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compared to in vivo MRM
Oliver von Bohlen und Halbach1*, Martin Lotze 2 and Jörg P. Pfannmöller 2

1 Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
2 Functional Imaging Unit, Center for Diagnostic Radiology, University of Greifswald, Germany

Edited by:

George Paxinos, University of New
South Wales, Australia

Reviewed by:

Marten P. Smidt, University of
Amsterdam, Netherlands
Dean Dessem, University of
Maryland, USA

*Correspondence:

Oliver von Bohlen und Halbach,
Institut für Anatomie und Zellbiologie,
Universitätsmedizin Greifswald,
Friedrich Loeffler Street 23c, 17487
Greifswald, Germany
e-mail: oliver.vonbohlen@uni-
greifswald.de

Small-animal MRI with high field strength allows imaging of the living animal. However,
spatial resolution in in vivo brain imaging is limited by the scanning time. Measurements
of fixated mouse brains allow longer measurement time, but fixation procedures are time
consuming, since the process of fixation may take several weeks. We here present a quick
and simple post-mortem approach without fixation that allows high-resolution MRI even
at 7 Tesla (T2-weighted MRI). This method was compared to in vivo scans with optimized
spatial resolution for the investigation of anesthetized mice (T1-weighted MRI) as well as to
ex situ scans of fixed brains (T1- andT2-weighted scans) by using standard MRI-sequences,
along with anatomic descriptions of areas observable in the MRI, analysis of tissue
shrinkage and post-processing procedures (intensity inhomogeneity correction, PCNN3D
brain extract, SPMMouse segmentation, and volumetric measurement). Post-mortem
imaging quality was sufficient to determine small brain substructures on the morphological
level, provided fast possibilities for volumetric acquisition and for automatized processing
without manual correction. Moreover, since no fixation was used, tissue shrinkage due to
fixation does not occur as it is, e.g., the case by using ex vivo brains that have been kept
in fixatives for several days. Thus, the introduced method is well suited for comparative
investigations, since it allows determining small structural alterations in the murine brain
at a reasonable high resolution even by MRI performed at 7 Tesla.
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INTRODUCTION
The murine brain is about 3500 times lighter than the human
brain and the small brain size challenges high field imaging
with high-quality and high spatial resolution. Absolute scan time
with a sufficient signal-to-noise ratio (SNR) and contrast-to-
noise ratio (CNR) is dependent on spatial resolution (Buxton,
2009).

Although it is possible to anesthetize mice with isoflurane for
6.5 h without any mortality (Szczesny et al., 2004), practically
120 min is the limit for MRI-measurement duration.

However, these investigations are accompanied by artifacts due
to due to circulation and breathing movements (Johnson et al.,
1993; Benveniste and Blackband, 2002). For ex vivo investigation
the use of formaldehyde perfusion-fixed brains has offered the
opportunity to use even longer scan times, which resulted in a gain
of resolution (Benveniste et al., 2000). These procedures, however,
result in quality loss, due to denaturation and cross-linking of
proteins (Benveniste and Blackband, 2002). Therefore, staining
techniques have been developed such as the most commonly used
contrast-enhancing agents (Huang et al., 2009; Kim et al., 2009;
Cleary et al., 2011). These techniques are well suited to obtain
high-quality scans useful, e.g., for creating atlases of the rodent
brain (Ma et al., 2005). However, the use of contrast-enhancing

agents on in situ brains is very time consuming (Huang et al.,
2009; Cleary et al., 2011). Due to this limitation, this technique
might not be well suited for performing comparative studies,
as, e.g., for analyzing brains of genetically altered animals, in
comparison to wild-type littermates within a small time frame.
Moreover, a high prevalence of fixation artifacts (approximately in
30% of the samples) has been observed in fixed mouse brain mag-
netic resonance images (Cahill et al., 2012). This may compromise
their use for quantitative morphometric analyses, where accurate
anatomical volumes and morphology are essential (Cleary et al.,
2011).

