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In many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS),
synaptic alterations precede the demise of the neuronal cell, making synapses a useful
vantage point from which to monitor the onset and progression of clinical signs and
pathological changes. While murine models of ALS display many features in common with
the clinical picture observed in patients, corticospinal tract (CST) involvement is usually
less severe in mice than the picture observed in humans. In this paper we describe the
characterization of a new conditional transgenic line obtained by targeted integration of
a GFP-VAMP2 fusion gene into the Rosa26 locus, and devised to permit the detection
of genetically defined presynaptic terminals in wild type mice and murine models of
neural disorders. This reporter molecule is selectively enriched in presynaptic boutons,
significantly reducing the background signal produced by fibers of passage. The specific
features of this reporter line allow us to strongly support the view that murine CST
terminals give rise to very few direct contacts with spinal motor neurons. Moreover, the
evidence described here reveals the existence of previously uncharacterized, putative direct
connections between CST presynaptic boutons and Renshaw neurons in the spinal cord.
These results constitute a proof of concept for the potential application of this indicator line
to morphological analyses of wild type and diseased synapses.
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INTRODUCTION
Numerous murine models of neurodegenerative diseases exist
and, in many of them, synaptic alterations predate the demise
of the neuronal cell body and can be used as a predictor
of disease onset and progression (reviewed in Conforti et al.,
2007). In amyotrophic lateral sclerosis (ALS) the first subcellu-
lar damage detected at early stages of the disease is axonal and
synaptic (Fischer et al., 2004). More broadly, axon terminals pro-
vide an early vantage point for the study of neurodegenerative
disorders.

In animal models, the gold standard for the study of neu-
roanatomical and functional connections in the nervous system
is represented by the local injection of molecules called tracers
which are transported or diffuse along axons in a retrograde or
anterograde direction. Depending on the nature of the selected
molecule, these substances can travel in vivo from the cell soma
to the axon terminal or vice versa, and are visualized thanks
to (immuno) histochemical techniques (Zaborszky et al., 2006).
While these approaches guarantee cellular resolution, sensitivity
and stability, several pitfalls in their use remain. First, they require
surgical expertise and, in some cases, the use of complicated pro-
cedures, introducing variables and a lack of reproducibility related
to the operator’s experience. Second, slight variations in the loca-
tion of the injected area or in the amount of tracer can lead to
considerable differences between experiments, particularly in high

resolution experiments and in small animals such as mice. Third
and most important, signals often come from unwanted sources;
indeed, some anterograde tracers also act as retrograde tracers in
certain cases (Reiner et al., 2000); likewise, artifactual tracing can
occur if unrelated fibers of passage take up the tracer form their
neighbors, e.g., through pinocytosis (Jiang et al., 1993). Finally, all
tracing methods per se give information on the position of cells or
terminals, but do not provide any cues as to the molecular identity
of the corresponding neurons. Thus, the analysis of murine models
of neurodegenerative disorders would benefit from the availabil-
ity of presynaptic terminal markers, particularly transgenic (Tg)
reporters permitting the selective detection of genetically defined
subsets of synaptic boutons. Cre-activated anterograde reporters
make it possible to study both normal development and devel-
opmental defects or degenerative changes affecting specific axons
and their terminations. Several genetic “tracers” are available to
label axons (Bareyre et al., 2005) and circuits, the latter through
the Tg expression of trans-synaptic proteins (Braz et al., 2002;
Lo and Anderson, 2011). While other reporters already exist, they
are usually non-selective, making it difficult to distinguish between
presynaptic compartments and axons in transit through a given
territory.

In the present paper we describe the generation and character-
ization of a Cre-activated reporter devised to permit the selective
detection of genetically defined presynaptic terminals in murine
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models of human CNS disorders, with a low axonal background.
In addition, we validate our murine model to study the distribu-
tion and connections of corticospinal tract (CST) terminations in
the spinal cord, an application relevant to the analysis of murine
models of motor neuron diseases.

MATERIALS AND METHODS
GENERATION OF THE Rosa26 EGFP−VAMP 2 MOUSE STRAIN
The DNA fragment coding for EGFP-VAMP2 was first inserted
into a plasmid for homologous recombination downstream of
a floxed translation/transcription STOP cassette, using standard
cloning techniques. From the 5′ to the 3′ the plasmid encompassed
a 5′ homology arm for Rosa26, the CAG promoter/enhancer (CMV
enhancer + β-actin promoter), the STOP cassette flanked by loxP
sites, the EGFP-VAMP2 fusion protein, the bovine growth hor-
mone polyadenylation site (bGH pA) and a 3′ homology arm for
Rosa26 (Figure 1). A minigene for G418 (neomycin) resistance
(NeoR) was also inserted within the two loxP sequences, while
a suicide gene for negative selection (diphtheria toxin gene) was
introduced past the 3′ homology arms. The plasmid was electro-
porated into murine ES cells, which were cultured in the presence
of neomycin. Surviving clones were genotyped by Southern blot-
ting; briefly, after a complete digestion with EcoRV, genomic
DNA fragments were electrophoresed on agarose gel and blot-
ted on a membrane, which was eventually hybridized with two
distinct radioactive probes, annealing upstream or downstream
of the Rosa26 5′ and 3′ homology arm. An EcoRV restriction
site is present in the transgene but not in the homology arms, so
each probe labeled a shorter band in the recombinant locus than
in the wild type one (for the 5′ probe: 9.8 Kb vs. 11.5 Kb; for
the 3’probe 9.2 Kb vs. 11.5 Kb). Finally, positive ES cells were
injected into SV129/SvJ blastocysts, which in turn were implanted
into the uterus of pseudo-pregnant female mice. High percent-
age chimeric founders were crossed with wild type C57BL/6,
and agouti progeny were characterized genetically for germline
transmission.

