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The claustrum and the insula are closely juxtaposed in the brain of the prosimian primate,
the gray mouse lemur (Microcebus murinus). Whether the claustrum has closer affinities
with the cortex or the striatum has been debated for many decades. Our observation of
histological sections from primate brains and genomic data in the mouse suggest former.
Given this, the present study compares the connections of the two structures in Micro-
cebus using high angular resolution diffusion imaging (HARDI, with 72 directions), with a
very small voxel size (90 micra), and probabilistic fiber tractography. High angular and spatial
resolution diffusion imaging is non-destructive, requires no surgical interventions, and the
connection of each and every voxel can be mapped, whereas in conventional tract tracer
studies only a few specific injection sites can be assayed. Our data indicate that despite the
high genetic and spatial affinities between the two structures, their connectivity patterns
are very different.The claustrum connects with many cortical areas and the olfactory bulb;
its strongest probabilistic connections are with the entorhinal cortex, suggesting that the
claustrum may have a role in spatial memory and navigation. By contrast, the insula con-
nects with many subcortical areas, including the brainstem and thalamic structures involved
in taste and visceral feelings. Overall, the connections of the Microcebus claustrum and
insula are similar to those of the rodents, cat, macaque, and human, validating our results.
The insula in the Microcebus connects with the dorsolateral frontal cortex in contrast to the
mouse insula, which has stronger connections with the ventromedial frontal lobe, yet this
is consistent with the dorsolateral expansion of the frontal cortex in primates. In addition to
revealing the connectivity patterns of the Microcebus brain, our study demonstrates that
HARDI, at high resolutions, can be a valuable tool for mapping fiber pathways for multiple
sites in fixed brains in rare and difficult-to-obtain species.
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INTRODUCTION
Microcebus murinus, the gray mouse lemur, is a prosimian species
native to the island of Madagascar. Microcebus bears many simi-
larities to the common ancestor of primates, which motivated the
early study of the microscopic anatomy of its cerebral cortex by
Le Gros Clark (1931; A supplemental figure adapted from Le Gros
Clark, 1931 is available at http://allmanlab.caltech.edu/). Many
sources of evidence indicate that the common primate ancestor
probably lived in tropical forests; was highly arboreal; was small in
size, weighing 500 g or less; was nocturnal; and fed on both fruits
and small animals. M. murinus satisfies all of these criteria (Martin,
1990), and the species’ skull shape and external brain morphology
closely resemble the fossil primates of the early Eocene period, 55
million years ago (Radinsky, 1975; Allman, 1977). These observa-
tions suggest a possible role of the Microcebus as an extant proxy
for the common ancestor of primates, hence motivating us to study
the species as a way of exploring the evolution of primate brains.

The claustrum is a thin, sheet-like subcortical cellular structure
found in mammalian brains. In primates it is located between the

putamen and the insular cortex, usually separated from each of
these two structures by the external capsule and the extreme cap-
sule, respectively (Figures 1A,B). Due to the claustrum’s location,
size, and shape, it is very challenging to investigate the structure’s
connections and function using techniques that are currently avail-
able. However, the limited amount of data from other species
suggest that it is extensively connected with many cortical areas
including the prefrontal, temporal polar, motor, hippocampal,
parahippocampal, parietal, and visual cortices (Tanné-Gariépy
et al., 2002; Edelstein and Denaro, 2004). Connections with the
thalamus, caudate, and amygdala have also been found (LeVay
and Sherk, 1981; Arikuni and Kubota, 1985; Jiménez-Castellanos
and Reinoso-Suárez, 1985; Amaral and Insausti, 1992; Edelstein
and Denaro, 2004).

The insular cortex, adjacent to the claustrum and separated
from its neighbor by the extreme capsule, has been extensively
studied in various animals. In the species whose insular cortices
have been often studied – macaque, rat, and mouse, for example –
the structure has been divided into three main, cytoarchitecturally
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FIGURE 1 | (A) A coronal section of the Microcebus murinus brain, stained
for cell body with the cresyl violet Nissl technique. The arrows point to the
claustrum (CL) and the insula (IN). (B) An adjacent section, processed with
the Gallyas silver staining technique, showing fiber distributions. Note the
external capsule segregating the claustrum from the putamen, and the
extreme capsule barely separating the claustrum from the insula. (C) A
coronal cross-section of the HARDI data, at the level and cutting plane
similar to those of the histological sections. The arrows indicate the
locations of the claustral and mid-insular seeds. The red-yellow tract
originates from the claustral seed, whereas the blue-light blue tract arises
from the mid-insular seed. (D–F) The fractional anisotropy (FA) map of the
HARDI data, in horizontal planes. This map reflects the distribution of fiber
tracts in the brain tissue, with the colors representing fiber directions
(blue = anterior-posterior; red = medial-lateral; green = dorsal-ventral). The
map clearly shows a number of major fiber bundles, such as the anterior
commissure (AC), cingulum bundle (CG), corpus callosum, genu (CCg),
corpus callosum, splenium (CCsp), fornix (FX), and internal capsule (IC).

distinct, parts: the agranular insula located anteroventrally, and
the granular insula in the posterodorsal portion, with the inter-
mediate dysgranular insula in between (Brodmann, 1909; Rose,

1928; Mesulam and Mufson, 1982a; Shi and Cassell, 1998; Van De
Werd et al., 2010).

These agranular, granular, and dysgranular portions of the
insula show different connectivity patterns and functions. In the
macaque, the anterior insula is associated with the perirhinal-
entorhinal cortex, anterior cingulate cortex (ACC), and amygdala,
hence linking the structure with the gustatory and olfactory sys-
tems, as well as emotion processing. On the other hand, the
granular insula is connected with the auditory and somatosensory
cortices plus the visual area TEm. This implicates the structure
in integration of the regions that process the non-chemical sen-
sory input from the outside environment (Mesulam and Mufson,
1982b; Mufson and Mesulam, 1982, 1984). In addition, the non-
human primate granular insula receives somesthetic afferents from
the lamina I neurons of the spinal cord via the ventromedial
nucleus of the thalamus, representing the interoceptive state of
the animal (Craig, 2002). The dysgranular insula, whose cytoar-
chitecture represents the gradual transition between the agranular
and the granular cortex, shows agranular connections in its ante-
rior portion and granular connections in the posterior (Mesulam
and Mufson, 1982b; Mufson and Mesulam, 1982, 1984). The rat
insula shows a similar dissociation in connectivity and function,
with the agranular insula richly associated with the limbic areas,
whereas the granular and dysgranular insular cortices seem to
receive visceral, homeostatic inputs (Allen et al., 1991).

There has been a long debate concerning the ontogenetic ori-
gin of the claustrum, with three different views: the opinion that
the structure is derived from the adjacent insular cortex (Meyn-
ert, 1868; Brodmann, 1909), the view that it is a part of the basal
ganglia (Edelstein and Denaro, 2004), and the one that argues
for claustrum’s independence from cortical or subcortical ori-
gin (Filimonoff, 1966). Meynert (1868) and Brodmann (1909)
considered the claustrum to be part of the insular layer VI, and
defined the borders of the insular cortex according to the loca-
tion of the claustrum. Bayer and Altman (1991a,b) supported this
view by demonstrating that, in rat embryos, the claustrum and
the deep layer of the anterior insular cortex emerge on the same
day. This view has also been supported in the context of pallidal
evolution in reptiles and birds: Striedter (1997), based on compar-
ative analysis of reptilian, avian, and mammalian brains, argued
that the claustrum and the endopiriform nucleus (primate ven-
tral claustrum) are pallidal in origin. In addition, Puelles et al.
(2000) have shown that the mammalian homologs of some of
the genetic markers for the pallidum in the embryonic chick are
expressed in the claustrum, suggesting cortical affinity. The sec-
ond conception that the claustrum has its closest affinites to the
striatum, rather than the insular cortex, is supported by evidence
that it is possible for the claustrum to develop into a significant
size in near absence of the insula, and that the human claustrum
tends to extend much beyond the upper border of the insula. It
has also been pointed out that the human embryonic claustrum is
not directly connected with the deep layers of the insula. Instead,
it is well-separated from the cortex by the uncinate fasciculus as
well as the extreme capsule, and closely connected to the amygdala
in some parts (Landau, 1919). The opinion that the claustrum is
neither cortical nor subcortical was supported by Ramón y Cajal
(1900) and by Filimonoff (1966), who, based on an exhaustive
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study of human adult and embryonic brains, concluded that the
claustrum is an intermediate structure between the striatum and
the cortex. A recent proteomic study of the rat claustrum agreed
with this view, although it also found a claustral affinity with layer
VI of the insular cortex (Mathur et al., 2009).

Inspecting histological sections from primate brains available
in our laboratory supports the cortical origin of the claustrum.
The spatial relationship between the claustrum and insula in the
Microcebus is illustrated in the photomicrographs of Nissl- and
Gallyas-stained coronal sections (Figures 1A,B) and Nissl- and
Heidenhain-stained horizontal sections (Figures 2A,B). These
sections show that the two structures are only barely separated
from each other. The extreme capsule is very thin and does not
entirely segregate the claustrum from the insula, and the claus-
trum appears to be an extra layer of the insula. This is unlike most
other primate brains, in which claustrum and insula are more
clearly separated by the extreme capsule: Figures 2C–F show Nissl-
and Gallyas-stained sections from the brains of a tarsier (Tarsius
bancanus) and an orangutan (Pongo abelii), including the claus-
trum, extreme capsule, and insula. In the tarsier (Figures 2C,D)
the extreme capsule divides only the dorsal half of the claustrum
from the insula, while the ventral halves of the two structures

appear fused. However, based on the width of the extreme cap-
sule, the dorsal segregation seems quite robust. In the orangutan
(Figures 2E,F), the claustrum is completely separated from the
insula.

We have also investigated the genetic affinities of the claustrum
and the insula, and compared them with those of their neighbor-
ing regions. Using Allen Institute for Brain Science’s AGEA (Allen
Mouse Brain Atlas, 2004), we studied the gene expression cor-
relation patterns based on 4,376 genes in the claustrum, insula,
caudate-putamen, and the olfactory cortex in the mouse. Figure 3
shows the expression pattern of each region: the claustrum has the
strongest correlations with the deep cortical layers and a large part
of the insula, whereas the caudate-putamen seems mostly self-
contained in terms of genetic expressions and shows no special
affinity with the claustrum. The olfactory cortex, while moderately
associated with all cortical areas, is most significantly correlated
with itself. Meanwhile, the anterior insula is highly correlated with
the cingulate cortex as well as itself.