To get insight in the usefulness of the introduced post-mortem
method, we compared this method with in vivo and other
ex situ imaging techniques. For each of these approaches we
optimized 7 Tesla MRI scanning procedures. We used three qual-
ity criteria: (1) visual differentiation of brain substructures by
using a mouse atlas as a reference (Paxinos and Franklin, 2001),
(2) brain volume estimation for detecting possible shrinkage in
comparison to the in vivo situation, (3) the capability for autom-
atized brain segmentation extraction algorithms (SPMMouse;
Sawiak et al., 2009). Low capability needed more preprocess-
ing interventions such as intensity inhomogeneity correction
(Sled et al., 1998) or brain extraction algorithms (Chou et al.,
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2011). For the gray and white matter, an averaged SNR was
calculated.

MATERIALS AND METHODS
Scans were performed in a 7 Tesla ClinScan 70/30 animal scanner
(Bruker, BioSpin, Ettlingen, Germany). We use a 2 × 2 chan-
nel mouse brain coil. Female and male adult C57 wild-type mice
were examined. In order to compare the introduced fixation-
free post-mortem method with in vivo and ex situ MRI scans,
animals were first analyzed using in vivo MRI-scanning [see MRI-
Scanning (In Vivo) section]. Thereafter, mice were euthanized
with an overdose of ether (von Bohlen und Halbach et al., 2008),
since it does not interfere with neuronal activity as, e.g., isoflurane
(Zschenderlein et al., 2011). Thereafter, they were analyzed using
post-mortem MRI-scanning [see MRI-Scanning (Post-Mortem)
section].

All animal experiments were performed in accordance with
German animal rights regulations and with permission of the Lan-
desamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei
(LALLF) Mecklenburg-Vorpommern, Germany

Next, the brains were removed and fixed using 4%
paraformaldehyde. Ex situ MRI scans [see MRI-Scanning (Ex Situ)
section] were performed at two different time points: (i) some
hours after the post-mortem scan and (ii) 7 days subsequent to the
first ex situ scan. All MRI scans were performed at room temper-
ature. All experimental procedures were performed according to
permission obtained from local state authorities.

MRI-SCANNING
MRI-scanning (in vivo)
Mice were anesthetized with a mixture of 2.5% isoflurane and
oxygen for induction of anesthesia and then transferred to the
MRI scanner. A 3D T1-weighted turbo-flash (TFL) sequence
[30 transversal slices, 280 μm thickness, no gap, matrix of
512 × 512 pixel, field of view (FoV) = 30 mm, spatial res-
olution 59 μm × 59 μm × 280 μm, voxel volume 0.97 nl,
repetition time (TR) = 2200 ms, echo time (TE) = 4.63 ms,
inversion time (TI) = 1000 ms] was used for their examination.
The total scan time of the in vivo sequence was 1:53 h. Dur-
ing the whole-brain scan respiration rate was monitored with an
MR-compatible Small Animal Monitoring and Gating System Res-
piration Module (SA Instruments, Inc., Stony Brook, NY, USA)
and anesthesia with isoflurane (1–2%) and oxygen was adjusted
depending on the respiratory rate. Additionally, mice were kept
on a heated animal bed during measurement to avoid a decrease
of the body temperature. An eye ointment was administered to
prevent the eyes from drying out. The brain was situated at
a position inside the scanner with minimal intensity inhomo-
geneity artifacts and the scanned volume was centered to their
brain.

MRI-scanning (post-mortem)
Mice were euthanized and quickly transferred (less than 5 min)
to the MRI scanner and a 3D T2-weighted turbo-spin echo (TSE)
sequence (96 transversal slices, 100 μm thickness, no gap, matrix
of 512 × 512 pixel interpolated by the scanner to 1024 × 1024 pixel,
FoV = 25 mm, spatial resolution 24 μm × 24 μm × 100 μm, voxel

volume 0.058 nl, TR = 2500 ms, TE = 55 ms) was used for the
brain scan. The total scan time of the post-mortem sequence was
08:38 h. The brain was situated at a position inside the scanner
with minimal intensity inhomogeneity artifacts and the scanned
volume was centered to their brain.

MRI-scanning (ex situ)
Brains were removed by an experienced veterinarian subse-
quently to the post-mortem scan and conserved in 4% formalde-
hyde. The above described in vivo and post-mortem sequences
were used in direct succession during an ex situ scanning
session.

