
NEUROANATOMY

Multiple functions of subplate neurons during 
cortical developMent
Subplate neurons play different roles at different periods of corti-
cal development. At early stages, subplate neurons are involved 
in thalamo-cortical axon pathfinding at the level of the initial 
areal targeting and pioneer the corticofugal pathway (Ghosh et al., 
1990; Allendoerfer and Shatz, 1994; Molnár and Blakemore, 1995; 
Catalano and Shatz, 1998; López-Bendito and Molnár, 2003). 
Later, they play a role in the eventual innervation of cortical 
layer IV by thalamic afferents and the establishment of optical 
orientation columns (Kanold et al., 2003). They are also neces-
sary for the maturation of inhibition in cortical layer IV in areas 
innervated by the thalamus (Kanold and Shatz, 2006), and drive 
oscillations in the gap junction coupled early cortical syncytium 
(Dupont et al., 2006). During development, subplate neurons 
are electrically active and capable of firing action potentials 
(Luhmann et al., 2000; Hanganu et al., 2001; Moore et al., 2009) 
while incorporating, at least transiently, into the cortical and 
subcortical circuitry (McConnell et al., 1989; Friauf and Shatz, 
1991; Higashi et al., 2002, 2005; Kanold et al., 2003; Piñon et al., 
2009; Zhao et al., 2009). Subplate neurons in culture are triggered 
to a rapid induction of synapses when are exposed to neuron 
and glia cells (McKellar and Shatz, 2009). For a recent review on 
developmental and functional properties of subplate (see Kanold 
and Luhmann, 2010).

introduction
The subplate was first described in the human cortex (Kostovi  and 
Molliver, 1974), in the fetal macaque (Rakic, 1977), rat (Rickmann 
et al., 1977), and then in carnivores (Luskin and Shatz, 1985). It was 
defined as a transient zone below the cortical plate and above the inter-
mediate zone in the developing cortex (Rakic, 1977; Bystron et al., 
2008). The developing subplate zone contains residential subplate cells, 
and numerous other migrating cells and extending fibers through the 
region. Subplate cells initially contribute to the preplate that is then 
split into the subplate and marginal zone by the subsequent arrival of 
cortical plate cells (Marín-Padilla, 1971). Subplate has received renewed 
attention because of its functional relevance in cerebral cortex devel-
opment (Ayoub and Kostovi , 2009). During the last decades, the 
knowledge about subplate has been extended to include functional 
and molecular properties pointing to a structure with heterogeneous 
cell populations and a highly dynamic ontogeny (Antonini and Shatz, 
1990; Hoerder-Suabedissen et al., 2009; Oeschger et al., 2010). There 
are several novel markers for subplate cells in the murine cortex and 
we recently explored the comparative expression of these in differ-
ent amniotes (Wang et al., 2011). We consider species with critical 
phylogenetic relations (Figure 1) to approach different comparative 
issues related to phylogenetic origin, species-specific differences, and 
the proportions of this structure in rodents, marsupials, and primates. 
The aim of this review is to evaluate recent evidence to speculate on 
the possible phylogenetic origin and evolution of this structure.
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(ii)  In contrast, the “ancestral subplate” hypothesis suggests 
that subplate neurons were already present in the common 
ancestor of mammals and sauropsids. Usually, this is taken 
in a broader sense – the origin of all infragranular layers, 
including the subplate, is shared between the sauropsid and 
mammalian lineages. This hypothesis thus implies that the 
granular and supragranular mammalian neurons are a recent 
addition in neocortical phylogeny.

Based on similarities in gene expression patterns between the 
subventricular zone (SVZ) progenitor cells and the supragranu-
lar cortical neurons, it has been suggested that SVZ progenitors 
generate the upper layers of the cerebral cortex (Tarabykin et al., 
2001). Comparative analysis of the cortical progenitor populations 
in the ventricular and SVZs revealed the absence of a SVZ in the 
dorsal cortex of sauropsids in contrast to all studied mammals 
and this might be related to the absence of the supragranular cell 
populations (Kriegstein et al., 2006; Molnár et al., 2006; Cheung 
et al., 2007, 2010).

Additionally, there is evidence for similarity of infragranular lay-
ers of the neocortex and the dorsal cortex of turtle, based on shared 
gene expression, presence of neurotransmitters, and equivalence 
of Golgi stained cell morphologies (Marín-Padilla, 1971; Reiner, 
1991; Aboitiz et al., 2005). Along the same line, it has been suggested 
that a preplate is present during the development of the dorsal 
cortex in reptiles (Nacher et al., 1996), indicating that the subplate 
originated as an embryonic structure before the appearance of the 
neocortex and the inversion of the cortical neurogenetic gradient 
observed in mammals.