GENOTYPING
Genotyping was conducted by PCR on genomic DNA obtained
from tail biopsy using a standard phenol-chloroform (1:1)
extraction protocol. For the Rosa26 locus, both wild type
and knock-in EGFP-VAMP2 and yellow fluorescent protein
(YFP) transgenes, we used the conditions and the primers
reported by Soriano (1999), F1: AAGACCGCGAAGAGTTTGTC,
F2: AAAGTCGCTCTGAGTTGTTAT, and R: GGAGCGGGA-
GAAATGGATATG. To detect Emx1-Cre positive mice, we used
universal primers and conditions for the Cre recombinase as sug-
gested by The Jackson Lab, F: TATATCTTCAGGCGCGCGGT
and R: GCAATCCCCAGAAATGCCAG. For Syn1-Cre we used
primers annealing on the Synapsin1 putative promoter and on
the Cre recombinase ORF, F: CCAGCACCAAAGGCGGGC, and
R: TGCATCGACCGGTAATGCAG. PCR reagents were purchased
from Promega.

TISSUE LYSATES AND WESTERN BLOTTING
Syn1-Cre+ Rosa26EGFP−VAMP2/EGFP−VAMP2 and Syn1-Cre+
Rosa26YFP/+ (positive control) mice were sacrificed, the

telencephalon and cerebellum were dissected and immediately
plunged into ice cold RIPA buffer with protease inhibitors
(1:10 w/v). Tissues were grossly disrupted with a glass potter
and homogenized in a small syringe. The samples were son-
icated and centrifuged. Supernatants containing proteins were
quantified by the BCA assay (Pierce). Proteins (50 μg) were sep-
arated through a 12% SDS-polyacrylamide gel and transferred
onto a PVDF membrane, as described (Gallagher et al., 2008). The
membrane was incubated overnight at 4◦C with a rabbit α-GFP
(Invitrogen) primary antibody (1:500) and with a goat α-rabbit
HRP-conjugated secondary antibody (Bio-Rad) 1:40,000 in 5%
w/v non-fat dry milk/TBST. The chemiluminescent reaction was
conducted according to recommendations (Pierce).

TISSUE PROCESSING FOR IMMUNODETECTION
Adult mice were anesthetized with Avertin (0.2 ml/10 g body
weight), and transcardially perfused with 4% paraformaldehyde
(PFA) in PBS 1X. Brains and spinal cords were post-fixed o/n at
4◦C in PFA. Tissues were sunk at 4◦C in 30% sucrose. Finally,
they were embedded within OCT (Bioptica) and sectioned on
a cryotome (16 μm for immunofluorescence and 20 μm for
immunohistochemistry).