From an evolutionary point of view, our histological evidence
from the Microcebus, tarsier, and orangutan suggests a strong affin-
ity between the claustrum and the insular cortex. Given the mouse
lemur’s similarities to the common primate ancestor, we believe

FIGURE 2 | Horizontal sections of the Microcebus brain, and coronal

sections of tarsier (Tarsius bancanus) and orangutan (Pongo abelii )

brains, depicting the spatial relationship between claustrum and insula

in the three species. (A,B) Horizontal sections of the Microcebus brain,
stained for cell bodies with the cresyl violet Nissl technique (A) and for axon
fibers with the Heidenhain technique (B). (C,D) Coronal sections of the tarsier
brain, stained for cell bodies with the cresyl violet Nissl technique (C) and for
axon fibers with the Gallyas technique (D). (E,F) Coronal sections of the
orangutan brain, stained for cell bodies with the cresyl violet Nissl technique
(E) and for axon fibers with the Gallyas technique (F). In all panels, the
external capsule (EtC), claustrum (CL), extreme capsule (ExC), and Insula (IN)

are labeled. In the tarsier, the claustrum and the insula, while clearly
segregated in the dorsal halves, appear fused together in the ventral portions.
On the other hand, the extreme capsule in the orangutan is very extensive,
completely separating the two structures. In the Microcebus the claustrum
and the insula are extremely close together. Also, whereas the external
capsule is relatively well defined throughout its entire length, the extreme
capsule is almost absent in some parts. (A,B) Courtesy of the Comparative
Mammalian Brain Collections (http://www.brainmuseum.org/), a collaborative
effort among the University of Wisconsin-Madison, Michigan State University,
and the National Museum of Health and Medicine, funded by the National
Science Foundation and the National Institutes of Health.
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FIGURE 3 | Gene expression correlation maps provided by Allen Brain

Atlas AGEA. AGEA, an on-line, open-access tool developed at the Allen
Institute for Brain Science, is based on in situ hybridization data from the
adult C57Bl/6J mouse brain, which provided the expression patterns of
4,376 genes. User can select a region of interest on the atlas and obtain a
three-dimensional map of the mouse brain showing the total gene
expression correlation between the region of interest and any of the other
regions. AGEA also provides users with lists of genes with enhanced
expression in correlated areas (Ng et al., 2009). (A) A reference section of
the mouse brain, containing the claustrum, insula, caudate-putamen, and
olfactory cortex. (B) A magnified view of the middle right panel, illustrating
the strong correlation between the anterior insula and the cingulate

cortex. Each number indicates the degree of correlation between the
selected area and the location of the dot connected with the number. The
dot with the correlation value of 1.0000 is where the selection crosshair
was placed. Middle left: The mouse claustrum’s gene expression
correlation profile. According to the correlation scale [between (A,B)], the
claustrum is most strongly affiliated with the deep layers of the insular
cortex. Middle right: The anterior insula’s gene expression is most highly
correlated with the cingulate cortex, as well as itself. Bottom left: The
caudate-putamen, besides a moderately high correlation with the
olfactory tubercle, is mostly contained within itself. Bottom right: The
olfactory cortex, other than the moderately high correlation with the
cortex, is mostly correlated with itself.

that the two structures were closely juxtaposed in the beginning of
the primate evolution, and gradually diverged due to the expan-
sion of the extreme capsule as tarsiers, monkeys, and apes emerged.
Our histological data, showing that the two structures are partially

separated in the tarsier and segregated completely in the orang-
utan, supports this hypothesis. In addition, the gene expression
profiles of the mouse claustrum and insula, provided by AGEA,
indicate that the genes expressed in the claustrum are highly
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correlated with those present in the deep layers of the insular
cortex and less correlated with gene expression in the striatum.
Taken together, our anatomical and genetic evidence points to the
cortical affinities of the claustrum.

Given that the claustrum appears to be a deep cellular layer
closely juxtaposed with the insula in Microcebus and the close
phylogenetic, developmental, and genetic affinities of the claus-
trum and insula, we hypothesized that the connections of these
two structures might be similar in Microcebus. To test this hypoth-
esis, we have emulated standard tracer-microinjection tract tracing
studies by placing single-voxel seeds within these structures in our
high spatial and angular resolution diffusion imaging dataset for a
fixed Microcebus brain. During the past decade a number of studies
have explored diffusion MRI’s capability of assaying fiber connec-
tivity in post-mortem, fixed brains. Studies of various species,
including the mouse (Mori et al., 2001; Guilfoyle et al., 2003; Sun
et al., 2003; Zhang et al., 2003, 2005; D’Arceuil and de Crespigny,
2007), cat (Takahashi et al., 2010, 2011), pig (Dyrby et al., 2007,
2011), rabbit (D’Arceuil et al.,2008),baboon (Kroenke et al.,2005),
macaque (D’Arceuil et al., 2007), and human (Roebroeck et al.,
2008; Miller et al., 2011; Takahashi et al., 2012), have supported
this approach as an effective method of identifying and observ-
ing development of fiber bundles. It has also been shown that the
anisotropy of fixed tissue does not differ significantly compared to
fresh tissue (Sun et al., 2003; D’Arceuil et al., 2007), and that fixed
brain tissue retains its original diffusion property for at least 3 years
(Dyrby et al., 2011). In addition, one study validated the results of
probabilistic tractography in fixed pig brains by directly compar-
ing them with the data from conventional tracer injections (Dyrby
et al., 2007), showing that post-mortem diffusion imaging and
probabilistic fiber tractography are viable methods. In fact, con-
sidering that these approaches are non-invasive, could be seeded
in many different regions without a limit (whereas conventional
tracer injection method can assay only a few regions per brain),
and that diffusion images can be sliced in many different planes
for analysis, further developments of these techniques would have
a significant impact on the field of neuroanatomy. However, to our
knowledge there have been no studies in which an image with very
high angular and spatial resolutions was produced, fiber tractogra-
phy was performed with the image, and the resulting connections
were validated with conventional tracer injection data. The very
high resolution of our high angular resolution diffusion imaging
(HARDI) data, acquired at the magnetic field strength of 9.4 T, has
allowed us to study the animal’s claustral connectivity at a spatial
resolution (90 micra) that has not been achieved in most HARDI
connectional studies.

MATERIALS AND METHODS
DIFFUSION MR IMAGING
Two paraformaldehyde-fixed M. murinus brains, from lemurs
that had died of cancer, were provided by Dr. Russell Jacobs
of the Beckman Institute at the California Institute of Technol-
ogy. The right hemisphere of one of the brains was immersed
in an inert, fluorinated fluid (Galden® HT-200 perfluoropoly-
ether, Solvay Solexis, Inc., Thorofare, NJ, USA) and scanned
for approximately 33 h in the Bruker 9.4-T MR system (Bruker
Biospin, Germany) for a high angular resolution diffusion

image (Figures 1C–F) at the Caltech Brain Imaging Cen-
ter. The HARDI data were obtained with a diffusion-weighted
single spin echo sequence, using the following parameters:
number of directions = 72, TR/TE = 75/22.8 ms, 256 × 160 × 112
matrix, 23.04 mm × 14.40 mm × 10.08 mm FOV, nominal b-
factor = 1170 s/mm2, ∂ = 5 ms, Δ = 10 ms. This yielded seven
non-weighted images and 72 diffusion-weighted images, with a
voxel size of 90 μm isotropic. Figures 1D–F show the fractional
anisotropy map of the HARDI data, reflecting the high quality of
our image.

Only two brains were used in the present study, and only one
brain was imaged, due to the scarcity of post-mortem fixed Micro-
cebus brains and the very high cost of acquiring a diffusion image
with high spatial and angular resolutions.

HISTOLOGY
The imaged brain was embedded in celloidin, sectioned, and
stained with thionin, but the resulting sections were low quality
and could not be used for the study. Hence the second M. murinus
brain underwent sucrose and phosphate buffer saline baths for cry-
oprotection, was frozen on a specially designed microtome stage,
and sectioned coronally at the thickness of 90 μm. The cut face
of the tissue was photographed after every section. These images
were used to ensure accuracy in orientation when the sections were
mounted on glass slides prior to staining.

All odd-numbered sections were stained with the cresyl vio-
let Nissl technique, which visualizes neuronal cell bodies and glia
(Figure 1A). All even-numbered sections were stained for axon
fibers (Figure 1B) with the Gallayas method (Gallyas, 1979). Gela-
tinized slides were used for all Nissl sections and some of the
Gallyas sections. However, agitations during the Gallyas procedure
caused the tissue to peel off of gelatinized slides, and this prompted
the use of SuperFrost Plus slides (Thermo Fisher Scientific, Inc.,
Waltham, MA, USA), which adhere to tissue electrostatically,

MR IMAGE PROCESSING AND FIBER TRACTOGRAPHY
FMRIB Software Library (FSL) algorithms (Smith et al., 2004;
Woolrich et al., 2009) were used to process and analyze the HARDI
data. Eddy current distortions in the diffusion-weighted images
were modeled and corrected as affine transformations relative
to the mean non-diffusion-weighted image. Diffusion parameters
were estimated using the two-fiber Bayesian inference with Markov
Chain Monte Carlo sampling algorithm implemented by BED-
POSTX in FSL (Behrens et al., 2007). The non-diffusion-weighted
volume was re-oriented using the software Amira® (Visage Imag-
ing, Inc.,Australia), then re-sliced with Image J (National Institutes
of Health, Bethesda, MD, USA), such that its coronal cutting plane
was similar to that of the histological sections.

The histological sections helped us identify the claustrum and
the different cytoarchitectural portions of the insula on the dif-
fusion image. We created single-voxel seeds in the two regions
based on this anatomical information, and performed proba-
bilistic fiber tractography using the PROBTRACKX algorithm
implemented by FSL (Behrens et al., 2007). The same set of para-
meters were used for each run of probabilistic tracking: number
of samples = 10,000; curvature threshold = 0.2; maximum num-
ber of steps = 4,000; and step length = 0.09 mm. The Loopcheck
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option was always used to exclude redundant fibers (Behrens et al.,
2003a,b, 2007). Similar tractography experiments were performed
in the putamen, olfactory cortex, septum, and amygdala.

RESULTS
PROBABILISTIC TRACTOGRAPHY RESULTS
To explore the connectivity patterns of the central portions of
the Microcebus claustrum and insula, we first created a single-
voxel seed mask in the center of each structure (Figure 1C). Fiber
tractography experiments were performed using these masks and
the parameters described in the Materials and Methods section.
The tractography results suggest that, despite the spatial proximity
between the two structures, claustrum and insula in the Microcebus
have very distinct connectivity patterns.