ANATOMICAL RECONSTRUCTION AND LINEAR SHRINKAGE FACTOR
In order to analyze whether the higher resolution of the post-
mortem MRI scans revealed a more detailed cytoarchitecture, brain
areas visible were determined and mapped by the use of an atlas
of the mouse brain with stereotaxic coordinates (Paxinos and
Franklin, 2001). For visualization pseudo-3D images of the brains
were generated, using the tool “maximum intensity projection”
implemented in Neurolucida.

For anatomical 3D mapping and reconstruction Neurolucida
10 (MBF Biosciences, USA) was used. Image sequences were
loaded into ImageJ 1.44p (NIH, USA) and exported as a sequence
of tiff-files. The image sequence of tiff-files was loaded into Neu-
rolucida. The mean thickness of the cortical layer was determined
at 12 different positions per brain that were randomly selected.
The linear shrinkage factor (Jinno et al., 1999) was determined as
change (in percent) as compared to the mean thickness of the
cortical layer determined under in vivo conditions. For deter-
mining whether the thicknesses of the cortex were affected by
the treatment, one-way ANOVA, followed by a Tukey’s multiple
comparison test was performed using Prism 6.0 (GraphPad Inc.,
USA).

PREPROCESSING AND AUTOMATIC SEGMENTATION
Mice brain were segmented into gray matter, white
matter and cerebrospinal fluid using SPMMouse (Sawiak
et al., 2009), based on the unified segmentation algorithm
(Ashburner and Friston, 2005). A proper segmentation for the in
vivo scans was achieved only if an intensity inhomogeneity correc-
tion (IIC) was applied, achieved using a non-parametric method
(Sled et al., 1998). Post-mortem scans did not need this preparatory
processing. Additionally to these segmentations with minimum
number of processing steps, a second trial with an increased num-
ber of processing steps was carried out. In order to segment with-
out non-brain tissue contributions brain masks were generated
as outlined in Section “Sequence Evaluation” and segmentation
was applied to the extracted brains. Volume measurements were
carried out using the SPMMouse functionality, were volumes are
computed by counting the non-zero voxels and multiplying with
the voxel volume. The same procedure was applied to the ex situ
brains.

Sequence evaluation
SNR of the entire brain including gray matter, white matter,
and cerebrospinal fluid was computed for all unprocessed scans.
Therefore, a brain mask was generated for each of the scans. In
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order to achieve a proper brain mask for the in vivo scans three pro-
cessing steps were necessary. An IIC was carried out to minimize
artifacts. Subsequently brains were extracted by hand. The hand
extracted brains were again extracted using PCNN3D to achieve a
high precise brain mask. In case of the post-mortem scans appli-
cation of PCNN3D sufficed to achieve a highly exact brain mask.
The resulting brain mask was applied to the corresponding unpro-
cessed scan and the extracted brain was used for SNR calculations.
SNR is defined as signal value S over the noise standard deviation
σnoise

SNR = S/σnoise,

where σnoise was extracted from the empty volume included in the
borders of the scan. The average SNR (SNRavg), and its standard
deviation (SNRσ), was computed by fitting a Gaussian distribution
to the histogram of all pixel SNR values.

Segmentation results for white and gray matter were used as
masks to compute the average gray Sgray,avg and white Swhite,avg

matter contrast, as well as their standard deviations (σgray and
σwhite) in the unprocessed scans. Those were used to compute
the average contrast-to-noise ratio (CNR) between gray and white
matter and its standard deviation

CNRavg = |Sgray,avg − Swhite,avg|/σnoise and

CNRσ = (σgray + σwhite)/σnoise.

Visualization
ImageJ 1.44p (NIH, USA) was used to visualize particular slices
in the gray matter segmentation and the entire gray matter
segmentation as a volume image.

RESULTS
DESCRIPTION OF STRUCTURAL DATASETS
Standard in vivo MRI at 7 Tesla allowed to visualize the murine
brain and to distinguish major brain regions, e.g., cortex, cere-
bellum, hippocampus or olfactory bulbs (OB; Figure 1A). The
cortex and the caudate putamen (CPu) could be well distin-
guished, but the boundaries between both structures could
not be defined exactly (Figures 1A,B). Similarly, substructures
could not be demonstrated convincingly, e.g., different hip-
pocampal areas (Figure 1C) or different layers of the cerebellum
(Figure 1D).