IMMUNOFLUORESCENCE
Slides were washed in PBS and blocked/permeabilized in block-
ing solution (10% Goat Serum, 0,3% Triton X-100 in PBS 1X)
for 1 h, then incubated overnight at 4◦C with the proper pri-
mary antibody: rabbit α-GFP (Invitrogen) 1:500, mouse α-NeuN
(Chemicon) 1:300, mouse α-CaBP (Swant) 1:1000 in blocking
solution. After several washes, sections were treated for 2 h with
secondary antibodies (Goat α-rabbit Molecular Probes Alexa Fluor
488; Goat α-mouse Alexa Fluor 546) 1:1000 in blocking solution.
Nuclei were counterstained with Hoechst 1:5000 in PBS for 5 min.
To perform immunofluorescence on Rosa26EGFP−VAMP2 slides, we
used a Tyramide Signal Amplification (TSA) Kit (Perkin Elmer) to
detect EGFP-VAMP2 fusion protein. Briefly, slides were treated
with 0,3% H202 in TN buffer for 1 h, blocked/permeabilized
for 1 h in TNB solution (0,5% w/v Casein, 0,3% Triton X-100
in TN buffer) then incubated overnight at 4◦C with the rab-
bit α-GFP primary antibody 1:4000 in TNB. Subsequently, slides
were washed in TNT buffer (0,1% Tween20 in TN buffer), incu-
bated for 1 h with a biotin-conjugated goat α-rabbit secondary
antibody (VectaStain) 1:200 in TNB, washed again, treated for
30 min with HRP-streptavidin (supplied with the kit; 1:150 in
TNB) and processed with the tyramide solution for 10 min.
Other markers on the same sections were revealed using protocols
for ordinary immunofluorescence, as explained above. We used
mouse α-synaptotagmin1 1:500 (Synaptic Systems), mouse α-
CaBP 1:300 (Swant) and goat α-Choline Acetyltransferase (ChAT)
1:50 (Choline O-acetyltransferase, Millipore) to label presynaptic
terminals, Renshaw cells, and motor neurons, respectively. Rab-
bit VGluT2 1:500 (Vesicular Glutamate Transporter 2, Synaptic
Systems) was also used to label cerebellar mossy fibers termi-
nals. After several washes, sections were treated for 2 h with
fluoresceinated secondary antibodies 1:1000 in blocking solu-
tion. Nuclei were counterstained with Hoechst 1:5000 in PBS for
5 min.
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FIGURE 1 | Generation of the Rosa26EGFP-VAMP2 line. (A) Schematic
representation of the wt Rosa26 locus, recombinant (rec.) construct and
rec. locus obtained by homologous recombination within the 5′ and 3′
homology arms. See Section “Results” for a description of the rec.
construct. CAG, chicken β-actin promoter and CMV enhancer. bGH, bovine
growth hormone. (B) Southern analysis of ES cell clones using the 5′ probe
sketched in (A). Lanes marked by asterisks (*) correspond to recombinant

clones (note 9.8 kb band). (C) Western blot immunostained with an
anti-GFP Ab. Adult forebrain (Br) and cerebellar (Cbl) lysates were
gel-separated as indicated. Lanes 1–4 contain lysates from
Rosa26EGFP−VAMP2/+ mice, revealing a 49 kDa band corresponding to the
size of the EGFP-VAMP2 fusion protein; lane 5 contains lysates from
Rosa26YFP/+ mice (27 kDa). Lanes 1 and 4 are from Syn1-Cre negative
mice; Lanes 2, 3, and 5 are from Syn1-Cre positive mice.

IMMUNOPEROXIDASE STAINING – DAB AMPLIFICATION
Emx1-Cre+ Rosa26GFP−VAMP2+mice brain sections were treated
with 0,3% H202 in PBS for 30 min, permeabilized in P-solution
(1.72 M sucrose, 50 mM NaCl, 3 mM MgCl2, 20 mM Hepes,
0,5% Triton X-100) for 10 min, blocked 1 h in a goat serum-
based blocking solution then incubated overnight at 4◦C with
the rabbit α-GFP primary antibody 1:500 in blocking solution.
Subsequently, slides were treated with a biotin-conjugated goat
α-rabbit secondary antibody 1:200 in blocking solution for 2 h.
Several washes followed, then a streptavidin-HRP containing solu-
tion (ABC solution, VectaStain) for 30 min. The chromogenic
solution contained 0.3 mg/mL diaminobenzidine (DAB, Sigma),
0.1% Tween, 0.03% H202 in PBS. The reaction was blocked with
0.001% NaN3in PBS. Nuclei were counterstained as described
above.

NISSL STAINING
Slides were washed in PBS, dehydrated with a rising ethanol scale
(50% for 3 min, 70% for 3 min, 95% for 3 min, pure EtOH
for 1 min), submerged in an ethanol/chloroform (1:1) solution
for 20 min, rehydrated with a descending ethanol scale (95% for

5 min, 70% for 10 min, 50% for 10 min, pure ddH20 for 5 min),
stained with cresyl violet acetate for 15 min, post-fixed with 4%
cold PFA for 15 min, dehydrated again and treated with a de-
differentiation solution (two drops of glacial acetic acid in 100 mL
of 95% EtOH). Finally, they were rinsed in xylene and mounted
with a xylene mounting gel.

IMAGE ACQUISITION AND PROCESSING
Slides were examined on a Leica Confocal (20x-40x-63x) and a
Zeiss Axioplan 2 (5x, 10x, 20x) epifluorescence microscope. In
some cases, images were further magnified digitally. Minor adjust-
ments in term of contrast or brightness were made with Adobe
Photoshop CS4 version 11.0.2. (Adobe Systems). This program
was also used for merging and collages. Spinal cord stacks were
processed using the ImageJ software (NIH).

RESULTS
GENERATION OF Rosa26 EGFP−VAMP 2 KNOCK-IN MICE
We have developed a new Cre-inducible presynaptic reporter con-
sisting of the presynaptic protein VAMP2 fused N-terminally to
EGFP.
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The goal of this project was to produce an indicator/reporter
line expressing a fusion protein targeted to the secretory vesicle
wall, and to achieve a moderate expression level so as to avoid
overexpression artifacts that are common with chimeric proteins,
often due to defective subcellular trafficking of unfolded proteins.

