Parent, 1994).
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and 75% of their cholinergic afferents from the central–caudal PPN, 
whereas the ventro-medial thalamic nucleus receives its cholinergic 
input mainly from the caudal PPN and the laterodorsal tegmental 
nucleus (Smith et al., 1988). In the rat, the parafasicular nucleus (Pf) 
receives inputs from the caudal PPN (Sugimoto and Hattori, 1984). 
The cholinergic innervation to the Pf has a higher density than the 

The  thalamic input from the PPN is both cholinergic and non-
cholinergic (Smith et al., 1988; Steriade et al., 1988). Retrograde 
labeling from the mediodorsal thalamic nucleus produces promi-
nent labeling of non-cholinergic neurons in both the ipsilateral 
and contralateral PPN in the cat (Smith et al., 1988). The ventro-
anterior and the ventro-lateral thalamic nuclei receive between 50 

Table 1 | efferent connectivity of the pedunculopontine nucleus.

Target brain area PPN region references

BaSal gaNglia

STN Caudal Nomura et al. (1980), Carpenter et al. (1981), Saper and Loewy (1982), Edley and Graybiel (1983), Hammond et al. 

(1983), Lavoie and Parent (1994), Bevan and Bolam (1995), Muthusamy et al. (2007), Martinez-Gonzalez et al. (2009), 

Kita and Kita (2010)

EP/GPi Rostral Saper and Loewy (1982), Gonya-Magee and Anderson (1983), Jackson and Crossman (1983), Woolf and Butcher 

(1986), Scarnati et al. (1988), Charara and Parent (1994), Lavoie and Parent (1994), Shink et al. (1997)

SN Rostral Saper and Loewy (1982), Scarnati et al. (1984, 1987), Sugimoto and Hattori (1984), Woolf and Butcher (1986), Clarke 

et al. (1987), Gould et al. (1989), Nakamura et al. (1989), Bolam et al. (1991), Lavoie and Parent (1994), Futami et al. 

(1995), Oakman et al. (1995), 1999, Charara et al. (1996), Takakusaki et al. (1996)

VTA Caudal Sugimoto and Hattori (1984), Oakman et al. (1995), Charara et al. (1996), Geisler and Zahm (2005), Mena-Segovia 

et al. (2005), Good and Lupica (2009)

STR Saper and Loewy (1982), Nakano et al. (1990)

ThalamuS

MD Caudal Steriade et al. (1988), Lavoie and Parent (1994)

VA Caudal Smith et al. (1988)

VL Caudal Smith et al. (1988)

VM Caudal Smith et al. (1988)

Pf Caudal Sugimoto and Hattori (1984), Kobayashi and Nakamura (2003), Kobayashi et al. (2007), Parent and Descarries (2008)

DG Caudal Parent and Descarries (2008)

Rt Caudal Parent and Descarries (2008)

LM-Sg Caudal Hoshino et al. (1997, 2000)

CM/CL/PV Caudal Steriade et al. (1990), Erro et al. (1999), Krout et al. (2002)

TecTum

IC Caudal Mena-Segovia et al. (2008), Motts and Schofield (2009)

SC Caudal Beninato and Spencer (1986), Hall et al. (1989), Krauthamer et al. (1995), Mena-Segovia et al. (2008)

ForeBraiN

MgPA Rostral Semba and Fibiger (1992), Losier and Semba (1993)

NbMC Rostral Semba and Fibiger (1992)

Hypothalamus Woolf and Butcher (1986), Hallanger et al. (1987), Ford et al. (1995)

LM-Sg Hoshino et al. (2004)

RMTg Jhou et al. (2009)

BraiNSTem

PRF Caudal Mitani et al. (1988), Semba et al. (1990), Takakusaki et al. (1996)

GiN Caudal Mitani et al. (1988), Rye et al. (1988), Grofova and Keane (1991), Martinez-Gonzalez et al. (2009)

MVM Caudal Skinner et al. (1990b)

MRF Caudal Nakamura et al. (1989), Grofova and Keane (1991)

NPO Caudal Garcia-Rill et al. (2001) 

Spinal cord Caudal Rye et al. (1988), Spann and Grofova (1989), Skinner et al. (1990a)