(iii)  A third hypothesis would combine the above two and sug-
gest that subplate in mammals is comprised of both new and 
ancestral cell populations. This interpretation implies that an 
embryonic subplate was present in an ancestral mammal, but 
additional populations evolved as cortical development and 
connectivity became more complex. This compelling hypo-
thesis was initially articulated by Aboitiz et al. (2005), but to 
date there is little persuasive evidence. To test it, one would 
need to be able to distinguish the ancestral and new popula-
tions of subplate cells by birthdating, differential gene expres-
sion, or connectivity. Our current review examines some of 
the recent comparative gene expression analyses and discus-
ses these results in the context of the above hypotheses.

What is the evidence for early vs continuously 
generated populations in rodent and priMate?
In rodents and carnivores, subplate neurons are generated at the 
same time as Cajal–Retzius cells in the marginal zone (or future 
layer I) and prior to the birth of cortical plate neurons (Luskin and 
Shatz, 1985; Chun and Shatz, 1989). Birthdating studies in rodent 
revealed that subplate is among the earliest generated and earli-
est mature cortical neuron populations (Bayer and Altman, 1990). 
Murine subplate cells are born around embryonic day (E)11 (Price 
et al., 1997) just past midway through the mouse gestational period.

In contrast to the rodent subplate, birthdating studies in pri-
mates revealed that neurons are continuously added to the sub-
plate until relatively late stages of corticogenesis (Smart et al., 2002; 

in search of the phylogenetic origin of the subplate
While much effort has been put into describing subplate func-
tion, little is known about it outside of the classical experimental 
models of macaque, cat, ferret, mouse, and rat. Thus, the subplate 
is often considered a mammalian specific trait and the evolutionary 
significance of this structure and its cellular constituents have not 
been fully discussed in other vertebrate species.

(i) One hypothesis suggests that subplate is exclusive to mammals 
and reaches increased complexity in larger brains (Kostovi  and 
Rakic, 1990). According to this “derived subplate” hypothesis, 
subplate evolved to support the development of cortico-cortical 
connectivity in mammals, without an obvious homolog in the 
reptilian cortex. Subplate is considered as an embryonic adap-
tation with more complexity in those areas that appear later in 
mammalian evolution, and in mammals with more complex 
brains (Kostović and Rakic, 1990; Supèr and Uylings, 2001; 
Molnár et al., 2006; Kanold and Luhmann, 2010). In support of 
this theory, subplate cannot be distinguished from cortical plate 
based on cytoarchitecture in marsupials (Mark and Marotte, 
1992), suggesting that subplate might not only be exclusive to 
mammals but to eutherian mammals. In addition, in macaque 
and human cortex the proportions of subplate compared to cor-
tical plate are much larger than in rodents or even carnivores. In 
these species, newly generated neurons are continuously added 
to the subplate region throughout the duration of cortical neu-
rogenesis (Smart et al., 2002; Lukaszewicz et al., 2005).

Figure 1 | Cladogram of the species investigated with subplate murine 
markers defined by fossil record, nuclear and mitochondrial DNA 
sequence data. This is based on previous literature (Carroll, 1988; Mannen 
and Li, 1999; Rieppel and Reisz, 1999; Zardoya and Meyer, 2001; Gibbs et al., 
2004; Pereira and Baker, 2006). Amniotes group is early subdivided into 
sauropsids (reptiles and birds) and mammals, both lines are represented in 
analyzed species. The brains of mammals and sauropsids, sketched in coronal 
sections, are morphologically very different, although being organized 
according to a common basic plan, which is more evident at developmental 
stages. Ag, amygdala; DC, dorsal cortex; DP, dorsal pallium; DVR, dorsal 
ventricular ridge; H, hippocampus; HP, hyperpallium; LC, lateral cortex; LP, 
lateral pallium; M, mesopallium; MC, medial cortex; N, nidopallium; OC, 
olfactory cortex; S, striatum; SEP, septum; VP, ventral pallium.
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Woo and Finlay, 1996; Reep, 2000), and possibly interstitial neurons 
in the white matter. Reep (2000) has suggested that the presence 
of a distinct layer VIb/VII in some species relates to the temporal 
overlap between the development of the subplate and the extension 
of cortico-cortical axons. The presence of cortico-cortical connec-
tions in layer VIb/VII may be thought of as an adult remnant of 
the excitatory cortical network that is present in the embryonic 
subplate (Hanganu et al., 2002).