The chimeric molecule was constructed as follows: start-
ing from a 2 Kb rat Vamp2 cDNA (Elferink et al., 1989), the
CDS was modified in order to generate an N-term fusion to
EGFP and a C-term fusion to a spacer peptide derived from
the ectodomain of TfR (Grote et al., 1995) followed by a Myc
tag. The resulting doubly fused CDS was contained within a
2.7 kb fragment comprising 1.5 Kb of 3′ UTR sequences from rat
Vamp2.

Our “genetic tracer” (sketched in Figure 1A) was inserted
by homologous recombination into the Rosa26 locus, which is
insensitive to epigenetic silencing and ensures stable, ubiquitous
transgene expression (Mao et al., 2001; Srinivas et al., 2001). The
transgene is preceded by a floxed transcriptional/translational stop
cassette (Figure 1A). In basal conditions, the protein is not pro-
duced; in Cre-expressing cells, or cells in which a Cre-human
estrogen receptor fusion protein is activated post-translationally
with tamoxifen, the stop cassette is excised and the trans-
gene is switched on. A construct, containing homology arms
for the Rosa26 locus, a G418 resistance minigene (Neo) and
a negative selection gene (encoding the Diphtheria toxin) was
used to electroporate murine ES cells. G418-resistant ES clones
were genotyped by Southern blotting (Figure 1B), to identify
homologous recombinants. Positive ES cells were injected into
SV129/SvJ blastocysts, generating chimeric mice. Tg progeny, het-
erozygous or homozygous, were viable, healthy, fertile, and of
normal size.

Rosa26EGFP−VAMP2 mice were mated with Syn1-Cre+/0 mice
to obtain Syn1-Cre+Rosa26EGFP−VAMP2/+ littermates. Again,
Rosa26EGFP−VAMP2/+animals expressing the Syn1-Cre+/0 or the
other recombinases tested were phenotypically indistinguishable
from their littermates. In doubly Tg animals, western blots were
immunostained with an EGFP Ab to detect EGFP-VAMP2 in telen-
cephalic and cerebellar protein extracts (Figure 1C). Our results
revealed a clear specific band at the expected size (49 KDa); no
smearing was detected, ruling out protein degradation. We also
confirmed that the floxed STOP cassette effectively prevents tran-
scription of the construct, since in Cre negative individuals (lanes 1
and 4) no specific bands were detected (note that the band around
46 KDa is non-specific, as it is found in all samples, including the
ones that express YFP – lane 5).

IN Syn1-Cre+ Rosa26 EGFP−VAMP 2/+ MOUSE CEREBELLA, PONTINE
MOSSY FIBER ROSETTES ARE SPECIFICALLY LABELED
We investigated whether our fusion protein specifically marks
presynaptic terminals in vivo. First of all, we analyzed the pon-
tocerebellar tract, which connects mostly the basal pontine nuclei
to cerebellar granule cells (GCs) residing in the lateral lobules.
We chose this pathway as a proof-of-principle because mossy
fibers terminate as large synaptic varicosities (8–13 μm, Wu et al.,
1999) with a peculiar “rosette-like” shape which makes them easy
to identify. As a strain expressing the Cre recombinase at the
source but not at the termination of this tract, we utilized the

Syn1-Cre+/0 line (Zhu et al., 2001). In these mice, Cre recombi-
nase is expressed only in a subset of synapsin 1+ neurons, possibly
due to a positional effect or to the short stretch of promoter used
to generate this transgene (Hoesche et al., 1993). Syn1-Cre+/0
mice were mated with Rosa26YFP/+animals (Srinivas et al., 2001)
in order to label Cre positive cells. Many basal pontine neurons
(NeuN+ cells) were positive for YFP (Figures A1A,B). In the cere-
bellar cortex, the reporter decorated basket cells, stellate cells, and
some calbindin (CaBP)+ PCs (Figure A1C); conversely, CGs were
uniformly negative. Even if scattered large YFP+ cells in the gran-
ule cell layer (GL) were detected, they were invariably negative
for NeuN (Figure A1D), which exclusively decorates GCs in the
murine cerebellar cortex (Weyer and Schilling, 2003). Thus, they
probably represent internal granule layer (IGL) GABA interneu-
rons (likely Golgi cells). Syn1-Cre+/0 mice were then mated with
Rosa26EGFP−VAMP2/+ mice to analyze the spatial distribution of
the reporter in sagittal cerebellar sections. We observed a clear
signal in the GC layer of lateral hemispheres; this signal did not
colocalize with the GC marker NeuN (Figure 2E, lobule IX). Inter-
estingly, in the anterior lobe, which does not receive projections
from the pons, only a weak, sparse signal was visible (Figures 2C,D,
lobules I and II). Finally, adult cerebellar sections were stained for
EGFP and for the vesicular glutamate transporter VGluT2. In post-
natal and adult cerebella, VGluT2 decorates mossy fiber terminals,
climbing fiber terminals and a subgroup of unipolar brush cell ter-
minals; as expected, EGFP-VAMP2 and VGluT2 colocalized tightly
with presynaptic terminals located in the GC layer (Figures 3A–F).
Higher magnifications of a single synaptic structure also con-
firmed the “rosette-like” shape and the expected size (arrowhead
in Figure 3H). Note that the axonal stem and its collaterals (diam-
eter ∼1 μm, Wu et al., 1999) were also weakly labeled (arrow
in Figure 3H). These results clearly indicate that the reporter
is correctly produced and transported from pontine cell somata
to their presynaptic terminal in the cerebellum of Syn1-Cre+/0
Rosa26EGFP−VAMP2 mice.

