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The retrograde suppression of the synaptic transmission by the endocannabinoid
sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and
requires the elevation of intracellular Ca2+ and the activation of specific 2-AG synthesizing
(i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates
that express 2-AG/CB1 signaling system-related molecules associated with selective
Ca2+-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label
immunofluorescence and confocal laser scanning microscopy for the characterization
of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL,
and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat
hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil,
which were differentially organized depending on the hippocampal CaBPs-expressing
cells. CB+

1 fiber terminals localized in all hippocampal principal cell layers were tightly
attached to calbindin+ cells (granular and pyramidal neurons), and calretinin+ and
parvalbumin+ interneurons. DAGLα neuropil labeling was selectively found surrounding
calbindin+ principal cells in the dentate gyrus and CA1, and in the calretinin+ and
parvalbumin+ interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL+
terminals were only observed around CA1 calbindin+ pyramidal cells, CA1/3 calretinin+
interneurons and CA3 parvalbumin+ interneurons localized in the pyramidal cell layers.
Interestingly, calbindin+ pyramidal cells expressed FAAH specifically in the CA1 field.
The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1
signaling system and selective CaBPs should be considered when analyzing the
cannabinoid signaling associated with hippocampal functions.

Keywords: cannabinoid receptor, 2-arachidonoylglycerol, calcium-binding protein, hippocampus, rat,

immunohistochemistry, confocal microscopy

INTRODUCTION
ns-2-arachidonoylglycerol (2-AG), one of the endogenous lig-
ands for cannabinoid receptors, regulates synaptic transmission
in the nervous system by acting as a retrograde inhibitory
signal of excitatory/inhibitory synapses (Katona and Freund,
2008; Stella, 2009, see Figure 1A for summary). This retro-
grade signaling requires the participation of the divalent cation
calcium (Ca2+), production/release of 2-AG and calcium mobi-
lization leading downstream cannabinoid receptor signaling that

ultimately lead to the inhibition of presynaptic neurotrans-
mitter release (D’Amico et al., 2004; Di et al., 2005; Katona
and Freund, 2008; see Sugiura et al., 2006 for review). For
instance, the postsynaptic endocannabinoid release can be trig-
gered in response to specific stimuli that mobilizes Ca2+, includ-
ing either depolarization-induced postsynaptic Ca2+ elevation or
activation of postsynaptic Gq/11-coupled receptors (i.e., mGluR1-
phospholipase C β pathway) with or without Ca2+ elevation
(Kondo et al., 1998; Maejima et al., 2005; Ohno-Shosaku et al.,
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FIGURE 1 | (A) Major biochemical pathway for 2-AG signaling system.
Postsynaptic calcium influx and the activation of metabolic receptors
coupled to phosphotidyl-inositol-specific phospholipase C (PLC) and
diacylglycerol lipase (DAGL) pathway lead to increases in 2-AG production.
2-AG signaling includes uptake into cells mediated by an unknown
transporter (AT) and hydrolysis by specific enzymatic systems, such as
MAGL. (B) Western blots of protein extracts from rat hippocampus
showing CB1 immunostaining as a prominent band at about 52 kDa.
Immunoblots for DAGLα, MAGL, and FAAH also revealed a single band with
molecular masses of 120, 35, and 63 kDa, respectively. Analysis of calbindin
D28k, calretinin, and parvalbumin immunoblottings confirmed expected
bands of 28, 29, and 10 kDa, respectively.

2005). Effective production of 2-AG from diacylglycerol (DAG) is
demonstrated by combined weak mGluR1-PLC β1/4 cascade acti-
vation and Ca2+ elevation to a submicromolar range (Maejima
et al., 2001, 2005; Hashimotodani et al., 2005; Ohno-Shosaku
et al., 2005).

The retrograde signaling mediated by 2-AG is determined by
the balance between the production and clearance of 2-AG. The
primary route of 2-AG synthesis in the nervous system has been
proposed to occur via hydrolysis of DAG by the sn-1-specific
diacylglycerol lipase alpha (DAGLα) in a Ca2+-dependent man-
ner (Bisogno et al., 2003; Gao et al., 2010; Tanimura et al.,
2010). DAGLα, essentially targeted to postsynaptic spines, enables