Interestingly, subplate neurons in the primate cortex disappear 
in different proportions along the depth of subplate/white matter 
(Kostović and Rakic, 1990). This implies that the persisting sub-
plate neurons in primate are not just random remnants of early 
born neurons of preplate, but rather seem to belong to a selectively 
maintained neuronal system with continued function (Kostović 
et al., 2010). MRI also suggests that there is a regional difference 
in the loss of subplate as it appears “patchy” in late gestation, both 
regionally and in relation to the cortical folds, and later can only be 
seen at the tops of gyri in many brain regions (Perkins et al., 2008).

novel Markers for subplate analyzed in sauropsids 
and MaMMals
Our previous microarray experiments identified several genes 
that are specifically expressed in the subplate layer of the mouse 
dorsal cortex (Hoerder-Suabedissen et al., 2009). These markers 
are associated to subplate cells, since they change their position in 
mutants where subplate cells are displaced to the middle (p35 KO) 
or to the surface of the cortical plate (reeler; Hoerder-Suabedissen 
et al., 2009).

We selected nuclear receptor-related 1 (Nurr1), monooxygenase 
Dbh-like 1 (Moxd1), transmembrane protein 163 (Tmem163), com-
plexin 3 (Cplx3), and connective tissue growth factor (Ctgf) and set 
out to examine the subplate in a comparative context in species that 
diverge early in the amniote lineage. We studied turtle (Pseudemys 
scripta elegans), chick (Gallus gallus), gray short-tailed opossum 
(Monodelphis domestica), mouse (Mus musculus), rat (Rattus nor-
vegicus), and human (Homo sapiens sapiens) at some developing 
and adult stages (Wang, et al., 2011). For this review we have also 
included the pig (Sus scrofa domesticus) as a non-primate example 
of a gyrencephalic, large brain.

While some of these genes are expressed in dorsal pallium 
in all studied species (Nurr1, Ctgf, Cplx3, and Tmem163), we 
also observed that closely related mouse and rat differing the 
expression patterns of other genes (e.g., Moxd1). In embryonic 
and adult chick brains our selected subplate markers Nurr1, Ctgf, 
Moxd1, and Tmem163 are all expressed in pallial regions, mainly 
in the hyperpallium (dorsal pallium; Figure 2). Murine subplate 
marker (Nurr1, Ctgf, Moxd1, and Cplx3) genes are expressed in 
the central cell dense layer of the embryonic and adult turtle 
dorsal cortex. Although the cytoarchitectonic distinctions are not 
as apparent in the developing and adult opossum as in rodents, 
gene expression patterns suggest a widespread subplate popu-
lation scattered within the lower part of the developing corti-
cal plate (Figure 2). In the embryonic pig, Nurr1 is expressed 
beneath the cortical plate resembling the highly developed 
subplate observed in primates (Kostović  and Rakic, 1990) and 
carnivores (McConnell et al., 1989). These findings suggest that 
subplate populations are present in embryonic and adult stages 

Lukaszewicz et al., 2005; Molnár et al., 2006). This notion limits the 
usefulness of birthdating as an unequivocal method to define and 
follow subplate neurons in primate based purely on this method.

In human, the subplate zone becomes visible as a cell-poor/
fiber-rich layer situated between the intermediate zone and the 
cortical plate (Kostović and Rakic, 1990; Meyer, 2007) around 14 
postconceptional weeks (PCW), just at the beginning of the second 
trimester of human gestation. The subplate forms from the merging 
of the deepest edge of the cortical plate, with an already formed 
presubplate that contains few neurons but a differentiated neuropil 
(Mrzljak et al., 1988) and synapses (Kostović and Rakic, 1990). 
From 14 to 25 PCW in human, large numbers of TBR1+ neurons 
are continuously added to the subplate zone, which increases in 
width concurrent with the growth of the cortical plate, with the 
highest density of cells always found at the border between cortical 
plate and subplate (Meyer, 2007). Subplate reaches its maximum 
thickness at the late second and early third trimester. Thereafter 
the subplate gradually decreases in size and becomes unrecogniz-
able around the sixth postnatal month (Kostović and Rakic, 1990).

are subplate neurons transient? What is the extent 
of cell death in different subpopulations of 
subplate in different species?
Subplate is generally considered as a largely transient cell popula-
tion in the developing cortex (Allendoerfer and Shatz, 1994; Kanold 
and Luhmann, 2010). However, it is not clear to what extent dif-
ferential cell death is responsible for the dissolution of subplate 
in different mammalian species. The reported thinning and even-
tual disappearance could also result from continued migration of 
transitory cells through this early formed compartment before 
assimilation into cortical plate (Kostović and Jovanov-Milosević, 
2008) and/or the process of brain expansion and the consequent 
decrease in density in addition to cell death (Luskin and Shatz, 1985; 
Ghosh et al., 1990; Kostović and Rakic, 1990). Additionally, it is not 
known whether developmental cell death affects specific cell classes 
within the subplate or if all subpopulations are equally reduced. 
At least in the rat, however, it appears that both glutamatergic and 
GABAergic subplate neuron numbers are decreased to the same 
extent (Arias et al., 2002).