ANATOMICAL CHARACTERIZATION OF CORTICOSPINAL TRACT
TERMINATIONS IN Emx1-Cre+ Rosa26 EGFP−VAMP 2/+ ADULT BRAIN
Next, we investigated the distribution of EGFP+ putative synaptic
boutons in the corticopontine (CPT) and CST. The latter is the
longest monosynaptic fiber tract in the CNS and degenerates in
the course of ALS. In Emx1-Cre Tgs, the recombinase is expressed
exclusively in glutamatergic neurons and glial cells of the cerebral
hemispheres (Gorski et al., 2002), at the origin of the CPT and
CST tracts, but not in their target territories, i.e., the brainstem
and spinal cord. First, we reproduced published results by breed-
ing Emx1-Cre into the Rosa26YFP/+background, to confirm Cre
localization in the deep layers of the dorsal pallium, and partic-
ularly in the primary motor cortex (M1). As expected, we found
a large percentage of YFP+ neurons (Figure A3, YFP+ NeuN+
cells).

Territories positive for EGFP-VAMP2 in Emx1-Cre+
Rosa26EGFP−VAMP2/+ mice were also analyzed by immunohisto-
chemistry on brainstem and spinal cord sections. At the origin
of the pyramidal tract, in the cerebral hemispheres, EGFP deco-
rates cell-poor, fiber rich regions (Figure A2A). In the medulla
oblongata (Figure A2B, inset magnified in C), where all cells are

Frontiers in Neuroanatomy www.frontiersin.org January 2014 | Volume 7 | Article 50 | 4

http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


“fnana-07-00050” — 2014/1/6 — 14:42 — page 5 — #5

D’Acunzo et al. Cre-dependent fluorescent reporter of presynaptic terminals

FIGURE 2 |Transgene expression is entirely Cre-dependent. Sagittal
sections of an adult cerebellum, immunostained for EGFP (A,C,E) and
counterstained for the GC-marker NeuN. (A,B) Double
immunofluorescence for GFP and NeuN (granule cells marker) in
Cre-negative Rosa26GFP−VAMP2/+ mice. Absence of signal confirms the
lack of fusion gene transcription in cells which do not express the Cre
recombinase. (C–F) Same immunodetection in Syn1-Cre+
Rosa26GFP−VAMP2/+ mice. (C,D) Lobule I and II; (E,F) lobule IX. EGFP+
mossy fiber terminals, originating from Syn1-Cre+ neurons in pontine
nuclei (Figures A1A,B in Appendix), are particularly abundant in posterior
lobules (E,F). Note that EGFP signal (axon terminals) does not overlap with
NeuN signal, which decorates the nucleus and cytoplasm of GCs (Leto
et al., 2006; Dredge and Jensen, 2011). Scale bar: 150 μm.

Emx1 negative, the pyramids, containing descending corticospinal
fibers of passage, were weakly positive. Instead, strongly labeled,
EGFP-positive, presumptive presynaptic puncta were detected
in pontine nuclei of Emx1-Cre+ Rosa26EGFP−VAMP2/+mice. In
particular, punctate signal was detected at the location of basal
pontine nuclei with a non-cellular pattern (Figures 4D–F). The
distribution was similar to the one reported in the literature
for cortico-pontine terminals using anterograde tracers (Bjaalie
et al., 2005). EGFP immunoreactive terminals colocalized with the
pan-vesicular marker synaptotagmin-1 (Syt-1, Figure 4). Taken
together, these data suggest that our reporter does not label
cell bodies, stains axons weakly, and decorates axon terminals

more strongly, as expected of a properly sorted synaptic vesicle
marker.