Overall, the claustrum seems associated with most cortical
regions and olfactory structures: as shown in Figures 4, 5, and
6, the claustral tract reaches the entire frontal pole, frontal cor-
tex, premotor cortex, ventral ACC, ventral temporal cortex, visual
cortex, motor cortex, somatosensory cortex, olfactory cortex, and
olfactory bulb, and most strongly the entorhinal cortex. It also
associates with some subcortical structures, such as the caudate
(Figures 4C,D, 5B,C, and 6A), putamen (Figures 4C,D, 5C, and
6B), globus pallidus (Figures 4D, 5C, and 6B), lateral amyg-
dala (Figure 4D), olfactory tubercle (Figures 5B and 6C), and
olfactory tract (Figures 4A,B). The connections to the putamen
and the globus pallidus appear to involve the external and inter-
nal medullary laminae of pallidum, respectively. In addition, the
claustrum apparently has cross-hemispheric connections via the
anterior commissure (Figures 4C and 5A) and the corpus callosum
(Figures 4C,D and 5A–C).

By contrast, the mid-insular seed appears connected to more
subcortical areas and does not show strong signals in the olfac-
tory structures: the seed exhibits associations with the dorsal and
lateral parts of the hypothalamus (Figure 4E), substantia nigra
(Figure 5B), zona incerta (Figures 5B,C), thalamic areas such as
the reticular nucleus (Figure 5C), ventral posterolateral nucleus
(Figure 5C), and the parvocellular division of the ventral postero-
medial nucleus (VPMpc; Figure 5C), and with brainstem struc-
tures including the central tegmental tract (Figures 4E,F, 5A, and
6C), parabrachial nucleus (Figures 5B and 6B), and midbrain cen-
tral gray (Figures 4F and 5A). Additional subcortical regions such
as the nucleus accumbens (Figures 4C and 5B), substantia innom-
inata (data not shown), and diagonal band (Figures 4C and 5A,B)
are also connected with the insula. We were unable to precisely
identify which hypothalamic nuclei are associated with the insula,
due to the limited image resolution. Overall, there appears to be a
coherent system involving the central tegmental tract, parabrachial
nucleus, lateral hypothalamus, zona incerta, VPMpc, midbrain
central gray, and insular cortex. In contrast to the claustrum, we
found no connections to the olfactory bulb or the entorhinal cortex
arising from the mid-insular seed voxel, although it does have some
connections with the temporal lobe outside the entorhinal cortex
(Figure 4D). The insular seed revealed a robust trans-cortical asso-
ciation between the cingulate cortex and the insula (Figure 4C).
This connection and the rest of the insular connections with the
frontal cortex (Figures 4A,B) mainly occupy the dorsal and lateral
aspects of the frontal lobe. On the other hand, the claustrum does

not show such preference (Figure 4A). The insula’s connection to
the dorsolateral frontal cortex in the Microcebus contrasts with the
mouse insula, which is mainly associated with the ventral frontal
lobe (Figure 4, top left panel).

Some similarities between the two connectivity patterns are also
observed. First, both seed regions maintain connections through-
out almost the entire length of the cingulate cortex (Figures 4C–F,
5A and 6A), including the part of the ventral ACC that may be the
primate homolog of the rodent infralimbic and prelimbic cortices
(Figure 4C). Second, both regions appear robustly connected to
the septum: the claustral tract is seen in a large part of it while the
insular tract is present in the dorsal septum (Figure 4C). Also, a
single-voxel seed mask placed in the dorsal septum yielded a tract
that reaches both the claustrum and the insula (Figure 7, top row).
Third, both the insula and the claustrum seem associated with the
parietal and occipital cortices, although the insular connections
are much weaker than are the claustral ones (Figures 4E–G, 5B,D,
and 6A). Finally,both structures exhibit connections to the caudate
and the putamen (Figures 4C,D, 5B,C and 6A,B).

To investigate topographical fiber organizations in the claus-
trum and the insula, we placed additional single-voxel seeds along
the approximate anteroposterior, mediolateral, and dorsoventral
axes of each region. The mediolateral axis was not tested in the
claustrum, due to the thinness of the structure. The claustrum does
not exhibit significant differences in connectivity results among
the anterior, middle, and posterior seeds (Figures 8A–D), whereas
there seems to be some spatial organization along the dorsoven-
tral axis: the ventral claustral seed, while connecting to the same
set of regions as the dorsal seed, also connects to larger areas of
the olfactory bulb and the olfactory cortex compared to the dorsal
seed (Figures 8E–H). Whereas the insula does not seem to have
any significant topographic organizations along the anteroposte-
rior or the mediolateral axes (data not shown), some differences are
observed along the approximately dorsoventral axis: a seed placed
in the agranular region, ventral to the mid-insular seed discussed
above, exhibits connections to the olfactory bulb, olfactory cortex,
and the entorhinal cortex in addition to the insular connectivity
profile discussed above (Figure 9).

To ensure that our results from the central claustral and insular
seeds mostly represent the connectivity of claustrum and insula
only, and not of the surrounding regions, we placed single-voxel
seeds in some of these surrounding structures and compared the
resulting fiber tracts with the claustral and insular ones. A seed
was placed in the putamen, the structure immediately medial to
the claustrum. The most striking differences shown in the prob-
abilistic tractography results are that: (a) the putamen, unlike the
claustrum, does not connect with olfactory structures such as the
olfactory bulb, olfactory cortex, olfactory tubercle, and entorhinal
cortex; and (b) the putamen connects extensively to the cau-
date. Some similarities are found: like the claustrum, the putamen
shows connections with many cortical areas, including the frontal,
entorhinal, and visual (Figure 10, upper panel).

We placed another seed in the olfactory cortex, the region
directly ventral to both the claustrum and the insula, and com-
pared the resulting tracts with those of the agranular insular seed.
As expected, the results indicate that the olfactory cortex’s connec-
tivity profile does not significantly overlap with the connectivity
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FIGURE 4 | An overview of the connections of the claustral tracts (shown

in red-yellow, with the yellow indicating connections that are more

probable) and the insular tracts (shown in blue-light blue, with the light

blue indicating more probable connections), in coronal planes. The top
left panel compares the insular connection to the frontal cortex between the
mouse and the Microcebus. The image on the left shows PHA-L injected into
the anterior insula of the mouse, resulting in anterograde projections to the
orbitofrontal cortex, located ventrally. Image courtesy of the Mouse
Connectome Project. The image on the right depicts the probabilistic fiber
tractography results showing that the Microcebus insula connects mainly
with the dorsomedial and dorsolateral frontal cortex. The top right panel
describes the locations of the coronal cross-sections (A) through (H). In
(A–H), since the blue tracts have been rendered transparent, the areas with
overlapping claustral and insular tracts appear purple. The cortical area
numbers are based on Le Gros Clark’s (1931) map of Microcebus cortex.
(A,B) The clautrum connects to the dorsal and ventral frontal cortex, cingulate
cortex, olfactory cortex (OC), anterior olfactory nucleus (AN), and the olfactory
tract (OTR), whereas the insula connects with the dorsomedial and
dorsolateral frontal cortex. (C) The seed level. The claustral tracts travel from
the claustrum (CL) to the nearby caudate (CD) and the putamen (PU), as well

as the septum (S), anterior commissure (AC), and the ventral anterior
cingulate cortex. The insular (IN) tracts appear in the caudate (CD), putamen
(PU), septum (S), ventral cingulate cortex, nucleus accumbens (NA), and the
diagonal band (DB). (D) The claustrum associates with the entorhinal cortex
(EC, Area 28 in Le Gros Clark’s, 1931 cortical map) at a high probability, and
with the lateral amygdala (LA). The insula connects with the temporal cortex,
globus pallidus (GP), caudate (CD), and putamen (PU). (E) The claustrum
connects at a high probability to the entorhinal cortex (EC, Area 28 in Le Gros
Clark’s, 1931 cortical map). The insula connects to the caudate (CD), cingulate
cortex, reticular thalamic nucleus (R), zona incerta (ZI), and dorsal lateral
hypothalamus (DH, LH). (F) The claustrum continues to connect at a high
probability with the entorhinal cortex (EC, Area 28 in Le Gros Clark’s, 1931
cortical map), whereas the insular tracts appear in the cingulate cortex and
along the central tegmental tract (CTT). (G) While the claustrum connects to
the entorhinal cortex (EC, Area 28 in Le Gros Clark’s, 1931 cortical map) and
the more dorsal cortical areas 20 and 21, the insula continues to associate
with the cingulate and central tegmental tract (CTT), and connects with the
midbrain central gray (CG). (H) Both claustrum and insula connect with the
visual cortex, although the insula does to a significantly lesser degree than
does the claustrum.
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FIGURE 5 |The connections of the claustrum and insula, in

parasagittal planes. The middle panel shows the levels of
cross-section for (A–D). The cortical area numbers are based on Le
Gros Clark’s (1931) map of Microcebus cortex. (A) The claustrum
connects to the olfactory bulb (OB) and the dorsal frontal cortex, and
achieves cross-hemispheric connections via the anterior commissure
(AC) and the corpus callosum (CC). The insula connects to the dorsal
frontal cortex, posterior cingulate cortex, corpus callosum (CC),
diagonal band (DB), midbrain central gray (CG), and central tegmental
tract (CTT). (B) The claustrum is connected with a large portion of the
prefrontal cortex, olfactory bulb (OB), olfactory tubercle (OTU), as well

as the parietal cortex. The insular tracts appear in the frontal cortex,
parietal cortex, caudate (CD), nucleus accumbens (NA), diagonal band
(DB), zona incerta (ZI), substantia nigra (SN), and parabrachial nucleus
(PB). (C) The claustrum connects to the frontal cortex and the putamen
(PU), while the insula connects to the dorsal frontal cortex, globus
pallidus (GP), reticular thalamic nucleus (R), ventral posterolateral
thalamic nucleus (VPL), ventral posteromedial thalamic nucleus (VPM),
and zona incerta (ZI). (D) The claustrum is highly probably connected to
the entorhinal cortex (EC, Area 28 in Le Gros Clark’s 1931 cortical map).
Both claustrum and insula are connected to the cortical area 17,
although the insula seems connected to a lesser degree.

patterns of the agranular insula and the claustrum, in that the
olfactory cortex only connects to the olfactory bulb, olfactory
tubercle, and the entorhinal cortex (Figure 10, lower panel).

The probabilistic connectivity results for the claustral and insu-
lar seeds mentioned above are summarized in Tables 1–5. The
tables also include the comparison of our fiber tractography results
with those of previous tracer injection studies in rodents and
monkeys: since there are virtually no tracer studies done in the
Microcebus, comparing our data to those from other species is
currently the best available method of validating our data.