In a thorough study of pyknotic cell bodies in the developing rat, 
it was found that the amount of cell death in layer VIb (subplate) 
was not significantly different from other cortical layers, leading 
the authors to conclude that cell death does not play any significant 
role in this species (Valverde et al., 1995). On the other hand, in 
carnivores and primates, many subplate neurons degenerate under 
programmed cell death as the cortical plate matures (Wahle and 
Meyer, 1987; Chun and Shatz, 1989; Kostović and Rakic, 1990; 
Allendoerfer and Shatz, 1994).

In primates, the surviving subplate cells continue into adult life 
as interstitial neurons of the white matter (Kostović and Rakic, 
1980, 1990; Somogyi et al., 1981; Schiffmann et al., 1988; Chun 
and Shatz, 1989; Yan et al., 1996). In rat and mouse a consider-
able proportion of subplate cells persist into adulthood as the 
anatomically well-defined structure subjacent to the cortex, layer 
VIb (Lund and Mustari, 1977; Somogyi et al., 1984; Lauder et al., 
1986; Huntley et al., 1988; Luskin et al., 1988; Reep and Goodwin, 
1988; Winer and Larue, 1989; Cobas et al., 1991; Woo et al., 1991; 
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of both mammals and sauropsids (Wang et al., 2011). Based on 
our observations, we favor the hypothesis of a dual origin of the 
subplate cell populations. We propose that some subplate popula-
tions were present in the ancestral amniote cortex as originally 
suggested by Marín-Padilla (1971). However, in mammals the 
subplate compartment and its cellular constituents continued 
to evolve and reaching increased levels of complexity, size, and 
connectivity in species with larger cortices.

The strength of the above gene expression analysis is based on 
using multiple genes (all of which are expressed in the murine 
subplate) and analyzing their distribution in diverse species. 
However, we noted differences even between the closely related 
mouse and rat, with Moxd1 being absent from the rat subplate 
(Wang et al., 2011). We are fully aware that the analysis of a 
marker alone cannot solve the absolute identity of a cell pop-
ulation to recognize its cellular homolog in different species. 
In support to the comparative utility of these subplate mark-
ers, a pairwise comparison of Cplx3, Ctgf, Moxd1, Nurr1, and 
Tmem163 between rat, opossum, chicken, and human against 
the mouse protein sequences show a high degree (over 70%) of 
amino acidic sequence conservation (Wang et al., 2011). Ideally, 
gene expression, birthdating, cell morphology, projection pat-
tern, and neurophysiological characteristics should all be linked 
together in future studies. However, the above results can be used 
as a starting point to further investigate whether there is extensive 
overlap in these other categories as well.

role of subplate in the establishMent of cortico-
cortical and intracortical connections
In primates and carnivores, the subplate achieves its maximal 
thickness at the time cortico-cortical connections are being devel-
oped. Therefore, it has been suggested that in different cortical 
areas and in different species, the subplate may acquire different 
thicknesses, in direct relation with cortico-cortical connectivity 
(Kostović and Rakic, 1990). Additionally, a role for the subplate 
in directing cortico-cortical axons and in the generation of sulci 
in gyrencephalic brains was proposed (Kostović and Rakic, 1990), 
although firm experimental proof for the causal relationships has 
not been provided. In this context, the pig is an interesting model, 
as it is evolutionarily more distantly related to humans than mice 
are; yet its gyrencephalic brain is more similar in terms of size, 
cytoarchitecture, and duration of corticogenesis (Lind et al., 2007; 
Nielsen et al., 2010a). Recently, Nielsen et al. (2010b) reported a 
conserved developmental dynamic and patterning of expression 
of reelin in pig, which is comparable with rodents and human. 
We studied the expression pattern of the murine subplate marker 
Nurr1 during embryonic cortical development in pigs (Figure 2) 
and found a very similar pattern to Nurr1 expression in human 
(Wang et al., 2010). Others markers like Ctgf and Ddc are also 
expressed in subplate zone during pig cortical development at E100.

However, a cytoarchitectonically distinct subplate zone, in which 
subplate cells are aligned separately from cortical plate, does not 
seem to be necessary for complex cortico-cortical connectivity to 
arise. In some of the species without a layer VIb/VII in adult stages, 
like the guinea pig (hystricognath rodent) and phyllostomid bats, 
there are darkly stained cells in deep layer VI adjacent to the white 
matter, which give rise to cortico-cortical connections and may 