MOST EGFP-VAMP2+ CST TERMINALS DECORATE DORSAL AND
INTERMEDIATE LAMINAE IN THE SPINAL CORD GRAY MATTER
Next, we focused on the analysis of CST terminals. In the spinal
cord of Emx1-Cre+ Rosa26EGFP−VAMP2/+mice, immunoreactiv-
ity for the fusion protein spanned cervical (Figure 5A) through
sacral (Figure 5B) segments. More precisely, we found strongly
labeled axons primarily in the funiculi of the dorsal column,
where mouse CST axons descend after decussating in the medulla
(Steward et al., 2004; Bareyre et al., 2005 and others). Obviously,
the more caudal the segment, the less signal we detected in the
white matter, due to the progressive depletion of corticospinal
axons. However, the most remarkable feature was the punctate
pattern clearly visible in the gray matter, matching the distribution
of corticospinal synaptic terminals. To further characterize where
corticospinal axons terminate, we analyzed the cytoarchitecture
of a lumbar section immediately adjacent to the one stained by
immunofluorescence, and based our analysis on segment-specific
Rexed lamination (Figure 5C). The strongest signal was con-
fined to the dorsal horn and to the zona intermedia, mainly in
laminae III-VI, with only sparse immunoreactive puncta in lam-
inae VII-IX. These data are in close agreement with published
results obtained using anterograde tracing (Kuypers and Mar-
tin, 1982; Holstege, 1996; Steward et al., 2004). Again, almost all
EGFP+ puncta residing in the gray matter colocalized with syt-1
(Figures 5D–F).

EVIDENCE SUGGESTING THE EXISTENCE OF LOW-FREQUENCY
MONOSYNAPTIC CORTICAL CONNECTIONS ON MOTOR NEURONS AND
ON RENSHAW CELLS IN MICE
Next, we searched for evidence of direct connections between cor-
ticospinal fibers and spinal motor neurons of the ventral horns.
We performed double immunofluorescence on cervical spinal
cord sections of Emx1-Cre+ Rosa26EGFP−VAMP2/EGFP−VAMP2mice
immunostaining sections for EGFP and ChAT, a well-established
marker of cholinergic spinal motor neurons of lamina IX. Only
infrequent, scattered EGFP-VAMP+ puncta were observed on or
flanking ChAT immunoreactive motor neurons, and they localized
mainly to proximal dendrites (Figure 6).

In addition, transverse spinal sections from the same Tg line
were immunostained for Calbindin-D28k (CaBP), a marker of
Renshaw cells, which are inhibitory interneurons residing in lam-
ina VII of the spinal cord (Carr et al., 1998; Alvarez and Fyffe,
2007). The neuronal identity of Renshaw cells was established also
based on morphology, position and size (Figure 7). Termination-
like EGFP+ puncta were observed on Renshaw cell somata, or
adjacent to presumptive dendrites, suggesting the previously unre-
ported existence of likely monosynaptic connections between
these glycinergic neurons and glutamatergic CST presynaptic bou-
tons (Figure 7). In keeping with this observation, Renshaw cells
express abundant AMPA receptors (GluR2 and 4), suggesting
that they receive glutamatergic presynaptic terminals (Alvarez and
Fyffe, 2007).

From this analysis, we conclude that very few corticospinal ter-
minals effectively synapse on mouse motor neurons, suggesting
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FIGURE 3 | EGFP decorates presynaptic terminals in the internal

granule layer of Syn1-Cre Rosa26EGFP-VAMP2/+ mice. Sagittal sections
of an adult cerebellum, immunostained for EGFP (B,E,H) and
counterstained for the glutamatergic axon terminal VGluT2 (A,D,G), which,

in the IGL, labels mossy fiber presynaptic terminals. Overlay (ovl) in (C,F,I).
In high magnifications (G–I) note EGFP+ terminal (arrowhead in H) and
faintly labeled distal axon (arrow in H). Scale bar: (A–C) 75 μm; (D–F)

25 μm; (G–I) 10 μm.

that the CST plays a minor role in the control of fine movements
in this species. Intriguingly, we also provide preliminary evidence
of a possible direct connection between Emx1+ corticospinal
neurons and Renshaw cells in lamina VII, which could have impli-
cations relevant to the study of normal and diseased spinal cord
circuits.

DISCUSSION
THE Rosa26 EGFP−VAMP 2 LINE PERMITS SELECTIVE VISUALIZATION OF
PRESUMPTIVE AXON TERMINALS
In the present paper we describe a new Rosa26 knock-in line
carrying an EGFP-based Cre-inducible presynaptic reporter. We

analyzed the pattern of EGFP-immunoreactivity in three differ-
ent circuits (pontocerebellar, CPT and CST) and demonstrated in
all cases a highly selective localization of the reporter molecule
in the putative presynaptic terminal, while axons were only
detectable in the context of densely fasciculated white matter
tracts such as the dorsal funiculus. While EGFP-VAMP2 did
not decorate cell bodies of Cre positive cells in the brain cor-
tex(Figure A2A) and labeled axons weakly (Figures A2B,C), it
was spatially restricted and significantly enriched in axonal ter-
minals (Figures 2 and 3); moreover, it colocalized with different
presynaptic markers and labeled likely presynaptic puncta with
the expected size and shape (Figures 3,4 and 5). Notably, all