Post-mortem MRI at 7 Tesla allows visualization of the murine
brain in greater detail. Thus, using maximum intensity projection
of the entire scan, the brain surface along with the blood vessels
was clearly visible (Figure 2A). Without use of any fixation or con-
trast enhancing agents, not only the brain could be distinguished
from the surrounding tissue, but also substructures could be dif-
ferentiated (Figures 2B,C). Thus, not only cortical areas could
be distinguished from, e.g., the CPu, but also the external capsule
could be recognized, as well as different parts of the olfactory bulb,
corresponding to different layers of the olfactory bulb (Figure 2B).
For the cerebellum the white matter tracts and the granular and
molecular layer could be distinguished (Figures 2D,E) but not the
cerebellar Purkinje-cell layer.

Concerning the fixed extracted brains, the structure was less
well preserved (Figure 3). This confirms that fixation produces loss

FIGURE 1 | By using in vivo tissue, the brain and the surrounding

tissue are clearly visible (A). However, the boundaries between the cortex
and the CPu are difficult to detect (A,B). Neither the hippocampal fields
CA1, CA3 nor the dentate gyrus can clearly be distinguished (C). Within the
cerebellum (D) the different layers cannot be differentiated. Inserts B,C,D

represent magnifications of areas shown in A. CPu, caudate putamen; OB,
olfactory bulb.

in quality (see Introduction section). In addition, brains were in
an advanced state of decomposition due to the long delay between
euthanasia and extraction. This resulted in partial tissue damage
during the extraction procedure. In our approach, the brains were
deformed by the flask used for their storage (see Figure 3). This
latter problem could be overcome by using a different mode of
storage.

No statistical significant shrinkage for the post-mortem brains
was observed as compared to the in vivo brains (Figure 4). Short
fixation did also not result in statistical significant shrinkage, but
induced a larger variance (Figure 4). In contrast, long-term fix-
ation was found to induce a significant shrinkage of the cortical
thickness (Figure 4).

PREPROCESSING AND AUTOMATIC SEGMENTATION
An IIC was necessary to achieve a good segmentation of the in
vivo scans, which included all brain regions (Figures 5A,C,G).
Parts of the cerebellum where missing in the segmentation if IIC
was not applied. The post-mortem scans did not need any prepro-
cessing to achieve an excellent segmentation (Figures 5B,D,H).
In vivo and post-mortem segmentations both contained non-brain
tissue in the gray matter segmentation, visible in Figures 5A–D
as white stripes encompassing the outer limit of the gray matter.
Brain extraction preceding segmentation decreased the amount
of non-brain tissue in the segmentation. Applying IIC or mod-
ifying SPMMouse parameters also changed the tissue volumes.
However, volumes of in vivo and post-mortem scans did not
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FIGURE 2 | By using unfixed post-mortem tissue, the brain and the

blood vessels located on the brain surface are clearly visible in an

intensity projection of the 3D scan (A). A representative slice through
a 3D volume of un-fixed post-mortem head of a mouse is shown
in (B). A higher magnification of the hippocampal formation is shown
in (C). Likewise in the cerebellum (D) the white matter tracts and the
gray matter can be distinguished. However, the Purkinje cell layer, which

is composed of a single layer of relatively large neurons, cannot be
detected (a higher magnification of this area is shown in E). CA1, CA3,
hippocampal area; CPu, caudate putamen; DG, dentate gyrus; ec,
external capsule; ent, entorhinal cortex; gl, granular layer of the
cerebellum; Hipp, hippocampus; ic, internal capsule; icf, intercrural fibers;
LV, lateral ventricle; ml, molecular layer of the cerebellum; OB, olfactory
bulb.

converge against identical values regardless of the fine tuning pro-
cedures. Therefore, the minimum number of processing steps
preceding segmentation and standard SPMMouse parameters
were chosen.

This was done to minimize errors due to the processing and
to achieve maximum comparability to literature values. In case of
in vivo scans, the gray matter volumes for the female and male
mouse differed by less than 2% (Table 1), while the post-mortem
scans differed by less than 4% (Table 1). The maximum difference
between in vivo and post-mortem scan gray matter volume was 8%
(see Table 1).