Figure 2 | Comparative expression of murine subplate markers (Ctgf, 
Moxd1, and Nurr1) in selected species. (A–C) mRNA expression of Ctgf and 
Moxd1 and protein expression of Nurr1 in the adult turtle, with external 
plexiform layer (EPL), cell dense layer (CDL), and internal plexiform layer (IPL) 
indicated. All three murine subplate markers are expressed in the dense cell 
layer in turtle. (D–F) mRNA expression of Ctgf and Moxd1 and protein 
expression of Nurr1 in chick dorsal pallium with the hyperpallium (H) and 
Mesopallium (M) indicated. Ctgf is expressed in a column within hyperpallium 
while Moxd1 labels scattered cells in the hyperpallium, across columnar 
boundaries. Similarly, Nurr1 is expressed in the dorsal most tip of the 
hyperpallium, across several columns, but not along their entire depth. (g–i) 
mRNA expression of Ctgf and Moxd1 and protein expression of Nurr1 in 
postnatal opossum cortex with cortical plate and marginal zone indicated. Ctgf 
and Moxd1 are expressed at in the upper cortical plate at the junction with the 
marginal zone at P20 while Nurr1 is primarily expressed in the lower cortical 
plate at P44. (J,K) Protein expression of Ctgf and Nurr1 in the embryonic pig 
cortex with subplate, cortical plate, and marginal zone indicated. Ctgf protein 
is localized to a thin band within the subplate, while Nurr1 protein is localized 
to a thicker band representing the subplate and possibly the lower parts of 
cortical plate. Nurr1+ cells follow the up and down of the above lying cortical 
gyri and sulci (at the edges of the image). (L,N,P) mRNA expression of Ctgf 
and Moxd1 and protein expression of Nurr1 in the postnatal mouse cortex 
with subplate, layers II–VI, and marginal zone indicated. All three markers are 
confined to the subplate zone in mice. (M,O,Q) mRNA expression of Ctgf and 
Moxd1 and protein expression of Nurr1 in postnatal rat cortex with subplate, 
layers II–VI, and marginal zone indicated. Ctgf and Nurr1 expression is 
confined to the subplate zone while Moxd1 expression is absent in the rat 
cortex [see inset in (N) (mouse) and (O) (rat)]. Scale bars = 200 μm.
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be comparable to layer VIb/VII of other animals (Reep, 2000). 
Nevertheless, no detailed comparative developmental data are 
available to discard an embryonic subplate role in cortico-cortical 
connectivity in this species.

coMparative aspects of extracortical subplate 
projections
In mammals, subplate neurons develop widespread intra- and 
extracortical connections including projections to the cortical plate, 
thalamus, contralateral hemisphere, and colliculus (McConnell 
et al., 1989; Allendoerfer and Shatz, 1994; Finney et al., 1998). There 
are species-specific differences in the extent of connectivity. There 
seems to be a general increase in the number of targets during 
mammalian phylogeny (Del Rio et al., 2000). Subplate projections 
are directed to the developing cortical plate providing a substantial 
glutamatergic input into the maturing cortical plate that has been 
associated with the establishment of functional cortical modules 
(McConnell et al., 1989; Friauf et al., 1990; Friauf and Shatz, 1991; 
Allendoerfer and Shatz, 1994; Finney et al., 1998; Hanganu et al., 
2001, 2002; Kanold et al., 2003; Kanold and Shatz, 2006; Piñon 
et al., 2009). Contrary to carnivores and primates, in rodents the 
subplate cells do not establish considerable callosal projections to 
the contralateral cortex (De Carlos and O’Leary, 1992; Ozaki and 
Wahlsten, 1998; Del Rio et al., 2000). Additionally in carnivores 
and primates, but not in rodents, subplate neurons project to the 
superior colliculus (Del Rio et al., 2000).

A phylogenetically conserved connection system in mammals 
is developed by subplate neurons projecting the earliest fibers into 
the internal capsule to assist thalamo-cortical pathfinding through 
the pallial subpallial boundary and then to serve as transient syn-
aptic targets for thalamo-cortical fibers (McConnell et al., 1989; 
De Carlos and O’Leary, 1992).

correlation betWeen subplate-like neuronal 
populations and thalaMic afferent targeting in 
sauropsids and MaMMals
Subplate enriched gene expression patterns are present in both 
sauropsids (turtle and chick) and mammals (opossum, rodents, 
pig, and human; Wang et al., 2010, 2011). In turtles, we observed 
these cells within the cell dense layer, in chicken in the hyperpal-
lium, in opossum within the deep layers of the neocortex, and in 
eutherians below the cortical plate. In eutherians, subplate cells have 
been suggested to be involved in the guidance of thalamic affer-
ents to the dorsal pallium through the pallial subpallial boundary 
and to provide temporary targets (Molnár and Blakemore, 1995; 
Hanashima et al., 2006). Displacement of subplate leads to rear-
rangement of the thalamic ingrowth in mouse mutants (Rakic and 
Caviness, 1995; Molnár et al., 1998) with functional synapse for-
mation in the altered location (Higashi et al., 2005). Comparative 
analysis shows similarities in the positional relationship of thalamo-
cortical afferents and the subplate: In reptiles, subplate markers are 
expressed in the cell dense zone (Figure 3). This more superficial 
location of subplate-like cell population is mirrored by a tangen-
tial and superficial entry of thalamo-cortical afferents through the 
external plexiform layer to the cortex. Neurons from the cell dense 
zone, located immediately below to the external plexiform layer, 
send projections to make contact with this the tangentially arranged 