Abbreviations: STN, subthalamic nucleus; EP, entopeduncular nucleus; GPi, internal segment of the globus pallidus; SN, substantia nigra; VTA, ventral tegmental area; 
STR, striatum; MD, mediodorsal; VA, ventral anterior; VL, ventro-lateral; VM, ventro-medial; Pf, parafascicular; DG, dorsal geniculate; Rt, retocular thalamic; LM-Sg, 
lateralis medialis-suprageniculate; CM, centromedian; CL, centrolateral; PV, paraventricular; IC, inferior colliculus; SC, superior colliculus; MgPA, magnocellular 
preoptic area; NbMC, nucleus basalis magnocellularis; RMTg, mesopontine rostromedial tegmental nucleus; PRF, pontine reticular formation; GiN, gigantocellular 
nucleus; MVM, medioventral medulla; MRF, medial reticular formation; NPO, nucleus pontis oralis.
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1996) and the cat (Mitani et al., 1988). Thus, PPN has been shown 
to project to the gigantocellular nucleus (GiN) in rats and cats 
(Mitani et al., 1988; Rye et al., 1988; Grofova and Keane, 1991; 
Martinez-Gonzalez et al., 2009), the medioventral medulla (Skinner 
et al., 1990b), rostral ventro-lateral medulla (Yasui et al., 1990), 
medial reticular formation, medulla oblongata (Nakamura et al., 
1989; Grofova and Keane, 1991), and the spinal cord in rats (Rye 
et al., 1988; Spann and Grofova, 1989; Skinner et al., 1990a). The 
majority of the PPN projecting neurons to the spinal cord are 
non-cholinergic (Skinner et al., 1990a). These descending PPN 
projections are considered to be directly involved in locomotion 
since the stimulation of neurons in the caudal PPN leads to a pro-
longed activation of neurons in the nucleus reticularis pontis oralis 
and changes in the flexor and extensor nerves in decorticated cats 
(Garcia-Rill et al., 2001).

In summary, the ascending projections from the rostral PPN 
preferentially innervate the EP/GPi, SN and the lateral hypothala-
mus in the rat, cat, and monkey. In contrast, ascending projections 
from the caudal PPN innervate the thalamus, STN, VTA, SC, and IC.

affereNt coNNectivity
Although the information available on the afferent innervation to 
the PPN is not as abundant and detailed as it is with regards to its 
efferents, it is clear that the PPN receives a heterogeneous modu-
lation arising from functionally diverse areas of the brain. Thus, 
neurons in the PPN receive afferents from structures that include 
the cortex, thalamus, hypothalamus, pons, cerebellum, medulla, 
spinal cord, and the basal ganglia (Saper and Loewy, 1982; Semba 
and Fibiger, 1992; Table 2).

The PPN receives a direct input from the cerebral cortex aris-
ing from distinct frontal lobe areas involved in motor control in 
the monkey. These convergent inputs seem to target the dorsal 
and caudal PPN areas (Matsumura et al., 2000). In the rat, these 
afferents have also been demonstrated, although they seem to be 
less abundant (Semba and Fibiger, 1992). They arise also from the 
medial prefrontal cortex (Sesack et al., 1989). In addition, cholin-
ergic PPN neurons receive afferents from the primary auditory 
cortex in guinea pigs (Schofield and Motts, 2009).

basal gaNglia
The PPN receives a direct input from the STN in the rat (Jackson 
and Crossman, 1981; Kita and Kitai, 1987), the cat and the monkey 
(Nauta and Cole, 1978). In addition to the anatomical evidence, 
electrophysiological experiments in the rat have shown that this 
input is excitatory and it targets neurons in the PPN (Granata and 
Kitai, 1989). Furthermore, the STN can modulate PPN activity 
indirectly through the SNr; this pathway has an inhibitory effect 
on PPN neurons (Hammond et al., 1983; Florio et al., 2007).