DISCUSSION
Our data show that the claustrum and insula have very different
connections in Microcebus despite their close structural, devel-
opmental, phylogenetic, and genetic affinities. Our Microcebus
connectivity data, as shown in the Tables 1–5, are by and large con-
sistent with the previously known connections of the claustrum
and insula from tracer and imaging studies in other species. Our
claustral connectivity pattern is comparable with the cat (Norita,
1977; Olson and Graybiel, 1980; Witter et al., 1988), macaque
(Mufson and Mesulam, 1982; Pearson et al., 1982; Arikuni and
Kubota, 1985; Insausti et al., 1987; Amaral and Insausti, 1992;
Tanné-Gariépy et al., 2002), and squirrel monkey (Jürgens, 1983),

demonstrating associations with most cortical areas. There are
additional supporting data from the rat (Carey and Neal, 1985;
Kowianski et al., 1998; Behan and Haberly, 1999; Lipowska et al.,
2000), hedgehog (Dinopoulos et al., 1992), rabbit (Lipowska et al.,
2000), mouse (Mouse Connectome Project, 2011), Galago (Carey
et al., 1979), and Tupaia (Carey et al., 1979). In the cases of the
rabbit and the rat, the injections were made in the endopiriform
nucleus, which we consider equivalent to the ventral claustrum in
primates. Although our results suggest that the Microcebus claus-
trum is connected with the putamen, globus pallidus, olfactory
bulb, and olfactory tubercle, to the best of our knowledge no past
tracing studies in other species have reported this. We suspect that
these regions might not be directly connected with the claustrum,
but rather indirectly via the cortical and subcortical areas that are
associated with it.

Our results from the mid-insular seed also show a trend similar
to those of the previous studies in the mouse (Mouse Connectome
Project, 2011), rat (McGeorge and Faull, 1989; Allen et al., 1991;
Shi and Cassell, 1998), and macaque (Mufson et al., 1981; Mesulam
and Mufson, 1982b; Mufson and Mesulam, 1982, 1984; Chikama
et al., 1997; An et al., 1998; Öngür et al., 1998), connecting to var-
ious subcortical structures that are also associated to the insula in
other species. Also, a seed placed in approximately the agranular
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FIGURE 6 |The connections of the claustrum and insula in horizontal

planes. The top panel shows the levels of cross-section for (A–C). The
cortical area numbers are based on Le Gros Clark’s (1931) map of
Microcebus cortex. (A) Both claustral and insular tracts appear in the frontal
and cingulate cortices, caudate (CD), and the visual cortex. (B) The
claustrum connects to the olfactory bulb (OB), putamen (PU), and the
cortical area 21. Also note that the claustral tract is adjacent to the frontal,
temporal, and occipital cortices, suggesting that the claustrum is connected
to deep layers of these areas although the tract does not penetrate into
upper cortical layers. The insular tract appears in the putamen (PU), globus
pallidus (GP) and the parabrachial nucleus (PB). (C) The claustrum is
connected to the olfactory tubercle (OTU), olfactory cortex (OC) and, at a
high probability, to the entorhinal cortex (EC, Area 28 in Le Gros Clark’s 1931
cortical map). Meanwhile the insula connects to the central tegmental tract.

portion of the insula connects to olfactory structures, such as the
olfactory bulb, olfactory cortex, and the entorhinal cortex, which
is consistent with the past literature (Mesulam and Mufson, 1982b;
Shi and Cassell, 1998; Mouse Connectome Project, 2011).

Our data show some similarities to the claustral and insu-
lar connectivity patterns in the human brain as well. A human
DTI study, in which selection of the seed regions were guided
by microsurgical dissection of the claustrum and its surround-
ing fibers, suggests that the human claustrum is associated with
a wide variety of cortical regions, including the prefrontal cortex,
orbitofrontal cortex, temporal pole, parietal cortex, and occipi-
tal cortex (Fernández-Miranda et al., 2008). The human insula’s
structural connections with the entorhinal cortex, prefrontal cor-
tex, premotor cortex, and parietal cortex, and the functional asso-
ciations with the frontal cortex, cingulate cortex, supplementary
motor area, parietal cortex, and visual cortex, are consistent with
our findings (Taylor et al., 2009; Menon and Uddin, 2010; Uddin
et al., 2010; Cerliani et al., 2011; Deen et al., 2011). However, these
studies report the structure’s connections with multiple regions
not included in our results. This disagreement might be mostly

due to the increased complexity of the human brain that may have
enlarged the claustral and insular connections.

The results from the insular seed appear to contain a coherent
system including the central tegmental tract, parabrachial nucleus,
midbrain central gray, and the VPMpc of the thalamus. A tracer
injection study in the macaque nucleus of the solitary tract (NST)
revealed that the rostral NST projects to the VPMpc via the cen-
tral tegmental tract, the caudal NTS connects to the parabrachial
nucleus, midbrain central gray, and ultimately the VPMpc, and the
intermediate portion of the nucleus is associated with the VPMpc
and the parabrachial nucleus (Beckstead et al., 1980). The con-
nection to the NST seems to have been lost in our results, but
the insular connections are present for all of the other structures
in the system, and its association with the central tegmental tract
is especially strong. In macaque monkeys, tracer injections have
demonstrated that the aganular insula is reciprocally connected
with the same part of the midbrain central gray that is associated
with the insula in our study (An et al., 1998).

The tracer data from the mouse show that the insula is con-
nected to the frontal cortex ventrally, while our tractography
results suggest that insula and the prefrontal cortex are associated
more dorsally in the Microcebus. This divergence may be due to the
expansion of the dorsal and lateral frontal cortex in the primate
brain, relative to non-primate mammalian brains (Khokhryakova,
1978; Fuster, 2008). Since the dorsal and lateral frontal cortices
are relatively larger in the Microcebus than in rodents, it seems
plausible that the insula might be more strongly connected to the
dorsolateral frontal cortex in the Microcebus than in the mouse.
A tracer injection study in the macaque, showing that connec-
tions exist between the insula and the dorsolateral frontal cortex
in addition to the orbitofrontal cortex (Mesulam and Mufson,
1982b), supports this conclusion.

In addition, our data reflect differences in connectivity pat-
tern between the granular and agranular insula, with the latter,
unlike the former, connecting to olfactory structures. This is con-
sistent with past tracer studies in the primate insula in which the
agranular portion of the structure has been implicated in olfac-
tory processing (Mesulam and Mufson, 1982b). While this could
conceivably result from the seed’s proximity to the olfactory cor-
tex, the ventral insular seed does not connect to the portion of the
anterior olfactory cortex directly adjacent to the insula (Figure 10,
lower panel), hence supporting the interpretation that these tracts
indeed represent the connectivity pattern of the agranular insula,
rather than that of the olfactory cortex.

In our results, the region that was most probabilistically con-
nected to the claustral seeds was the entorhinal cortex. This cortical
region has been of interest to those studying the neural mecha-
nism of navigation and spatial memory, because it contains special
classes of neurons that appear to process one’s perceived location
and direction of movement. For example, “border cells” encode
the animal’s location relative to local boundaries (Solstad et al.,
2008), while“grid cells”represent one’s position and, in some cases,
direction within a field map composed of equilateral triangular
grids anchored to external landmarks (Hafting et al., 2005; Doeller
et al., 2010). In addition,“path cells” in the human entorhinal cor-
tex encode whether one is headed clockwise or counterclockwise
(Jacobs et al., 2010), whereas similar “path equivalent cells” found
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FIGURE 7 |The connections of the septum and amygdala to the

claustrum and insula. Upper panel: The mid-claustral and mid-insular seeds
both yield connections to the septum. A single-voxel seed placed in the
septum results in tracts connecting to the claustrum (CL) and insula (IN).

Lower panel: Six single-voxel seeds were placed in the basal part of the
amygdala. The resulting tracts were pooled together and inspected for any
connections to the insula. While some connections are observed in the
claustrum, our data do not show any amygdalal tracts reaching the insula.

in rodents react to locations in different but similar – “equiv-
alent” – trajectories (Frank et al., 2000). The frequent loss of
visuo-spatial orientation in the early stages of Alzheimer’s dis-
ease (AD) has been attributed to the degeneration of entorhinal
cortex and hippocampus (Iachini et al., 2009). The portion of the
human claustrum that is connected with the entorhinal cortex has
been reported to show more severe AD pathology than the rest of
the structure (Morys et al., 1996). This suggests that the claustrum
contributes to the spatial function of the entorhinal cortex, and
that the loss of spatial memory in AD may be due not only to
degeneration of the entorhinal cortex and the hippocampus, but
also to destruction of the integrating function of the claustrum.
This is plausible, considering the claustrum’s extensive connec-
tions with cortical areas and its implications in perception and
consciousness.

Our data suggest that, despite the close juxtaposition between
the claustrum and insula, the two structures have completely dif-
ferent connections. This is confirmed by the conventional tract
tracer results in other species. In addition, tractography experi-
ments in the adjacent putamen and olfactory cortex show that our
insular and claustral results are more or less region-specific. The
seeds in the putamen and the claustrum do seem to share some
of their tracts, and although it is possible that this is due to the
proximity of the two structures and the limited resolution of our
image, we believe that the more likely cause may be the claustrum’s
robust connection to the putamen, making the tract originating
from the putamen seed a natural part of the claustral tract.

It is not yet clear if the claustrum and the insula are directly con-
nected with each other. Associations between the two structures

have been observed in the rat (Allen et al., 1991; Shi and Cas-
sell, 1998; Behan and Haberly, 1999), mouse (Mouse Connectome
Project, 2011), and the cat (Witter et al., 1988), via tracer injections
into the insula. However, considering the close proximity between
these regions, it is uncertain whether the labeling in the claustrum
reflects a true connection between the two regions or merely the
spread of the injections. A similar labeling was observed in the
macaque, but was attributed to the spread of the tracer injected
into the insula (Mufson and Mesulam, 1982). Meanwhile, direct
injection into the claustrum has been avoided due to the sheet-like
morphology of the structure, hence limiting the amount of avail-
able data. Although in our data the claustrum and the insula do
appear connected to each other, the connection is quite weak and
hence unable to offer a conclusive view.

Some aspects of our results are not consistent with the tracer
studies. First, we find no connection between the insula and the
amygdala, whereas previous studies indicate otherwise (Mufson
et al., 1981; Allen et al., 1991; Shi and Cassell, 1998; Mouse Con-
nectome Project, 2011). The lack of connection between the insula
and amygdala in our results was confirmed by additional fiber trac-
tography with six single-voxel seeds placed in the various nuclei
at the basal portion of the amygdala (Figure 7, lower panel). The
resulting tracts suggest that while these seeds do connect to the
claustrum, they are not at all associated with the insula. In fact, the
tracts entering the claustrum seem very selective, cleanly avoiding
the insula. This difference might be anatomically valid, demon-
strating the mouse lemur’s inherent biological difference from the
rodents and higher-level primates. It is also possible that this lack of
connection is unique to the particular individual that was studied.
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FIGURE 8 |The slight spatial organization within the claustrum.