Figure 3 | Schematic diagram summarizes the distribution and 
overlap of several murine subplate cell markers and other neuronal 
markers in rodents and their distribution in turtle. (A) In early postnatal 
mouse cerebral cortex Cplx3 and Ctgf are exclusively expressed in subplate 
cells. Nurr1 has additional expression in layer VI. These markers partially 
colocalize. Foxp2 is only expressed in layer VI and the overlap with Nurr1 is 
not yet investigated. Ddc immunoreactive cells are scattered into layer VI 
and white matter in addition to subplate and do not overlap with either 
Nurr1 or Cplx3. Calretinin and GABA immunoreactive cells appear in the 
whole cortical thickness. Neither Cplx3, Ctgf and Nurr1, nor Ddc expressing 
subplate cells express GABA. (B) In turtle dorsal cortex, the murine SP 
markers (Cplx3, Ctgf, and Nurr1) and Moxd1 are present at the upper part 
of the cell dense layer. Unfortunately there is no data about potential 
colocalization between markers in turtle cortex at present. FoxP2 is 
expressed below the subplate markers, in the lower part of the cell dense 
layer. Further, ubiquitous mammalian cortical markers appear restricted to 
either the internal plexiform layer (GAD65/67 and GABA) or the external 
plexiform layer (calretinin).

Figure 4 | Functional correlation between the developing thalamo-
cortical projections, cortical SP zone, and thalamic reticular nucleus. (A) 
Corticofugal (blue) and thalamo-cortical (red) axons extend toward each other 
at early stages during embryonic development and reach close to their 
targets. However they both stop short of their ultimate targets and 
corticofugal projections from subplate and layer VI accumulate in the thalamic 
reticular nucleus (TRN) and thalamo-cortical projections in subplate, 
respectively. Both compartments contain largely transient cells that get 
integrated into circuits during these early stages. (B) Toward the middle of the 
first postnatal week corticofugal and corticopetal axons enter the thalamus 
(Th) and cortical plate (CP), respectively, where they arborize and establish 
their contacts with their ultimate targets in thalamus and neocortex. There are 
signs of fiber decussations in the TRN and in the subplate indicating some 
rearrangements during development. Pale blue areas (amygdala, subplate, and 
thalamic reticular nucleus) represent brain regions sharing gene expression 
patterns. Ag, amygdala; Hp, hippocampus; MGE, medial ganglionic eminence; 
MZ, marginal zone (green area); S, striatum.
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bitufted neurons, pyramidal neurons, inverted pyramidal neurons, 
multipolar neurons, and candelabra-like monotufted neurons 
(Hanganu et al., 2002; Luhmann et al., 2009; Srivastava et al., 2009).

gabaergic subplate neurons
Similarly to other cortical layers there is a population of GABAergic 
neurons in subplate. These neurons are generally referred to as 
interneurons because most of them have only local projections. 
However, several types of GABAergic, so-called interneurons, have 
an axon that project to distant brain regions to form cortico-cor-
tical synaptic networks (Ribak et al., 1986; Toth and Freund, 1992; 
Hoerder et al., 2006; Jinno et al., 2007; Tomioka and Rockland, 
2007). The GABAergic subplate population express a variety of 
peptides such as Neuropeptide Y, somatostatin, and cholecystokinin 
or contain nitric oxide synthase (Wahle and Meyer, 1987; Chun and 
Shatz, 1989; Meyer et al., 1992; Uylings and Delalle, 1997; Finney 
et al., 1998; Judas et al., 1999; Torres-Reveron and Friedlander, 
2007). In rodents, GABAergic neurons originate from a sector of 
the subcortical proliferative zone of the ventral telencephalon (sub-
pallium), the ganglionic eminence. From here neurons migrate 
tangentially into the cortex following several routes to reach their 
target regions (Parnavelas, 2000; Marín and Rubenstein, 2003). The 
major stream of tangentially migrating GABAergic neurons is at 
the border of the intermediate zone and SVZ and smaller streams 
of migrating cells are present in the subplate and the upper part of 
marginal zone (Anderson et al., 1997; Pleasure et al., 2000; Molnár 
et al., 2006; Wonders and Anderson, 2006; Heng et al., 2007; Métin 
et al., 2007, 2008). This early migration of subpallial inhibitory 
neurons into the pallium has been observed in all tetrapods, includ-
ing amphibians (Brox et al., 2003), birds (Cobos et al., 2001), and 
reptiles (Métin et al., 2007). In the developing lizard brain, Nacher 
et al. (1996) described the presence of somatostatin-positive cells 
appearing first in the inner plexiform layer and later in the outer 
plexiform layer of the medial and dorsal cortices. Cells positive for 
neuropeptide Y were observed scattered in all regions of the ventral 
pallium of the turtle (Cordery and Molnár, 1999).