efficient 2-AG production for a swift modulation onto nearby
presynaptic terminals expressing CB1 receptor (Yoshida et al.,
2006). Thus, intracellular Ca2+ elevation-induced DAGLα acti-
vation is essential for the endocannabinoid-mediated synaptic
plasticity (Gao et al., 2010; Tanimura et al., 2010). Monoglyceride
lipase (MAGL) and fatty acid amide hydrolase (FAAH) have
been identified as degrading enzymes of endogenous cannabi-
noids (Di Marzo et al., 1998, 1999; Goparaju et al., 1998,
1999). Breakdown of 2-AG has been mostly attributed to MAGL
(Dinh et al., 2002; Blankman et al., 2007; Chanda et al., 2010;
Schlosburg et al., 2010), whereas FAAH is the main anandamide-
metabolizing enzyme (Cravatt et al., 2001; Lichtman et al., 2002).
However, FAAH and other uncharacterized enzymes (ABHD6
and ABHD12) also showed 2-AG hydrolase activity (Di Marzo
et al., 1998; Goparaju et al., 1998; Blankman et al., 2007). MAGL
and FAAH displayed distinct subcellular compartmentalization
(Gulyás et al., 2004). Thus, MAGL is primarily a presynaptic
enzyme found in axon terminals (Dinh et al., 2002; Gulyás et al.,
2004), whereas FAAH is a postsynaptic enzyme associated with
membranes of cytoplasmic organelles known to store Ca2+ local-
ized in somata and dendrites (Tsou et al., 1998b; Egertová et al.,
2003; Gulyás et al., 2004).

The subcellular localization of molecules involved in 2-AG
production—including DAGLα, mGluRs, Gp/11 protein and
PLCβs—in dendritic spines of glutamatergic excitatory synapses
is highly associated with intracellular Ca2+ stores in a synapse-
specific manner. This has been also demonstrated for the CB1
receptor and the degrading enzyme MAGL in nerve terminals of
inhibitory synapses (Katona et al., 2006; Kawamura et al., 2006;
Katona and Freund, 2008; Uchigashima et al., 2011). Regarding
this issue, calcium-binding proteins (CaBPs) play an impor-
tant role as intracellular Ca2+ buffers and sensors in mediating
Ca2+-dependent events such as synaptic transmission and axonal
transport (Nakamura et al., 1980). Several CaBPs, including cal-
bindin D28k, calretinin, and parvalbumin, have been found in
high concentrations in the brain (Baimbridge et al., 1982; Garcia-
Segura et al., 1984). These CaBPs usually correlate with the
neurotransmitter content and cell morphology, distribution and
function (Baimbridge et al., 1982; Celio, 1990; Gulyás et al., 1991),
being used to classify neurons into specific subpopulations. For
instance, hippocampal non-pyramidal cells containing calretinin
and parvalbumin are usually GABAergic neurons (Kosaka et al.,
1987; Miettinen et al., 1992; Wouterlood et al., 2001). Moreover,
it was demonstrated that parvalbumin-positive CA1 interneurons
are required for spatial working but not for reference memory
(Murray et al., 2011) and calbindin-positive granule cells of den-
tate gyrus contribute to verbal memory impairments in temporal
lobe epilepsy (Karádi et al., 2012). All these cognitive processes are
also mediated by the endocannabinoid system in the hippocam-
pus, making necessary the identification of the cellular networks
involved (Riedel and Davies, 2005; Puighermanal et al., 2012).

Since CaBPs buffer intracellular Ca2+ levels, they can influence
both synthesis/release and CB1 signaling in the hippocampus and,
as a consequence, the synaptic plasticity processes. This hypothe-
sis supports the need for the identification of the neural substrates
that express the CaBPs and the 2-AG/CB1 signaling system. In the
present study, we described and systematically characterized the
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neuronal structures that co-express the 2-AG/CB1 signaling sys-
tem (CB1 receptor, DAGLα, MAGL, and FAAH) with the CaBPs
calbindin D28k, calretinin, and parvalbumin in the rat hippocam-
pus. For this purpose, we used double-label immunofluorescence
and confocal laser (spectral) scanning microscopy.

MATERIALS AND METHODS
ANIMALS
Adult male Wistar rats (n = 5), weighing approximately 250 g
and 10–12 weeks old (Charles River Laboratories, Barcelona,
Spain), were used in this study. The animals were kept in stan-
dard conditions (Servicio de Estabulario, Facultad de Medicina,
Universidad de Málaga) at 20 ± 2◦C room temperature, 40 ±
5% relative humidity and a photoperiod of 12L:12D; the rats
were given free access to food and water. All experimental ani-
mal procedures were performed in compliance with the European
Communities directive 86/609/ECC and Spanish legislation (BOE
252/34367-91, 2005) regulating animal research.

TISSUE PROCESSING
The animals were anesthetized with sodium pentobarbi-
tal (50 mg/kg, i.p.) and transcardially perfused with 0.1 M
phosphate-buffered saline (PBS; pH 7.3), followed by 4%
formaldehyde in PBS. The brains were dissected and incubated
in the same fixative solution overnight at 4◦C and then cry-
oprotected in 0.1 M phosphate-buffered saline pH 7.3 (PBS)
containing 30% sucrose and 0.01% sodium azide (NaN3) for 48 h.
Then, the brains were cut into 30-μm-thick transverse sections
using a sliding microtome. The sections were stored at 4◦C in PBS
with 0.002% (w/v) NaN3 until immunohistochemistry analysis.