The SNRs of all scans together with their standard deviations
are shown in Table 1 and depicted in Figure 5E. In vivo scans
exhibited an SNRavg > 34 db and post-mortem scans had an
SNRavg > 37 db. All scans had a lower limit of the SNRavg > 20 db
if the 95% confidence bound was taken into account. Thus, the
brain signal of the image was at least 100 times larger than the

noise. The corresponding results for the CNR of all scans and
its standard deviation are also shown in Table 1 and depicted
in Figure 5F. In vivo scans exhibited a CNRavg > 2.1 db and
post-mortem scans had a CNRavg > 1.5 db. Thus, gray and white
matter contrasts differ on average about 50% in their contrast
values. Notably, CNRavg of in vivo scans was slightly larger than
of post-mortem scans. The opposite was found for the standard
deviations of the CNRs, which was probably due to a higher
effect of intensity inhomogeneities in the in vivo scans. CNRσ

was larger than CNRavg by at least a factor 6 for the in vivo
scans, while it was at least a factor of 3 for the post-mortem
scans.

DISCUSSION
We demonstrate that the use of non-fixed post-mortem tissue is
well-suited as a quick and sensitive method for high-resolution
MRI. Several technical difficulties found previously at 7 Tesla
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FIGURE 3 | Extracted brain tissue that was fixed for several days. The
olfactory bulbs (OB), the cortex, the hippocampus (Hipp), and the
cerebellum can easily be distinguished from adjacent brain regions. Due to
the removal of the brain from the surrounding tissue, some damage can be
noted, as e.g., in the cerebellum or the OB (indicated by arrows).

MRI (Beuf et al., 2006) were dissolved, leading to high-throughput
capabilities. Damage due to the removal of the brains and time-
consuming tissue processing, possibly leading to severe shrinkage
or other fixation artifacts, are avoided. Compared to the in
vivo situation, artifacts due to respiration and cardiac activ-
ity are absent and longer scan times are possible. This allows
applying T2-weighted sequences with high spatial resolution and
contrast, as compared to fast T1-weighted sequences applied
in vivo.

The qualitative inspection of in vivo, post-mortem and ex situ
scans confirmed the results found in the literature concerning in
vivo and ex situ scans. An identification of substructures in in vivo
scans was difficult due to the low quality of the scans, but could be
achieved at various positions for the cortex. In ex situ scans fixation
artifacts, deformations and damages affected the scans severely
and complicated the reliable identification of brain substructures.
These artifacts may occur during the formalin fixation process
(Benveniste and Blackband, 2006).

The thickness analysis of the cortical layer indicated that sig-
nificant shrinkage was found for brains fixated for days, while no
shrinkage was found if brains were fixated for hours only or with-
out fixation. Along this line, in a recent MRI study, using human
post-mortem brain that have been fixed with formalin, it has been
shown that fixation resulted after several days in substantial tissue
shrinkage and local deformations (Schulz et al., 2011). In histology,
the impact of different fixatives on tissue shrinkage is well known

FIGURE 4 | Analysis of the mean thickness of the cortex. Data are
presented as mean ± min to max (*p ≤ 0.05; ANOVA; Tukey’s post hoc
test). In vivo: data from the in vivo scanning procedure; post-mortem: data
obtained by using post-mortem brains; fixed-hours: data obtained by using
extracted brains that were fixed for some hours; fixed-days: data obtained
from extracted brains that were fixed for several days.

(Stickland, 1975) and recently the impact of formaldehyde fixa-
tion on distortion of brain tissue has been re-examined in detail
(Weisbecker, 2012). Since shrinkage of the tissue was found to
have an impact on stereological estimates, a volumetric shrinkage
factor has been introduced (Jinno et al., 1999). Paraformaldehyde
fixation, sectioning and staining of mouse brain sections, and sub-
sequent embedding can produce a volumetric shrinkage factor of
about 0.6 (von Bohlen und Halbach and Unsicker, 2002). Thus,
post-processing of the tissue, like the use of contrast enhancing
substances on formaldehyde fixated brains for MRI scans, may let
to further tissue distortion. Techniques developed for shrinkage
correction in histological specimens are unfortunately not appli-
cable for MR imaging analysis. However, algorithms compensating
for volumetric shrinkage and tissue distortion due to fixation
(Schulz et al., 2011) are not necessary if non-fixated post-mortem
brains are investigated in situ.