Tracer studies show that the EP sends projections that inner-
vate PPN neurons in the rat (Semba and Fibiger, 1992) and in the 
monkey (Shink et al., 1997). In the latter, the GPi afferents prefer-
entially target NADPH diaphorase-negative neurons in the rostral 
PPN, establishing symmetric synapses with proximal dendrites. GP 
afferents to the PPN arise from the caudal GP, in contrast to the 
rostral GP that projects to the STN (Moriizumi and Hattori, 1992). 
GPi axons that innervate PPN neurons arise from type I neurons 
that are abundant in the center of the GPi (Parent et al., 2001), 

innervation to the dosolateral geniculate and reticular thalamic 
nuclei (Parent and Descarries, 2008). Individual Pf neurons receive 
convergent synaptic inputs from the PPN and the SC (Kobayashi 
and Nakamura, 2003). In turn, Pf neurons that receive inputs from 
the PPN project to striatum (Erro et al., 1999), linking monosyn-
aptically PPN axons to thalamostriatal neurons (Kobayashi et al., 
2007). Cholinergic neurons that project to the thalamus send col-
laterals to the basal forebrain (Losier and Semba, 1993), the pontine 
reticular formation (Semba et al., 1990), the superior and inferior 
colliculi, and the basal ganglia (Mena-Segovia et al., 2008). In the 
cat, glutamatergic and GABAergic neurons of the lateralis medialis-
suprageniculate nuclear complex (LM-Sg) receive cholinergic input 
from the PPN (Hoshino et al., 1997, 2000). Other thalamic nuclei 
receive a more heterogeneous mixture of cholinergic and non-
cholinergic PPN afferents, such as the centrolateral, centromedial, 
and paraventricular thalamic nuclei in the rat (Erro et al., 1999; 
Krout et al., 2002).

other asceNdiNg ProjectioNs
Individual cholinergic neurons of the PPN project to the supe-
rior and inferior colliculi in the rat (Mena-Segovia et al., 2008). 
The large majority of the cholinergic inputs to the inferior col-
liculus arise from the ipsilateral PPN and to a less extent, from 
the LTD. These projections arise from cholinergic neurons that 
are located in the caudal PPN and include a subpopulation that 
project to both the ipsilateral and contralateral inferior collicu-
lus in the guinea pig (Motts and Schofield, 2009). The superior 
colliculus receives cholinergic and non-cholinergic innervation 
from the PPN in the rat and cat (Beninato and Spencer, 1986; 
Hall et al., 1989). These afferents arise mainly from the caudal 
PPN (Beninato and Spencer, 1986). PPN neurons projecting to 
the superior colliculus, as identified by antidromic stimulation, 
are segregated into two groups: those that are sensitive and those 
that are insensitive to physiological sensory stimuli (Krauthamer 
et al., 1995). A small group of neurons located in the rostral PPN 
have collaterals that innervate the superior colliculus and the 
LM-Sg in the cat (Hoshino et al., 2004). In the rat, other ascending 
targets include the mesopontine rostromedial tegmental nucleus 
(RMTg; Jhou et al., 2009).

In the forebrain, the magnocellular preoptic area (MgPA) and 
the nucleus basalis magnocellularis receive afferents from the PPN 
(Semba et al., 1988; Losier and Semba, 1993). The posterior lateral 
hypothalamus receives cholinergic input from PPN neurons that 
are scattered throughout the rostro-caudal axis, and GABAergic 
innervation from neurons that are concentrated in the rostral PPN; 
the neurochemical nature of the majority of the projection neurons 
was not identified (Ford et al., 1995).

braiNstem aNd other desceNdiNg ProjectioNs
Neurons in the PPN make a dense innervation on structures in the 
lower brainstem, pons, medulla, and spinal cord. The descending 
projections arise from collaterals of ascending axons, as seen in 
cholinergic (Mena-Segovia et al., 2008) and non- cholinergic neu-
rons (Martinez-Gonzalez et al., 2009), or from non- cholinergic 
neurons with single descending axons (Ros et al., 2010). Both 
cholinergic and non-cholinergic neurons innervate the pontine 
reticular formation in the rat (Semba et al., 1990; Takakusaki et al., 
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other affereNt systems
The PPN receives afferents from the habenula (Semba and Fibiger, 
1992) and the zona incerta (Semba and Fibiger, 1992; Kolmac et al., 
1998), the deep cerebellar nuclei (Hazrati and Parent, 1992), the 
mesopontine RMTg (Jhou et al., 2009) and the superior and infe-
rior colliculi in the rat (Woolf and Butcher, 1986; Redgrave et al., 
1987; Semba and Fibiger, 1992; Steininger et al., 1992).