shared extracortical gene expression patterns 
suggest possible developMental relations betWeen 
subplate, claustruM, and aMygdala
Many of our recently identified subplate markers also have strong 
and specific expression in claustrum (Hoerder-Suabedissen et al., 
2009; Wang et al., 2011). A developmental relation between the 
subplate and other early produced neuronal populations such as the 
claustrum has been previously emphasized (Swanson, 2000; Künzle 
and Ratke-Schuller, 2001; Molnár and Butler, 2002).

In some mammals, the persisting subplate cells have an intimate 
relationship with the claustrum. In the rat, layer VIb/VII merges 
laterally with the claustrum while in the hedgehog tenrec (insec-
tivora), the adult subplate is embedded within layers of insular 
and rhinal cortices (Künzle and Ratke-Schuller, 2001). However, in 
other species, layer VIb/VII is separated from the claustrum (Reep, 
2000). Moreover, in some marsupials it has not been possible to 
observe a subplate, but a claustrum is definitely present in these 
species (Harman et al., 1995; Künzle and Ratke-Schuller, 2001). In 
monotremes, a first report communicated the absence of a claus-
trum (Butler et al., 2002), while a more recent report refuted this 

thalamic afferents (Cordery and Molnár, 1999). Similar,  superficial 
thalamic ingrowth is evidenced also in the reeler and Shaking Rat 
Kawasaki where the localization of the subplate is next to the mar-
ginal zone or in p35−/−, Cdk5−/− mutants where subplate cells are 
within the cortical plate (Molnár et al., 1998; Higashi et al., 2005; 
Rakic et al., 2006).

Marsupials, many of which do not have a cytoarchitectonically 
distinct subplate layer (Harman et al., 1995; Reep, 2000), and insec-
tivores would represent an intermediate evolutionary stage where 
the thalamic afferents extend in an oblique fashion directly toward 
the cortical plate or, as it was described in hedgehog, thalamo-
cortical axons arrive to the cortex through both above and below 
the cortical plate. This organization would be comparable to the 
p35−/− mutant mouse where the thalamic afferents also ascend to 
the middle of the cortical plate in oblique fascicles because subplate 
neurons are displaced there due to migration defects (Rakic et al., 
2006; Molnár et al., 2007). In both (marsupial and p35−/− pheno-
type) the subplate marker distribution does not label a band at the 
bottom of the cortex as in wild-type mice, but rather labels cells 
within the cortical plate.

Murine subplate marker expression was also observed in the 
avian hyperpallium (dorsal pallium; Wang et al., 2011). Cells labeled 
with the subplate markers were detected in different columns of the 
hyperpallium, but mainly located in the intercalated hyperpallium 
area, a recipient of thalamic afferents to the hyperpallium.

These results from mouse mutants and the correlation between 
subplate marker expression and eventual targeting of thalamo-
cortical axons, imply that subplate-like cellular components may 
play a fundamental role for the thalamo-cortical organization in 
both mammals and sauropsids, but not direct evidence for a con-
served mechanism has been demonstrated yet.

defining the cellular content of subplate zone 
during developMent
In mammals, the subplate zone is a highly dynamic compartment 
in the developing cortex containing both stationary and migrating 
glutamatergic and GABAergic neurons, various corticopetal and cor-
ticofugal projections, glial cells, and blood vessels (Kostović and Rakic, 
1990; Allendoerfer and Shatz, 1994; Kanold and Luhmann, 2010).

Subplate neurons have diverse morphologies including inverted 
pyramidal-like and horizontal cells, as well as polymorphic neurons 
with different shapes and spiny or smooth dendrites (Kostović and 
Rakic, 1980, 1990; Valverde et al., 1989).