Top panel: The levels of cross-section for (A) through (H). (A) The
locations of two claustrum seeds, with the blue seed in the anterior
claustrum, and the red seed in the mid-claustrum. (B) The placement of
the third seed, in the posterior claustrum, which is ventral compared to
the anterior and middle claustrum. (C,D) illustrate the tractography
results of the three seeds, demonstrating that the tracts mostly overlap
with one another and there are no significant differences. (E) The
locations of two claustrum seeds, with the light blue seed in the dorsal

claustrum, and the pink seed in the ventral claustrum. (F,G) Claustrual
connections to the olfactory bulb, olfactory cortex, and entorhinal
cortex. Note that the tracts from the ventral seed (pink) occupy larger
and more ventral portions of the three structures compared to those
from the dorsal seed (light blue). Abbreviations: AC, anterior
commissure; AN, anterior olfactory nucleus; CL, claustrum; EC,
entorhinal cortex, Area 28 in Le Gros Clark’s (1931) cortical map; GP,
globus pallidus; OB, olfactory bulb; OC, olfactory cortex; OTR, olfactory
tract; OTU, olfactory tubercle; PU, putamen.

Although it might also reveal a technical limitation of HARDI in
this instance, it is worth noting that we did previously find a robust
connection between the frontoinsular cortex and amygdala in the
gorilla using HARDI and probabilistic fiber tractography (Allman
et al., 2010).

Second, our results, while showing connections to many of
the regions known to be associated with the claustrum and the
insula in other species, including small structures such as the
parabrachial nucleus and zona incerta, in some parts fail to pro-
vide as much detail as the tracer studies can. For instance, whereas
injecting tracers in the macaque insula demonstrated miniscule

connections to many small thalamic nuclei (Mufson and Mesu-
lam, 1984), our results are able to clearly show tracts to only three
thalamic nuclei.

Third, as discussed in the Results section, while our data suggest
the differences between the connectivity patterns of the granular
and agranular insula, the results do not show much topographi-
cal fiber organizations within the claustrum. Many tracer studies
have found the claustrum to be topographically organized (Norita,
1977; Olson and Graybiel, 1980; Pearson et al., 1982; Dinopoulos
et al., 1992; Kowianski et al., 1998; Tanné-Gariépy et al., 2002;
Fernández-Miranda et al., 2008), hence indicating that our results
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FIGURE 9 | Probabilistic fiber tractography results from three seeds in

the insula. The top left panel shows the placement of the seeds: While
the blue seed is in the mid-insula, the green seed is in the dorsal insula,
closer to the granular insula, and the red seed is located ventrally, closer to
the agranular insula. The top two panels show the levels of cross-section
for (A) through (E). All panels show that the three seeds all share common
tracts, and that the only significant difference is that the ventral seed
connects to the olfactory bulb (A), anterior olfactory nucleus (A), olfactory
cortex (C), and the entorhinal cortex (C). Note that the ventral insular
seed’s connection to the olfactory cortex in (C) is minimal, suggesting that

the connections to other olfactory structures likely arose from the
agranular insula, rather than from the adjacent olfactory cortex. (D) shows
the similarities between the middle insular tracts and the ventral insular
tracts. Abbreviations: AN, anterior olfactory nucleus; CC, corpus callosum;
CD, caudate; DB, diagonal band; EC, entorhinal cortex, Area 28 in Le Gros
Clark’s (1931) cortical map; GP, globus pallidus; IN, insula; NA, nucleus
accumbens; OB, olfactory bulb; OC, olfactory cortex; PB, parabrachial
nucleus; PU, putamen; R, reticular thalamic nucleus; S, septum; SN,
substantia nigra; ZI, zona incerta. The cortical area numbers are based on
Le Gros Clark’s (1931) map of Microcebus cortex.

do not reflect the differential fiber organization that is likely to
exist. While the limited resolution of our image might have caused
this, strong connections within the claustrum – like the long-range
connection found within the rat claustrum (Behan and Haberly,

1999; Smith and Alloway, 2010) – might also have influenced
our results. Considering the integrative nature of the claustral
function, intra-claustral associations are indeed plausible, and it
seems possible that such connections, by unifying the claustrum
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FIGURE 10 | Comparison of connectivity patterns between the

putamen and the claustrum, and olfactory cortex and the ventral

insula. Upper panel: Comparison of the claustral connectivity pattern with
that of the putamen. The first row shows the levels of cross-section for
(A–C), and the locations of the seeds in the putamen (green) and the
claustrum (red). (A–C) The putamen tract shows more extensive
connections to the striatum than does the claustral tract (A,C), and unlike
the claustrum, the putamen does not associate with the olfactory areas,
such as the olfactory bulb, olfactory tubercle, and olfactory cortex, and
associates only with a small part of the entorhinal cortex (A–C). However,
the two tracts share many of the cortical connections (C). Lower panel:
Comparison of the insular connectivity with that of the olfactory cortex.

The first row shows the levels of cross-section for (D–G), and the locations
of the seeds in the olfactory cortex and the insula. (D–G) Despite the
proximity of the two seeds, the tract originating from the olfactory cortex
is significantly different from the insular tract, connecting to the olfactory
bulb (F), anterior olfactory nucleus (F), and the entorhinal cortex (E), while
avoiding most of the regions connected to the insula. Abbreviations: AN,
anterior olfactory nucleus; CD, caudate; CL, claustrum; DB, diagonal band;
EC, entorhinal cortex; GP, globus pallidus; IN, insula; OB, olfactory bulb;
OC, olfactory cortex; OTU, olfactory tubercle; PU, putamen; R, reticular
thalamic nucleus; S, septum; SN, substantia nigra; ZI, zona incerta. The
cortical area numbers are based on Le Gros Clark’s (1931) map of
Microcebus cortex.

into one unit, prevented our results from properly reflecting the
topographical organization of the claustrum. However, our data
do suggest that the ventral claustrum may be affiliated to a greater
extent than does the dorsal claustrum with the olfactory blub,
olfactory cortex, and the entorhinal cortex. This is consistent with
Striedter’s argument that the ventral claustrum originates from
the olfactory cortex (Striedter, 1997).

Despite these inconsistencies, our experimental approach has
demonstrated that, at a very high resolution, HARDI and prob-
abilistic fiber tractography can achieve results that are compa-
rable with those from tracer injection studies. Besides the high

spatial and angular resolutions of our image, the most significant
aspect of the present study is that, thanks to the high qual-
ity of the image, we were able to obtain detailed results using
single-voxel seeds, placed in the gray matter. This emulates the
conventional tract tracing method, and is in stark contrast to
most previous studies using diffusion imaging and fiber tractog-
raphy, in which all voxels in a region must be used as seeds, or
seeds had to be placed in the white matter, in order to acquire
viable results. Our method may raise concerns, though, as only
one or two voxels were used to represent the entire claustrum
and insula. We have dealt with these concerns by repeating
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Table 1 | Comparison of claustral connectivity in the cat and the Microcebus.

Amygdala, lateral
Anterior olfactory nucleus
Auditory cortex
Caudate
Cingulate cortex
Entorhinal cortex
Globus pallidus
Insular cortex
Motor cortex
Olfactory bulb
Olfactory cortex
Olfactory tubercle
Orbitofrontal cortex
Parietal cortex
Perirhinal cortex
Prefrontal cortex (area 8)
Premotor cortex/SMA (area 6)
Putamen
Septum
Somatosensory cortex
Temporal cortex
Visual cortex
Zona incerta

A
nterior lim

bic cortex
3

A
nterior olfactory nucleus

A
uditory cortex

1
C

audate
C

ingulate cortex
3

Entorhinal cortex
3

G
lobus pallidus
Insular cortex

3
M

otor cortex
O

lfactory bulb
O

lfactory cortex
O

lfactory tubercle
O

rbitofrontal cortex
3

Parietal cortex
Perirhinal cortex

3
Prefrontal cortex (area 8)

Prem
otor cortex/SM

A
 (area 6)

Putam
en

Septum
Som

atosensory cortex
1,2

Tem
poral cortex

1,2
Visual cortex

1,2
Zona incerta

Microcebus
DTI

Cat

The leftmost column and the bottom row of the table both present the comprehensive list of all regions connected with the claustrum in at least one of the two

species. While the column highlights in blue the regions associated with the Microcebus claustrum, the row highlights in yellow the structures shown to connect

with the claustrum in cat tracer studies. The red squares mark the structures that are connected to the claustrum in both species.

Studies cited: 1Norita (1977); 2Olson and Graybiel (1980); 3Witter et al. (1988).

Abbreviations: SMA, supplementary motor area.
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Table 2 | Comparison of claustral connectivity in the rhesus macaque (Macaca mulatta), the common squirrel monkey (Saimiri sciureus), and

the Microcebus.

Amygdala, lateral
Anterior olfactory nucleus
Caudate
Cingulate cortex
Entorhinal cortex
Globus pallidus
Insular cortex
Motor cortex
Olfactory bulb
Olfactory cortex
Olfactory tubercle
Orbitofrontal cortex
Parietal cortex
Perirhinal cortex
Prefrontal cortex (area 8)
Premotor cortex/SMA (area 6)
Putamen
Septum
Somatosensory cortex
Temporal cortex
Visual cortex
Zona incerta

A
m

ygdala, lateral 6
A

nterior olfactory nucleus
C

audate
4

C
ingulate cortex

1,3
Entorhinal cortex

1,5
G

lobus pallidus
Insular cortex

M
otor cortex

2,7
O

lfactory bulb
O

lfactory cortex
1

O
lfactory tubercle

O
rbitofrontal cortex

1,2
Parietal cortex

1,2
Perirhinal cortex

Prefrontal cortex (area 8) 1
Prem

otor cortex/SM
A

 (area 6) 2,7
Putam

en
Septum

Som
atosensory cortex

2
Tem

poral cortex
1,2

Visual cortex
2

Zona incerta

Microcebus
 DTI

Monkeys

The configuration is the same as that ofTable 1.

Studies cited: 1Mufson and Mesulam (1982), macaque; 2Pearson et al. (1982), macaque; 3Jürgens (1983), squirrel monkey; 4Arikuni and Kubota (1985), macaque;
5Insausti et al. (1987), macaque; 6Amaral and Insausti (1992), macaque; 7Tanné-Gariépy et al. (2002), macaque.

Abbreviations: SMA, supplementary motor area.
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Table 3 | Comparison of insular connectivity in the rat and the Microcebus.