In the brainstem, tracer studies in the rat have shown that the 
rostral and caudal portions of the dorsal raphé send projections that 
innervate the PPN (Vertes, 1991), where they preferentially target 
non-cholinergic neurons in the caudal PPN (Steininger et al., 1997). 
The locus coeruleus (Jones and Yang, 1985) and the laterodorsal 
tegmental nucleus also innervate the PPN (Satoh and Fibiger, 1986; 
Cornwall et al., 1990; Semba and Fibiger, 1992). Furthermore, the 
PPN receives an input from the contralateral PPN (Semba and 
Fibiger, 1992).

In summary, the PPN receives afferents from the basal ganglia, 
cortex, thalamus, cerebellum, forebrain, spinal cord, pons, and the 
contralateral PPN. The rostral PPN receives inhibitory input from 
the SN and the EP/GPi. The caudal PPN receives inputs from the 
dorsal raphé and the motor cortex.

although some authors differ on this, finding retrogradely labeled 
neurons in the whole GP after retrograde tracer injection in the rat 
STN (Smith et al., 1990). This is particularly relevant because the 
PPN is involved into a circuit that involves the STN and GP, one 
of the principal outflows of the basal ganglia.

The PPN also receives afferents from the SN in the rat and cat 
(Nakamura et al., 1989; Spann and Grofova, 1991; Semba and 
Fibiger, 1992), and this input is inhibitory (Noda and Oka, 1984; 
Scarnati et al., 1987; Granata and Kitai, 1991) and mediated by 
GABA (Saitoh et al., 2003). It is not clear yet which PPN neurons are 
the targets of these afferents, but electron microscopy (EM) stud-
ies have shown that nigral afferents to the PPN establish synaptic 
contacts preferentially with non-cholinergic neurons located in the 
rostral PPN (Spann and Grofova, 1991; Grofova and Zhou, 1998). 
Some of these neurons are glutamatergic, and a lower proportion 
are cholinergic (Grofova and Zhou, 1998).

Other basal ganglia projections to the PPN include the ventral 
striatum in monkey (Haber et al., 1990) and the VTA in rats (Semba 
and Fibiger, 1992). Indeed, PPN neurons receive a dopaminergic 
innvervation presumably arising from the mesencephalon in the 
monkey (Rolland et al., 2009).

Table 2 | afferent connectivity of the pedunculopontine nucleus.

origin Target PPN region references

cereBral corTex

FL Caudal Semba and Fibiger (1992), Matsumura et al. (2000)

PAC Schofield and Motts (2009)

MPC Sesack et al. (1989)

cereBellum

DCN Hazrati and Parent (1992)

BaSal gaNglia

STN Nauta and Cole (1978), Jackson and Crossman (1981), Hammond et al. (1983), Kita and Kitai (1987), 

Granata and Kitai (1989), Semba and Fibiger (1992), Florio et al. (2007)

EP/GPi Rostral Smith et al. (1990), Moriizumi and Hattori (1992), Semba and Fibiger (1992), Shink et al. (1997), Parent 

et al. (2001)

SN Rostral Noda and Oka (1986), Scarnati et al. (1987), Nakamura et al. (1989), Granata and Kitai (1991), Spann 

and Grofova (1991), Semba and Fibiger (1992), Saitoh et al. (2003)

VTA Haber et al. (1990), Semba and Fibiger (1992)

STR Semba and Fibiger (1992)

TecTum

SC Woolf and Butcher (1986), Redgrave et al. (1987), Semba and Fibiger (1992), Steininger et al. (1992)

BraiNSTem

LTDg Satoh and Fibiger (1986), Cornwall et al. (1990), Semba and Fibiger (1992)

Contralateral PPN Semba and Fibiger (1992)

ForeBraiN

LC Jones and Yang (1985)

Habenula Semba and Fibiger (1992)

RMTg Jhou et al. (2009)

ZI Satoh and Fibiger (1986), Semba and Fibiger (1992), Kolmac et al. (1998)

DR Caudal Vertes (1991), Steininger et al. (1997)