The simpler organization of the three-laminar visual dorsal cor-
tex of reptiles has been compared to the infragranular layers of the 
neocortex of mammals in many aspects, including morphology, 
neurochemistry, and intrinsic and extrinsic connectivity (Reiner, 
1991). In general, neurons from the dorsal cortex of turtle could be 
divided morphologically in two groups of neurons: pyramidal cells 
corresponding to the main output of the cortex and non-pyrami-
dal or stellate interneurons (Connors and Kriegstein, 1986; Reiner, 
1991). The excitatory cells are primarily located in the central cell 
dense zone. This is also the location of murine subplate marker 
expression, in agreement with the finding that none of them are 
co-expressed with GABA in mice. Moreover, a detailed morphologi-
cal classification of mammalian subplate neurons shows that they 
share at least five out of six classes of neurons with the reptile cortex: 
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conclusion
We proposed at the beginning of this review, that the subplate is a 
phylogenetically ancient structure that takes a different form in sau-
ropsids and mammals, particularly in human (Kostović and Rakic, 
1990; Wang et al., 2010). We hypothesized that mammalian subplate 
contains both ancestral and derived elements. This hypothesis is 
based on our observation that subplate cellular components are 
not exclusive to mammals; some cell populations expressing the 
same cohort of genes are also present in sauropsids. In addition, 
it also takes into account the larger and more complex nature of 
subplate in mammals with large brains. Evolution of the mamma-
lian cortex required the modification of developmental programs; 
some of these started to rely on novel populations of subplate neu-
rons possibly characterized by different targets of connectivity. We 
hypothesize that the derived elements have been modified in the 
course of mammalian evolution to support an increasingly complex 
development of the cortical plate (Aboitiz, 1999; Molnár, 2000a,b; 
Aboitiz et al., 2005). Although this hypothesis is attractive and there 
is some support, we do not have direct evidence. The challenge is to 
be able to distinguish between the ancestral populations that our 
study demonstrates in chicks, turtles, opossums, rodents, pig, and 
human and the presumed newly evolved subplate cells in eutherian 
mammals. For this the subplate cell types shall have to be estab-
lished and relate to gene expression, connectivity, and functional 
properties in different species. These future experiments would help 
to answer if and how the subplate has been altered during evolu-
tion, and whether such alterations are related to and possibly drive 
changes in the size and complexity of the mammalian neocortex.
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observation (Ashwell et al., 2004). We found a complex extracortical 
expression of the subplate marker genes in mammals (opossum, 
mouse, and rat) that could be explained by the expression of devel-
opmental regulatory genes (Medina et al., 2004; Wang et al., 2011). 
Medina et al. (2004) propose that the claustroamygdalar complex, 
involving the pallial amygdala (lateral, basolateral, and basome-
dial amygdala complex) and the claustral complex (claustrum and 
endopiriform nucleus) derive from the lateral and ventral pallial 
histogenetic domains. Based on the expression of cadherin 8 and 
Emx1, the dorsolateral claustrum (claustrum proper), the basola-
teral amygdalar nucleus, and the posterolateral cortical amygdalar 
area may be derivatives of rostral or caudal levels of the lateral 
pallium. Based on the expression of Neurogenin 2 and semaphorin 
5A, the ventromedial claustrum, the endopiriform nuclei, and the 
anterior and postero-medial cortical amygdalar areas may derive 
from different rostrocaudal levels of the ventral pallium (Medina 
et al., 2004). The claustroamygdalar distribution of the studied sub-
plate markers is, at least to some extent, consistent with this line of 
evidence and with recent comparative data on chick (Medina et al., 
2004; Abellán et al., 2009). Ventral pallial cell populations detected 
by Moxd1 expression in chick could be represented by the Moxd1 
cells distributed in the pallial amygdala in mouse (postero-medial 
cortical amygdaloid nucleus, basomedial nucleus of the amygdala, 
and lateral amygdaloid nucleus). Tmem163 is expressed in all divi-
sions of the pallium of chick, which represents additional support 
for the early developmental division between pallial and subpallial 
territories. In rodents, Tmem163, is expressed in a wide extension 
of the claustroamygdalar complex, derived from lateral and ventral 
pallial proliferative regions, and is also expressed in the medial 
amygdaloid nucleus, posteroventral part of a subpallial derived 
region. Ctgf is expressed in the ventral part of the mesopallium 
in chick that could be related to the expression in the claustral 
complex in rodents. In addition, we found a high expression of 
Ctgf in the endopiriform nucleus, which is not predicted by a strict 
correspondence according to Medina et al. (2004). However, the 
posterior endopiriform nucleus has been proposed to belong to 
the lateral pallium by other authors (Aboitiz and Montiel, 2007). 
No lateral or ventral pallial expression of Nurr1 was detected in 
chick (Wang et al., 2011), and correspondingly, this marker shows 
a very restricted expression in the claustral complex but not in the 
amygdala of rodents.

siMilarities With the thalaMic reticular nucleus; 
another pioneer neuron guidance systeM of 
thalaMo-cortical connectivity
We observed diencephalic expression of some of the genes that were 
enriched in developing subplate (Wang et al., 2011). We found that 
both Trh and Ddc were expressed in the thalamic reticular nucleus 
(Wang et al., 2011). This structure has been compared to subplate 
because it contains largely transient cells, constitutes a tempo-
rary target for corticofugal projections and an important waiting 
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