Amygdala

Caudate

CM of thalamus

Cingulate cortex

Claustrum

Diagonal band

DLPFC

DMPFC

Entorhinal cortex

Globus pallidus

Hypothalamus

Infralimbic area

MD of thalamus

Midbrain central grey

Motor cortex

Nucleus accumbens

Olfactory bulb

Olfactory cortex

Olfactory tubercle

Orbital cortex

Parabrachial nucleus

Parietal cortex

Perirhinal cortex

Prelimbic cortex

Putamen

PVN of thalamus

R of thalamus

Septum

Somatosensory cortex

Substantia innominata

Substantia nigra

Temporal cortex

Ventral PF of thalamus

Visual cortex

VPL/VPLpc of thalamus

VPM/VPMpc of thalamus

Zona incerta

A
m

ygdala
1,2

C
audate

2

C
M

 of thalam
us

2

C
ingulate cortex

2

C
laustrum

1,2

D
iagonal band

D
LPFC

D
M

PFC
Entorhinal cortex

2

G
lobus pallidus

H
ypothalam

us
1

Infralim
bic area

1,2

M
D

 of thalam
us

1,2

M
idbrain central grey

M
otor cortex

N
ucleus accum

bens
3

O
lfactory bulb

O
lfactory cortex

2

O
lfactory tubercle

2

O
rbital cortex

2

Parabrachial nucleus
1

Parietal cortex
Perirhinal cortex

2

Prelim
bic cortex

2

Putam
en

2

PVN
 of thalam

us
2

R
 of thalam

us
1

Septum
Som

atosensory cortex
2

Substantia innom
nata

Substantia nigra
Tem

poral cortex
Ventral PF of thalam

us
2

Visual cortex
VPLpc of thalam

us
1,2

VPM
/VPM

pc of thalam
us

1,2

Zona incerta

Microcebus 
DTI

Rat

The configuration is the same as that ofTables 1 and 2.

Note that since the Microcebus anteroventral cingulate cortex appears to be the homolog of the rat infralimbic and prelimbic cortices, the rat infralimbic and prelimbic

connections were treated as cingulate connections as well.

Studies cited: 1Allen et al. (1991); 2Shi and Cassell (1998); 3McGeorge and Faull (1989).

Abbreviations: CM, central medial nucleus; DLPFC, dorsolateral prefrontal cortex; DMPFC, dorsomedial prefrontal cortex; MD, medial dorsal nucleus; PF, parafascicular

nucleus; PVN, paraventricular nucleus; R, reticular nucleus; VPL, ventral posterolateral nucleus; VPLpc, ventral posterolateral nucleus, parvocellular part; VPM, ventral

posteromedial nucleus; VPMpc, ventral posteromedial nucleus, parvocellular part.
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Table 4 | Comparison of insular connectivity in the mouse and the Microcebus.

Amygdala

Bed nucleus

Caudate

Cingulate cortex

Claustrum

Diagonal band

DLPFC

DMPFC

Dorsal peduncular area

Entorhinal cortex

Globus pallidus

Hypothalamus

Infralimbic area

Midbrain central grey

Midline thalamus

Motor cortex

Nucleus accumbens

Olfactory bulb

Olfactory cortex

Olfactory tubercle

Orbital cortex

Parabrachial nucleus

Parietal cortex

Perirhinal cortex

Prelimbic cortex

Putamen

R of thalamus

Septum

Somatosensory cortex

Substantia innominata

Substantia nigra

Temporal cortex

Visual cortex

VPL/VPLpc of thalamus

VPM/VPMpc of thalamus

Zona incerta

A
m

ygdala
B

ed nucleus
C

audate
C

ingulate cortex
C

laustrum
D

iagonal band
D

LPFC
D

M
PFC

D
orsal peduncular area

Entorhinal cortex
G

lobus pallidus
H

ypothalam
us

Infralim
bic area

M
idbrain central grey

M
idline thalam

us
M

otor cortex
N

ucleus accum
bens

O
lfactory bulb

O
lfactory cortex

O
lfactory tubercle

O
rbital cortex

Parabrachial nucleus
Parietal cortex

Perirhinal cortex
Prelim

bic cortex
Putam

en
R

 of thalam
us

Septum
Som

atosensory cortex
Substantia innom

nata
Substantia nigra
Tem

poral cortex
Visual cortex

VPL/VPLpc of thalam
us

VPM
pc of thalam

us
Zona incerta

Microcebus
DTI

Mouse

The configuration is the same as that ofTables 1, 2, and 3.

Note that since the Microcebus anteroventral cingulate cortex appears to be the homolog of the mouse infralimbic cortex, the mouse infralimbic connection was

treated as both infralimbic and cingulate.

All mouse data from the Mouse Connectome Project, www.mouseconnectome.org.

Abbreviations: DLPFC, dorsolateral prefrontal cortex; DMPFC, dorsomedial prefrontal cortex; R, reticular nucleus; VPL, ventral posterolateral nucleus; VPLpc, ventral

posterolateral nucleus, parvocellular part; VPMpc, ventral posteromedial nucleus, parvocellular part. Also, the “midline thalamus” consists of reuniens, medial part

of mediodorsal nucleus, paraventricular nucleus, and intermediodorsal nucleus.
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Table 5 | Comparison of insular connectivity in the rhesus macaque (Macaca mulatta) and the Microcebus.

Amygdala
Caudate
Cingulate cortex
Claustrum
Diagonal band
DLPFC
DMPFC
Entorhinal cortex
Globus pallidus
Hypothalamus
Limitans
MD of thalamus
MG/MGpc of thalamus
Midbrain central grey
Motor cortex
MVL of thalamus
Nucleus accumbens
Olfactory bulb
Olfactory cortex
Olfactory tubercle
Orbitofrontal cortex
OVL of thalamus
Parabrachial nucleus
Parietal cortex
Perirhinal cortex
PF of thalamus
Premotor cortex
Pulvinar
Putamen
R of thalamus
Reuniens
Septum
Somatosensory cortex
Substantia innominata
Substantia nigra
Suprageniculate nucleus
Temporal cortex
Visual cortex
VPL/VPLpc of thalamus
VPM/VPMpc of thalamus
Zona incerta

A
m

ygdala
1

C
audate

5
C

ingulate cortex
2,3

C
laustrum

D
iagonal band

D
LPFC

2,3
D

M
PFC

Entorhinal cortex
2

G
lobus pallidus

H
ypothalam

us
7

Lim
itans

4
M

D
 of thalam

us
4

M
G

/M
G

pc of thalam
us

4
M

idbrain central grey
6

M
otor cortex

M
VL of thalam

us
4

N
ucleus accum

bens
5

O
lfactory bulb

O
lfactory cortex

2,3
O

lfactory tubercle
O

rbitofrontal cortex
2,3

O
VL of thalam

us
4

Parabrachial nucleus
Parietal cortex

2,3
Perirhinal cortex

2,3
PF of thalam

us
4

Prem
otor cortex

2,3
Pulvinar 4

Putam
en

5
R

 of thalam
us

4
R

euniens
4

Septum
Som

atosensory cortex
2,3

Substantia innom
inata

Substantia nigra
Suprageniculate nucleus

4
Tem

poral cortex
2,3

Visual cortex
VPL of thalam

us
4

VPM
/VPM

pc of thalam
us

4
Zona incerta

4

Microcebus
DTI

Macaque

The configuration is the same as that ofTables 1, 2, 3, and 4.

Studies cited: 1Mufson et al. (1981); 2Mufson and Mesulam (1982); 3Mesulam and Mufson (1982b); 4Mufson and Mesulam (1984); 5Chikama et al. (1997); 6An et al.

(1998); 7Öngür et al. (1998).

Abbreviations: DLPFC, dorsolateral prefrontal cortex; DMPFC, dorsomedial prefrontal cortex; MD, medial dorsal nucleus; MG, medial geniculate nucleus; MGpc,

medial geniculate nucleus, parvocelluar part; MVL, medial division of ventral lateral nucleus; OVL, oral divison of ventral lateral nucleus; PF, parafascicular nucleus; R,

reticular nucleus; VPL, ventral posterolateral nucleus; VPLpc, ventral posterolateral nucleus, parvocellular part; VPM, ventral posteromedial nucleus; VPMpc, ventral

posteromedial nucleus, parvocellular part.

tractography in other parts of the structures and verifying that,
in our specific dataset, the seeds that we have used yield the
tracts that sufficiently represent the regions. The fact that our

results are largely consistent with the results of tracer injection
studies also suggests that our single-voxel seeding method is
viable.
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High angular resolution diffusion imaging and probabilis-
tic fiber tractography has the advantages that they are non-
destructive; require no surgical interventions; and the connection
of each and every voxel can be mapped with full knowledge
of the anatomical context, whereas in conventional tractography
only a few specific tracer injection sites can be assayed. Also, the
brain can be sectioned computationally into any desired plane
for analysis. Although the diffusion fiber tractography results
are bidirectional and cannot determine whether a connection
is afferent or efferent, and currently available diffusion images
obviously do not have the fine resolution of conventional tract
tracing, this method will still be helpful in extending the study

of axonal fiber connectivity to the animals that are rare, cannot
be investigated through injections of tract tracers, and can only
be accessed post-mortem. The method also has potential appli-
cations to high resolution studies of connectivity in fixed human
brain tissue.

ACKNOWLEDGMENTS
We wish to thank Dr. Russell Jacobs of the Beckman Institute at
California Institute of Technology for providing the Microcebus
brains, and Dr. Jason Kaufman for processing some of the imag-
ing data. This study was supported by the James S. McDonnell
Foundation.

REFERENCES
Allen, G. V., Saper, C. B., Hurley, K. M.,

and Cechetto, D. F. (1991). Organi-
zation of visceral and limbic connec-
tions in the insular cortex of the rat.
J. Comp. Neurol. 311, 1–16.

Allen Mouse Brain Atlas. (2004). Allen
Institute for Brain Science. Available
at: http://www.brain-map.org

Allman, J. M. (1977). “Evolution of
the visual system in the early pri-
mates,” in Progress in Psychobiology
and Physiological Psychology, Vol. 7,
eds J. M. Sprague and A. N. Epstein
(New York, NY: Academic Press),
1–53.

Allman, J. M., Tetreault, N. A., Hakeem,
A. Y., Manaye, K. F., Semendeferi,
K., Erwin, J. M., Park, S., Gou-
bert, V., and Hof, P. R. (2010). The
von Economo neurons in frontoin-
sular and anterior cingulate cortex in
great apes and humans. Brain Struct.
Funct. 214, 495–517.

Amaral, D. G., and Insausti, R. (1992).
Retrograde transport of D-[H3]-
aspartate injected into the monkey
amygdaloid complex. Exp. Brain Res.
88, 375–388.