Frontiers in Neuroanatomy www.frontiersin.org January 2014 | Volume 7 | Article 50 | 6

http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


“fnana-07-00050” — 2014/1/6 — 14:42 — page 7 — #7

D’Acunzo et al. Cre-dependent fluorescent reporter of presynaptic terminals

FIGURE 4 | EGFP decorates presynaptic terminals in the pons of

Emx1-Cre Rosa26EGFP-VAMP2/+. Sagittal sections of the pontine nuclei,
immunostained for EGFP (B) and counterstained for the synaptic vesicle

protein synaptotagmin1 (Syt1) (A). Overlay in (C). (D–F) are magnifications of
the corresponding insets in (C). Double-positive puncta (yellow, ovl) represent
corticopontine axon terminals. Scale bar: (A–C) 75 μm; (D–F) 15 μm.

FIGURE 5 | EGFP decorates presynaptic terminals in the spinal cord

of Emx1-Cre Rosa26EGFP-VAMP2/+ mice and colocalizes with

synaptotagmin 1 positive puncta. Transverse sections of the spinal
cord at cervical (A), sacral (B), and lumbar (C) levels. In (A), strong
signal is seen in the dorsal white matter (arrows; see text for
discussion). In (C), a Nissl-stained lumbar cord hemisection is
juxtapposed to its adjacent section, stained for EGFP. Stippled lines

delimit Rexed laminae (I–IX). Note that the majority of corticospinal
terminals are located in dorsal and intermediate laminae, while few
occupy lamina IX, containing the bodies of spinal motoneurons. (D–F)

Transverse sections of the spinal cord gray matter at the lumbar level.
EGFP signal from corticospinal axon terminals in (B) colocalizes with
synaptotagmin 1 (Syt1) in (A). Overlay (ovl) in C (arrows). Scale bar for
(D–F) 25 μm.
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FIGURE 6 | Infrequent EGFP+ puncta in the proximity of lamina IX motor

neuron somata. Transverse sections of the spinal cord gray matter at the
cervical level, lamina IX. (A,D) Choline acetyl transferase (ChAT)
immunostaining. (B,E) EGFP immunostaining; (C,F) overlay. Very few

corticospinal terminations are found on motor neuron cell bodies, while
sparse EGFP+ puncta are detected on ChAT+ presumptive dendrites
(arrows). Note larger size of some EGFP+ dots likely due to tyramide
mediated signal amplification. Scale bar: (A–C) 75 μm; (D–F) 30 μm.

FIGURE 7 | EGFP+ presynaptic terminals are detectable on

calbindin-IR neurons in lamina VII. Transverse sections of the spinal
cord gray matter at the cervical level, lamina VII. EGFP+ axon
terminals (arrows in B,E) are detected on the soma and dendrites of

calbindin (CaBP) immunoreactive cell bodies (A,D) likely corresponding
to Renshaw neurons. Overlay in (C,F). This finding suggests the
previously unreported existence of CS afferents on these interneurons.
Scale bar: (A–C) 75 μm; (D–F) 45 μm.
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the targets of these tracts were globally Cre negative (with the
exception of the few Syn1-Cre+ GABAergic interneurons in the
GL of the cerebellar cortex, (Figure A1). Significantly, reporter
targeting was highly efficient even in very long range axonal
tracts, such as the CST (Figures 5–7), whose length in the mouse
exceeds the diameter of pyramidal neuron bodies by three orders of
magnitude.

EVIDENCE OF CORTICOSPINAL TERMINATIONS ON SPINAL
MOTORNEURONS
The Rosa26EGFP−VAMP2/+line was used in this work to tackle a
controversial issue: whether or not CS terminals establish direct
connections with spinal motor neurons in the mouse (Figure 6).
To date, neuroanatomists disagree in regard to the contribution
of the corticospinal pathway on motor function in species other
than primates. The CST is a composite, species-specific pathway;
it has several functions and originates from a variety of corti-
cal areas, including classical cortical motor areas (as the primary
motor cortex, the premotor cortex, the supplementary motor
area), the anterior cingulate cortex (Dum and Strick, 1996) and
even sensorimotor areas, as the somatosensory cortex, the parietal
operculum and the posterior parietal cortex (Kuypers and Mar-
tin, 1982). Fibers coming from each area will eventually synapse
in the spinal cord in a discrete fashion: sensorimotor inputs
preferentially terminate in the dorsal horn, while motor fibers ulti-
mately synapse in the zona intermedia and, to a lesser extent, in
the ventral horn (Dum and Strick, 1996; Lemon and Griffiths,
2005; Lemon, 2008). Ninety percent of the murine pyramidal
tract is made up of sensorimotor projections, which terminate
in laminae II-V (Steward et al., 2004; Bareyre et al., 2005; Lemon
and Griffiths, 2005; Lemon, 2008); accordingly, our results show
an accumulation of CST terminations in the spinal dorsal horn
(Figure 5C).