Abbreviations: FL, frontal lobe; PAC, primary auditory cortex; MPC, medial prefrontal cortex; DCN, deep cerebellar nuclei; STN, subthalamic nucleus; EP, entope-
duncular nucleus; GPi, internal segment of the globus pallidus; SN, substantia nigra; VTA, ventral tegmental area; STR, striatum; SC, superior colliculi; LTDg, laterodorsal 
tegmental nucleus; PPN, pedunculopontine nucleus; LC, locus ceruleus; RMTg, mesopontine rostromedial tegmental nucleus; ZI, zona incerta; DR, dorsal raphé.
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2002; Benabid, 2003; Jenkinson et al., 2005; Stefani et al., 2007). As 
is evident from the cell types and their efferents, it is most likely that 
the stimulation of an electrode situated in the rostral PPN will have 
very different effects to an electrode situated in the caudal PPN.

coNclusioN
The PPN is subdivided in two functionally distinct regions: the 
rostral portion, which is predominantly inhibitory and intercon-
nected with the basal ganglia, and the caudal portion, which is 
predominantly excitatory and closely related to arousal and motor 
systems. These two functionally distinct areas are locally regulated 
and synaptically linked by the local axon collaterals of cholinergic 
and non-cholinergic neurons. The extent of the interaction between 
these two regions remains to be determined, but will help to elu-
cidate the common mechanism by which PPN neurons seem to 
participate in a wide range of behavioral functions.

fuNctioNal imPlicatioNs of toPograPhy
The data arising from the connectivity studies show that a signifi-
cant number of structures have a selective relationship with distinct 
regions within the PPN. This is clearly evident from the analysis of 
retrograde and anterograde tracing studies showing the distribu-
tion of PPN projecting neurons, although less clear with regards 
to the distribution of the PPN afferents. Nevertheless, in the case 
of PPN inputs, two important neuronal systems, the basal ganglia 
and the cortex, seem to contact neurons in distinct regions of the 
PPN. Thus, the GABAergic output neurons of the basal ganglia, 
arising in the SNr and EP/GPi, mainly contact neurons located in 
the rostral PPN. In contrast, neurons in the cortex and the dor-
sal raphé preferentially innervate neurons in the caudal PPN. In 
terms of its efferents, the rostral PPN projects to the SNr, SNc, 
GPi, and the hypothalamus. In contrast, the caudal PPN projects 
to the STN, the VTA, the thalamus, and the superior and inferior 
colliculi (Figure 2).

The differences in connectivity suggest that there is a func-
tional reciprocity in different areas of the PPN with regards to its 
inputs and outputs. These differences reveal that, (1) the rostral 
PPN, which contains a significantly larger number of GABAergic 
neurons, is interconnected with the structures that provide the 
GABAergic output from the basal ganglia, therefore suggesting a 
close functional relationship with basal ganglia operations; and 
(2) the caudal PPN, which contains a larger number of cholinergic 
and glutamatergic neurons, receives information from cortex and 
dorsal raphé, and projects to targets in the thalamus and colliculi, 
suggesting a close relationship with the modulation of brain states 
mediated through thalamocortical systems. Moreover, it is also the 
caudal PPN that projects to the STN and to the brainstem locomo-
tor regions involved in gait and posture and the modulation of the 
muscular tone across different brain states.

Behavioral studies following restricted lesions or selective 
manipulations in the rostral and caudal PPN have shown functional 
differences between these two PPN areas that correlate with the 
functional domains defined by the neurochemical distribution and 
connectivity (Inglis et al., 2001; Alderson et al., 2006, 2008; Andero 
et al., 2007). Such functional differences have relevance for deep 
brain stimulation (DBS) therapy in the PPN in Parkinson’s disease 
patients (Starr et al., 1998; Pahapill and Lozano, 2000; Nandi et al., 
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Figure 2 | Summary of the topographical distribution of the 
connectivity in the PPN. The rostral PPN, which is predominantly GABAergic, 
maintains interconnections with the GABAergic output of the basal ganglia. In 
contrast, the caudal PPN, where cholinergic and glutamatergic neurons are 
more abundant, receives input from the cortex and dorsal raphé and projects 
to the thalamocortical systems, STN and locomotor regions. Only major inputs 
and outputs, and those structures whose connectivity with the PPN is 
topographically organized, are depicted in this scheme. EP, entopeduncular 
nucleus; GPi, internal segment of the globus pallidus; IC, inferior colliculus; 
SC, superior colliculus; SN, substantia nigra; STN, subthalamic nucleus; VTA, 
ventral tegmental area.
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