An, X., Bandler, R., Öngür, D., and Price,
J. L. (1998). Prefrontal cortical pro-
jections to longitudinal columns in
the midbrain periaqueductal gray in
macaque monkeys. J. Comp. Neurol.
401, 455–479.

Arikuni, T., and Kubota, K. (1985).
Claustral and amygdaloid afferents
to the head of the caudate nucleus in
macaque monkeys. Neurosci. Res. 2,
239–254.

Bayer, S. A., and Altman, J. (1991a).
Development of the endopiriform
nucleus and the claustrum in the
rat-brain. Neuroscience 45, 391–412.

Bayer, S. A., and Altman, J. (1991b).
Neocortical Development. New York:
Raven Press.

Beckstead, R. M., Morse, J. R., and Nor-
gren, R. (1980). The nucleus of the
solitary tract in the monkey – pro-
jections to the thalamus and brain-
stem nuclei. J. Comp. Neurol. 190,
259–282.

Behan, M., and Haberly, L. B. (1999).
Intrinsic and efferent connections of
the endopiriform nucleus in rat. J.
Comp. Neurol. 408, 532–548.

Behrens, T. E. J., Berg, H. J., Jbabdi,
S., Rushworth, M. F. S., and
Woolrich, M. W. (2007). Proba-
bilistic diffusion tractography with
multiple fibre orientations: what
can we gain? Neuroimage 34,
144–155.

Behrens, T. E. J., Johansen-Berg,
H., Woolrich, M. W., Smith, S.
M., Wheeler-Kingshott, C. A. M.,
Boulby, P. A., Barker, G. J., Sillery,
E. L., Sheehan, K., Ciccarelli, O.,
Thompson, A. J., Brady, J. M., and
Matthews, P. M. (2003a). Non-
invasive mapping of connections
between human thalamus and cor-
tex using diffusion imaging. Nat.
Neurosci. 6, 750–757.

Behrens, T. E. J., Woolrich, M. W.,
Jenkinson, M., Johansen-Berg, H.,
Nunes, R. G., Clare, S., Matthews, P.
M., Brady, J. M., and Smith, S. M.
(2003b). Characterization and prop-
agation of uncertainty in diffusion-
weighted MR imaging. Magn. Reson.
Med. 50, 1077–1088.

Brodmann, K. (1909). Vergleichende
Lokalisationlehre der Großhirnrinde
in ihren Prinziprien dargestellt auf
Grund des Zellenbaues. Leipzig:
Johann Ambrosius Barth.

Carey, R. G., Fitzpatrick, D., and Dia-
mond, I. T. (1979). Layer-I of stri-
ate cortex of Tupaia glis and Galago
senegalensis – projections from thal-
amus and claustrum revealed by
retrograde transport of horseradish
peroxidase. J. Comp. Neurol. 186,
393–437.

Carey, R. G., and Neal, T. L. (1985). The
rat claustrum – afferent and effer-
ent connections with visual-cortex.
Brain Res. 329, 185–193.

Cerliani, L., Thomas, R. M., Jbabdi, S.,
Siero, J. C. W., Nanetti, L., Crippa, A.,
Gazzola, V., D’Arceuil, H., and Key-
sers, C. (2011). Probabilistic tractog-
raphy recovers a rostrocaudal tra-
jectory of connectivity variability in

the human insula cortex. Hum. Brain
Mapp. doi:10.1002/hbm.21338

Chikama, M., Mcfarland, N. R., Amaral,
D. G., and Haber, S. N. (1997). Insu-
lar cortical projections to functional
regions of the striatum correlate
with cortical cytoarchitectonic orga-
nization in the primate. J. Neurosci.
17, 9686–9705.

Craig, A. D. (2002). How do you feel?
Interoception: the sense of the phys-
iological condition of the body. Nat.
Rev. Neurosci. 3, 655–666.

D’Arceuil, H., and De Crespigny, A.
(2007). The effects of brain tissue
decomposition on diffusion tensor
imaging and tractography. Neuroim-
age 36, 64–68.

D’Arceuil, H., Liu, C., Levitt, P.,
Thompson, B., Kosofsky, B., and
De Crespigny, A. (2008). Three-
dimensional high-resolution diffu-
sion tensor imaging and tractogra-
phy of the developing rabbit brain.
Dev. Neurosci. 30, 262–275.

D’Arceuil, H. E., Westmoreland, S.,
and De Crespigny, A. J. (2007).
An approach to high resolution
diffusion tensor imaging in fixed
primate brain. Neuroimage 35,
553–565.

Deen, B., Pitskel, N. B., and Pelphrey,
K. A. (2011). Three systems of insu-
lar functional connectivity identified
with cluster analysis. Cereb. Cortex
21, 1498–1506.

Dinopoulos, A., Papadopoulos, G. C.,
Michaloudi, H., Parnavelas, J. G.,
Uylings, H. B. M., and Karaman-
lidis, A. N. (1992). Claustrum in
the hedgehog (Erinaceus europaeus)
brain – cytoarchitecture and con-
nections with cortical and subcorti-
cal structures. J. Comp. Neurol. 316,
187–205.

Doeller, C. F., Barry, C., and Burgess,
N. (2010). Evidence for grid cells in
a human memory network. Nature
463, U657–U687.

Dyrby, T. B., Baaré, W. F. C., Alexan-
der, D. C., Jelsing, J., Garde,
E., and Søgaard, L. V. (2011).
An ex vivo imaging pipeline for

producing high-quality and high-
resolution diffusion-weighted imag-
ing datasets. Hum. Brain Mapp. 32,
544–563.

Dyrby, T. B., Søgaard, L. V., Parker, G. J.,
Alexander, D. C., Lind, N. M., Baaré,
W. F. C., Hay-Schmidt, A., Eriksen,
N., Pakkenberg, B., Paulson, O. B.,
and Jelsing, J. (2007). Validation of
in vitro probabilistic tractography.
Neuroimage 37, 1267–1277.

Edelstein, L. R., and Denaro, F. J. (2004).
The claustrum: a historical review of
its anatomy, physiology, cytochem-
istry and functional significance.
Cell. Mol. Biol. 50, 675–702.

Fernández-Miranda, J. C., Rhoton, A.
L. Jr., Kakizawa, Y., Choi, C., and
Alvarez-Linera, J. (2008). The claus-
trum and its projection system in
the human brain: a microsurgical
and tractographic anatomical study.
J. Neurosurg. 108, 764–774.

Filimonoff, I. N. (1966). The claus-
trum, its origin and development. J.
Hirnforsch. 8, 503–528.

Frank, L. M., Brown, E. N., and Wil-
son, M. (2000). Trajectory encoding
in the hippocampus and entorhinal
cortex. Neuron 27, 169–178.

Fuster, J. M. (2008). The Prefrontal Cor-
tex. London: Academic Press.

Gallyas, F. (1979). Silver staining of
myelin by means of physical devel-
opment. Neurol. Res. 1, 203–209.

Guilfoyle, D. N., Helpern, J. A., and Lim,
K. O. (2003). Diffusion tensor imag-
ing in fixed brain tissue at 7.0 T.
NMR Biomed. 16, 77–81.

Hafting, T., Fyhn, M., Molden, S., Moser,
M. B., and Moser, E. I. (2005).
Microstructure of a spatial map in
the entorhinal cortex. Nature 436,
801–806.

Iachini, I., Iavarone, A., Senese, V. P.,
Ruotolo, F., and Ruggiero, G. (2009).
Visuospatial memory in healthy
elderly, AD and MCI: a review. Curr.
Aging Sci. 2, 43–59.

Insausti, R., Amaral, D. G., and Cowan,
W. M. (1987). The entorhinal cortex
of the monkey: 3. Subcortical affer-
ents. J. Comp. Neurol. 264, 396–408.

Frontiers in Neuroanatomy www.frontiersin.org June 2012 | Volume 6 | Article 21 | 19

http://www.brain-map.org
http://dx.doi.org/10.1002/hbm.21338
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Park et al. Claustrum and Insula in Microcebus murinus

Jacobs, J., Kahana, M. J., Ekstrom,
A. D., Mollison, M. V., and
Fried, I. (2010). A sense of direc-
tion in human entorhinal cortex.
Proc. Natl. Acad. Sci. U.S.A. 107,
6487–6492.

Jiménez-Castellanos, J., and Reinoso-
Suárez, F. (1985). Topographi-
cal organization of the affer-
ent connections of the principal
ventromedial thalamic nucleus in
the cat. J. Comp. Neurol. 236,
297–314.

Jürgens, U. (1983). Afferent fibers to
the cingular vocalization region in
the squirrel monkey. Exp. Neurol. 80,
395–409.

Khokhryakova, I. M. (1978). Structural
organization of the prefrontal cortex
in cats and its differences from that
in monkeys. Neurosci. Behav. Physiol.
9, 103–109.

Kowianski, P., Dziewiatkowski, J.,
Berdel, B., Lipowska, M., and Morys,
J. (1998). The corticoclaustral con-
nections in the rat studied by means
of the fluorescent retrograde axonal
transport method. Folia Morphol.
(Warsz) 57, 85–92.

Kroenke, C. D., Bretthorst, G. L., Inder,
T. E., and Neil, J. J. (2005). Diffu-
sion MR imaging characteristics of
the developing primate brain. Neu-
roimage 25, 1205–1213.

Landau, E. (1919). The comparative
anatomy of the nucleus amygdalae,
the claustrum and the insular cortex.
J. Anat. 53, 351–360.

Le Gros Clark,W. E. (1931). The brain of
Microcebus murinus. Proc. Zool. Soc.
Lond. 101, 463–485.

LeVay, S., and Sherk, H. (1981). The
visual claustrum of the cat: 1. Struc-
ture and connections. J. Neurosci. 1,
956–980.

Lipowska, M., Kowianski, P., Majak, K.,
Jagalska-Majewska, H., and Morys,
J. (2000). The connections of the
endopiriform nucleus with the insu-
lar claustrum in the rat and rab-
bit. Folia Morphol. (Warsz) 59,
77–83.

Martin, R. D. (1990). Primate Origins
and Evolution. Princeton: Princeton
University Press.

Mathur, B. N., Caprioli, R. M.,
and Deutch, A. Y. (2009). Pro-
teomic analysis illuminates a novel
structural definition of the claus-
trum and insula. Cereb. Cortex 19,
2372–2379.

McGeorge, A. J., and Faull, R. L. M.
(1989). The organization of the pro-
jection from the cerebral-cortex to
the striatum in the rat. Neuroscience
29, 503–537.

Menon, V., and Uddin, L. Q. (2010).
Saliency, switching, attention and

control: a network model of insula
function. Brain Struct. Funct. 214,
655–667.