Overall, the post-mortem scans allowed for a more distinct iden-
tification of substructures than the in vivo scans, and exhibited
minimal influence of artifacts. This was also confirmed for the
entire gray matter in the post-mortem scan using IIC and SPM-
Mouse brain segmentation techniques. The maximum difference
between in vivo and post-mortem scan gray matter volume was
8%, which confirms the result for cortical thickness depicted in
Figure 4. Only one ex situ brain dataset allowed for an autom-
atized segmentation. This was due to alterations in the brain
caused by fixation, extraction and/or deformation during stor-
age. Since the ex situ brains have to be investigated in carriers,
a positioning of surface MRI-coils near the brain is hampered,
too. This might also decrease MRI-signal intensity, which might
well result in problems in segmentation (Ashburner and Friston,
2005).

The contrast-to-noise ratio (CNR) is highly important for
the differentiation between tissues in MRI scans. SNR of the
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FIGURE 5 | (A) Center slice in the segmentation of the in vivo sequence
for the female mouse; (B) same as in A, but for the post-mortem scan;
(C) segmentation of the in vivo sequence for the male mouse; (D) the
same as in C, but for the post-mortem scan; (E) SNR of raw
unsegmented in vivo and post-mortem scans. The labels on the horizontal

axis show which sequence and mouse has been analyzed and correspond
to the upper row of the figure; (F) the same as in E, but for the CNR;
(G) volume visualization of the in vivo segmentation result shown in A;
(H) volume visualization of the post-mortem segmentation result shown
in B.

Table 1 | Quantitative results from post-processing.

Female in vivo Female post-mortem Male in vivo Male post-mortem

V (ml) 0.3004 0.2779 0.2954 0.288

SNRavg 2569.2 (34.1 db) 6253.7 (38 db) 2500.3 (34 db) 5942 (37.7 db)

SNRσ 11 (10.4 db) 15.8 (12 db) 10 (10 db) 20.7 (13.2 db)

CNRavg 2.1 (3.1 db) 1.5 (1.8 db) 2.2 (3.4 db) 1.7 (2.2 db)

CNRσ 14.2 (11.5 db) 5.2 (7.2 db) 20 (13 db) 6.5 (8.1 db)

Columns show the results for a particular scan. In the second row, the gray matter volume is shown in milliliters. The third row shows the average SNR and the fourth
row the corresponding standard deviation. Average CNR is shown in row five and the corresponding standard deviation in row six.

scans is excellent at 7T and shows relevant improvement if
compared to MRI at lower field strengths (Natt et al., 2002).
However, the CNR is rather small and changes considerably
between measurements. On average gray and white matter con-
trasts differ by 50% in their contrast values in the in vivo and
post-mortem scans. Since the quality of the automatic segmenta-
tion will depend on CNR, optimization of MRI sequences at 7 Tesla
should aim on improving the CNR. This could be achieved in the
post-processing using an IIC. Further optimization of sequence

parameters might result in improved CNR (DiFrancesco et al.,
2008) and minimized intensity inhomogeneities (Tannus and
Garwood, 1997).

Cleary and colleagues described that the usage of contrast
enhancing agent gadolinium on fixated brains in a 9.4 Tesla scan-
ner allowed for visualization of the Purkinje cell layer of the
cerebellum (Cleary et al., 2011). In our approach, the resolution
was not high enough to distinguish single Purkinje cells or other
single neurons; a problem that might be overcome by using a 9.4 T

Frontiers in Neuroanatomy www.frontiersin.org June 2014 | Volume 8 | Article 47 | 6

http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


von Bohlen und Halbach et al. Post-mortem MRI

scanner. The use of the post-mortem MRI technique is, however,
much faster and may therefore be a valuable method for anatom-
ical phenotyping of transgenic mice. In addition, it enables an
increase in the throughput for MRI phenotyping of large numbers
of rodents, allowing to determine very quickly small structural
alterations in the murine brain at a reasonably high resolution
even with 7 Tesla field strength. Furthermore, an increase in scan-
ning times will no longer represent a limiting factor for obtaining
higher resolutions.
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