Early observations made in rats by neuroanatomical tracing
using low resolution first generation methods (Casale et al., 1988)
have led neuroanatomists to the conclusion that CS terminals
are fairly abundant in laminae III – VI, and sparse in lamina
VII, while no direct monosynaptic connections were reported in
lamina IX. Likewise, attempts to elicit sustained excitatory post-
synaptic potentials (EPSP) in motor neurons through electrical
stimulation of the CST have been unsuccessful (Alstermark et al.,
2004). Other neuroanatomical studies have also led to the con-
clusion that the CST only plays a minor role in the initiation of
limb movement (Lemon, 2008). At odds with these conclusions,
corticospinal terminations have been detected by other authors on
rat (Bareyre et al., 2002), mouse (Bareyre et al., 2005) and ham-
ster (Kuang and Kalil, 1990) motor neurons. Contradictory results
have emerged from electron microscopy studies as well (Curfs
et al., 1996; Yang and Lemon, 2003). Our genetic evidence adds to
the results of previous investigations, hopefully contributing to the
establishment of a consensus in regard to this highly debated topic.
Our evidence speaks for the existence of only a small number of
direct corticospinal connections on the surface of spinal motor
neurons. In comparison to previously used genetic reporters, the
Rosa26EGFP−VAMP2 model features an increased selectivity and is
significantly more efficient in lighting up presumptive presynaptic
terminals than axon shafts.

Taken together, our results are consistent with the notion that
while scattered monosynaptic connections exist in mice, most
functional motor tasks are controlled through polysynaptic path-
ways in this species. It is now widely accepted that synaptic
contacts and alterations may influence at least in part the progres-
sion of neurodegenerative diseases (reviewed in Conforti et al.,
2007). ALS primarily involves the upstream and downstream
halves of a monosynaptic circuit, including the pyramidal neu-
ron of cortical layer 5 and the spinal motor neuron. If such a
circuit is indeed less crucial in mice than in humans, then the
results stemming from murine models of ALS should be inter-
preted cautiously, especially as regards CST involvement in this
disease.

EVIDENCE FOR THE EXISTENCE OF LIKELY DIRECT CONNECTIONS
BETWEEN THE PYRAMIDAL TRACT AND RENSHAW CELLS
The Rosa26EGFP−VAMP2 mouse strain has also made it possi-
ble to visualize putative direct connections from the cortex
to Renshaw cells (Figure 7), glycinergic neurons that receive
antidromic signals from spinal motor neurons. To the best of
our knowledge, this represents an entirely novel finding. Intrigu-
ingly, Emx1 is expressed by glutamatergic neurons, suggesting
that a subset of CS fibers carries excitatory stimuli to Ren-
shaw cells. It is well established that Renshaw cell axons make
local arborizations but also extend to other ipsilateral spinal
segments (Alvarez and Fyffe, 2007). Thus, through a direct cor-
ticospinal connection with Renshaw cells, a pool of spinal motor
neurons may be subjected to an inhibitory, inter-segmental con-
trol. If this were the case, it may have important implications
for motor control in physiology and disease. Further studies
are required to gauge the pathophysiological relevance of these
observations.
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APPENDIX

FIGURE A1 | Syn1-Cre is expressed in pontine nuclei but not in cerebellar

granule cells. (A) In Syn1-Cre Rosa26-YFP mice, YFP immunoreactivity is
detected in pontine nuclei (inset magnification in B). In the cerebellum, YFP
immunoreactivity (arrows in C) is detected in calbindin+ Purkinje cells (arrows

in C). Large YFP + cell bodies in the granule cell layer (arrow in D) are NeuN
negative, likely representing Golgi interneurons. CaBP, calbindin; ovl, overlay;
ML, molecular layer; PL, Purkinje cell layer; GL, granule cell layer. Scale bar:
(A) 150 μm; (B) 70 μm; (C,D) 75 μm.
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FIGURE A2 | At low resolution, EGFP-VAMP2 (Maiuscolo) signal is

detectable in fiber-rich, cell-body-poor territories. (A) Left : LacZ staining
of a frontal adult Emx1-Cre Rosa26LacZ /+ mouse forebrain hemisection
reveals location of cell bodies (reproduced with permission from Gorski
et al., 2002); right : similar section from an Emx1-Cre
Rosa26EGFP−VAMP2/+ brain immunostained for EGFP reveals
complementary distribution of the reporter, which is enriched in cell-poor
regions. (B) Likewise, in a medulla oblongata hemisection, EGFP
immunoreactivity is concentrates at the level of the pyramids (inset
magnification in C).

FIGURE A3 | AbundantYFP+ cells in the Emx1-Cre Rosa26YFP/+ motor

cortex. Sagittal section of the Emx1-Cre Rosa26YFP/+ motor cortex
immunostained for YFP and the neuronal marker NeuN, which labels all
cortical neurons. Note the presence of NeuN–, YFP+ cells, likely
corresponding to glia.
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