Mesulam, M. M., and Mufson, E. J.
(1982a). Insula of the old-world
monkey: 1. Architectonics in the
insulo-orbito-temporal component
of the paralimbic brain. J. Comp.
Neurol. 212, 1–22.

Mesulam, M. M., and Mufson, E.
J. (1982b). Insula of the old-
world monkey: 3. Efferent cor-
tical output and comments on
function. J. Comp. Neurol. 212,
38–52.

Meynert, T. (1868). Neue Untersuchun-
gen über den Bau der Grosshirn-
rinde und ihre örtliche Verschieden-
heiten. Alleg. Wien. Medizin. Ztg. 13,
419–428.

Miller, K. L., Stagg, C. J., Douaud, G.,
Jbabdi, S., Smith, S. M., Behrens, T. E.
J., Jenkinson, M., Chance, S. A., Esiri,
M. M., Voets, N. L., Jenkinson, N.,
Aziz, T. Z., Turner, M. R., Johansen-
Berg, H., and McNab, J. A. (2011).
Diffusion imaging of whole, post-
mortem human brains on a clin-
ical MRI scanner. Neuroimage 57,
167–181.

Mori, S., Itoh, R., Zhang, J. Y., Kauf-
mann, W. E., Van Zijl, P. C.
M., Solaiyappan, M., and Yarowsky,
P. (2001). Diffusion tensor imag-
ing of the developing mouse
brain. Magn. Reson. Med. 46,
18–23.

Morys, J., Bobinski, M., Wegiel, J.,
Wisniewski, H. M., and Narkiewicz,
O. (1996). Alzheimer’s disease
severely affects areas of the
claustrum connected with the
entorhinal cortex. J. Brain Res. 37,
173–180.

Mouse Connectome Project.
(2011). Laboratory of Neuro
Imaging. Available at:
http://www.mouseconnectome.org/

Mufson, E. J., and Mesulam, M.
M. (1982). Insula of the old-
world monkey: 2. Afferent corti-
cal input and comments on the
claustrum. J. Comp. Neurol. 212,
23–37.

Mufson, E. J., and Mesulam, M. M.
(1984). Thalamic connections of
the insula in the rhesus monkey
and comments on the paralimbic
connectivity of the medial pulv-
inar nucleus. J. Comp. Neurol. 227,
109–120.

Mufson, E. J., Mesulam, M. M., and
Pandya, D. N. (1981). Insular inter-
connections with the amygdala in
the rhesus monkey. Neuroscience 6,
1231–1248.

Ng, L., Bernard, A., Lau, C., Overly, C.
C., Dong, H.-W., Kuan, C., Pathak,

S., Sunkin, S. M., Dang, C., Boh-
land, J. W., Bokil, H., Mitra, P. P.,
Puelles, L., Hohmann, J., Ander-
son, D. J., Lein, E. S., Jones, A.
R., and Hawrylycz, M. (2009). An
anatomic gene expression atlas of the
adult mouse brain. Nat. Neurosci. 12,
356–362.

Norita, M. (1977). Demonstration
of bilateral claustro-cortical con-
nections in cat with method of
retrograde axonal transport of
horseradish-peroxidase. Arch. His-
tol. Jpn. 40, 1–10.

Olson, C. R., and Graybiel, A. M.
(1980). Sensory maps in the claus-
trum of the cat. Nature 288,
479–481.

Öngür, D., An, X., and Price, J. L. (1998).
Prefrontal cortical projections to
the hypothalamus in macaque
monkeys. J. Comp. Neurol. 401,
480–505.

Pearson, R. C. A., Brodal, P., Gatter,
K. C., and Powell, T. P. S. (1982).
The organization of the connections
between the cortex and the claus-
trum in the monkey. Brain Res. 234,
435–441.

Puelles, L., Kuwana, E., Puelles, E.,
Bulfone, A., Shimamura, K., Kele-
her, J., Smiga, S., and Rubenstein,
J. L. R. (2000). Pallial and sub-
pallial derivatives in the embry-
onic chick and mouse telencephalon,
traced by the expression of the
genes Dlx-2, Emx-1, Nkx-2.1, Pax-
6, and Tbr-1. J. Comp. Neurol. 424,
409–438.

Radinsky, L. (1975). Primate brain evo-
lution. Am. Sci. 63, 656–663.

Ramón Y Cajal, S. (1900). Studien über
die Hirnrinde des Menschen. Leipzig:
Verlag von Johann Ambrosius Barth.

Roebroeck, A., Galuske, R., Formisano,
E., Chiry, O., Bratzke, H., Ronen,
I., Kim, D.-S., and Goebel, R.
(2008). High-resolution dif-
fusion tensor imaging and
tractography of the human optic
chiasm at 9.4 T. Neuroimage 39,
157–168.

Rose, M. (1928). The ontogenesis
of the insular lobe – a contri-
bution to the histogenetic cortex
arrangement. J. Psychol. Neurol. 36,
182–209.

Shi, C. J., and Cassell, M. D. (1998). Cor-
tical, thalamic, and amygdaloid con-
nections of the anterior and poste-
rior insular cortices. J. Comp. Neurol.
399, 440–468.

Smith, J. B., and Alloway, K. D. (2010).
Functional specificity of claustrum
connections in the rat: interhemi-
spheric communication between
specific parts of motor cortex. J.
Neurosci. 30, 16832–16844.

Smith, S. M., Jenkinson, M., Woolrich,
M. W., Beckmann, C. F., Behrens,
T. E. J., Johansen-Berg, H., Ban-
nister, P. R., De Luca, M., Drob-
njak, I., Flitney, D. E., Niazy, R.
K., Saunders, J., Vickers, J., Zhang,
Y. Y., De Stefano, N., Brady, J.
M., and Matthews, P. M. (2004).
Advances in functional and struc-
tural MR image analysis and imple-
mentation as FSL. Neuroimage 23,
S208–S219.

Solstad, T., Boccara, C. N., Kropff,
E., Moser, M.-B., and Moser, E. I.
(2008). Representation of geomet-
ric borders in the entorhinal cortex.
Science 322, 1865–1868.

Striedter, G. F. (1997). The telen-
cephalon of tetrapods in evo-
lution. Brain Behav. Evol. 49,
179–213.

Sun, S. W., Neil, J. J., and Song,
S. K. (2003). Relative indices of
water diffusion anisotropy are equiv-
alent in live and formalin-fixed
mouse brains. Magn. Reson. Med. 50,
743–748.

Takahashi, E., Dai, G., Rosen, G. D.,
Wang, R., Ohki, K., Folkerth, R. D.,
Galaburda, A. M., Wedeen, V. J.,
and Grant, P. E. (2011). Develop-
ing neocortex organization and con-
nectivity in cats revealed by direct
correlation of diffusion tractogra-
phy and histology. Cereb. Cortex 21,
200–211.

Takahashi, E., Dai, G., Wang, R., Ohki,
K., Rosen, G. D., Galaburda, A. M.,
Grant, P. E., and Wedeen,V. J. (2010).
Development of cerebral fiber path-
ways in cats revealed by diffusion
spectrum imaging. Neuroimage 49,
1231–1240.

Takahashi, E., Folkerth, R. D., Gal-
aburda, A. M., and Grant, P. E.
(2012). Emerging cerebral connec-
tivity in the human fetal brain: an
MR Tractography Study. Cereb. Cor-
tex 22, 455–464.

Tanné-Gariépy, J., Boussaoud, D., and
Rouiller, E. M. (2002). Projections of
the claustrum to the primary motor,
premotor, and prefrontal cortices in
the macaque monkey. J. Comp. Neu-
rol. 454, 140–157.

Taylor, K. S., Seminowicz, D. A., and
Davis, K. D. (2009). Two sys-
tems of resting state connectiv-
ity between the insula and cingu-
late cortex. Hum. Brain Mapp. 30,
2731–2745.

Uddin, L. Q., Supekar, K., Amin,
H., Rykhlevskaia, E., Nguyen, D.
A., Greicius, M. D., and Menon,
V. (2010). Dissociable connectiv-
ity within human angular gyrus
and intraparietal sulcus: evidence
from functional and structural

Frontiers in Neuroanatomy www.frontiersin.org June 2012 | Volume 6 | Article 21 | 20

http://www.mouseconnectome.org/
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Park et al. Claustrum and Insula in Microcebus murinus

connectivity. Cereb. Cortex 20,
2636–2646.

Van De Werd, H. J. J. M., Rajkowska,
G., Evers, P., and Uylings, H.
B. M. (2010). Cytoarchitectonic
and chemoarchitectonic characteri-
zation of the prefrontal cortical areas
in the mouse. Brain Struct. Funct.
214, 339–353.

Witter, M. P., Room, P., Groenewegen,
H. J., and Lohman, A. H. M. (1988).
Reciprocal connections of the insu-
lar and piriform claustrum with lim-
bic cortex – an anatomical study in
the cat. Neuroscience 24, 519–539.

Woolrich, M. W., Jbabdi, S., Patenaude,
B., Chappell, M., Makni, S., Behrens,
T., Beckmann, C., Jenkinson, M., and
Smith, S. M. (2009). Bayesian analy-
sis of neuroimaging data in FSL.
Neuroimage 45, S173–S186.

Zhang, J. Y., Miller, M. I., Plachez, C.,
Richards, L. J., Yarowsky, P., Van Zijl,
P., and Mori, S. (2005). Mapping
postnatal mouse brain development
with diffusion tensor microimaging.
Neuroimage 26, 1042–1051.

Zhang, J. Y., Richards, L. J., Yarowsky, P.,
Huang, H., Van Zijl, P. C. M., and
Mori, S. (2003). Three-dimensional

anatomical characterization of the
developing mouse brain by diffusion
tensor microimaging. Neuroimage
20, 1639–1648.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 27 February 2012; accepted:
22 May 2012; published online: 13 June
2012.

Citation: Park S, Tyszka JM and
Allman JM (2012) The claustrum
and insula in Microcebus murinus:
a high resolution diffusion imaging
study. Front. Neuroanat. 6:21. doi:
10.3389/fnana.2012.00021
Copyright © 2012 Park, Tyszka and
Allman. This is an open-access arti-
cle distributed under the terms of
the Creative Commons Attribution Non
Commercial License, which permits
non-commercial use, distribution, and
reproduction in other forums, provided
the original authors and source are
credited.

Frontiers in Neuroanatomy www.frontiersin.org June 2012 | Volume 6 | Article 21 | 21

http://dx.doi.org/10.3389/fnana.2012.00021
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive

	The claustrum and insula in Microcebus murinus: a high resolution diffusion imaging study
	Introduction
	Materials and methods
	Diffusion MR imaging
	Histology
	MR image processing and fiber tractography

	Results
	Probabilistic tractography results

	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