IMMUNOHISTOCHEMISTRY
For the analysis of the immunohistochemical expression of CB1,
DAGLα, MAGL, FAAH, and the Ca2+-binding proteins (cal-
bindin, calretinin, and parvalbumin) in the hippocampus, free-
floating 30-μm-thick coronal sections from −3.00 to −4.80 mm
Bregma levels (Paxinos and Watson, 2007). The sections were
first washed several times with 0.1 M PBS (pH 7.3) to remove
the NaN3 and were incubated in H2O containing 50 mM sodium
citrate (pH 6) for 30 min at 80◦C, followed by several washes in
0.1 M PBS (pH 7.3). Then, the sections were incubated in a solu-
tion of 3% H2O2 and 10% methanol in 0.1 M PBS for 20 min
at room temperature in the dark to inactivate the endogenous
peroxidase, followed by washes in PBS. The sections were then
blocked with 10% donkey or goat serum in PBS containing 0.1%
NaN3 and 0.2% Triton X-100 and incubated with a primary anti-
body overnight at room temperature (for details regarding the
antibodies used, see Tables 1, 2).

The following day, the sections were washed in PBS and incu-
bated in a biotinylated secondary antibody diluted 1:500 for 1 h
(Table 2). The sections were washed again in PBS, and incu-
bated with a 1:2000 dilution of ExtrAvidin peroxidase (Sigma,
St. Louis, MO) for 1 h. After several washes, immunolabeling was
revealed by exposure to 0.05% diaminobenzidine (DAB; Sigma),
0.05% nickel ammonium sulfate and 0.03% H2O2 in PBS. After
several washes in PBS, the sections were mounted on slides
treated with poly-l-lysine solution (Sigma), air-dried, dehydrated

in ethanol, cleared with xylene, and coverslipped with Eukitt
mounting medium (Kindler GmBH & Co, Freiburg, Germany).
Digital high-resolution photomicrographs of the rat brain were
taken under the same conditions of light and brightness/contrast
by an Olympus BX41 microscope equipped with an Olympus
DP70 digital camera (Olympus Europa GmbH, Hamburg,
Germany).

DOUBLE IMMUNOFLUORESCENCE
Hippocampal sections were pretreated as described above and
incubated overnight at room temperature with a cocktail of pri-
mary antibodies (Table 1). After washing in 0.1 M PBS (pH 7.3),
the sections were incubated at room temperature with a cocktail
of fluorescent secondary antibodies (Table 2) for 2 h. For epifluo-
rescence analysis, digital high-resolution microphotographs were
taken with an Olympus BX41 fluorescence microscope equipped
with an Olympus DP70 digital camera (Olympus). For a more
detailed analysis (Rivera et al., 2014), the sections that were dou-
bly labeled were visualized with a confocal laser (spectral) scan-
ning microscope (Leica TCS NT; Leica Microsystems) equipped
with a 561 nm DPM laser (argon 30%) and a 63× objective
(HCX PL APO CS 63.0 × 1.40 OIL UV). The numerical aper-
ture was 1.40. The emission filter settings were 504–545 nm for
PMT2 (green) and 570–630 nm for PMT3 (red). The images were
acquired in sequential mode with a frame average of 3. Depending
of the level of zoom used in each image, the XY voxel size ranged
from 240.5 nm (zoom = 1) to 30.2 nm. The pinhole (airy) was
1. The section thickness (Z) was 772 nm and Z-stepping incre-
ment was 130 nm. Thus, we could discriminate the labeling of
those structures whose size was larger than the image resolution.
Settings of light and brightness/contrast were adjusted by using
the Leica LAS AF Lite imaging software.

ANTIBODY SPECIFIC AND CONTROLS
We performed Western blot analyses to demonstrate that the
CB1, DAGLα, MAGL, FAAH, calbindin, calretinin, and parval-
bumin antibodies recognized the corresponding antigen in the
rat hippocampus. To perform Western blot analysis, we used
fresh tissue from Wistar male rats. The animals were sacrificed
using 2,2,2-tribromoethanol (Fluka, Steinheim, Germany) and
the hippocampi were immediately isolated, snap frozen in liquid
nitrogen and stored at −80◦C until use. Protein extracts of rat
hippocampi were prepared in RIPA buffer (50 mM Tris ClH pH
7.4, 150 mM NaCl, 0.25% NaDOC, 1% triton X100, 1 mM EDTA,
10% aprotinin) using a homogenizer. After 2 h of incubation in
agitation at 4◦C, the homogenate was centrifuged at 20800 g for
20 min at 4◦C, and the supernatant was collected.

For immunoblot analysis, equivalent amounts of protein
extracts (75 μg) were separated by a 4–20% precast poly-
acrylamide gel (Criterion™ TGX™ Precast Gel, Bio-Rad, cat.
no. 567–1093), electroblotted onto nitrocellulose membranes
and stained with Ponceau red to ensure equal loading. The
blots were first incubated with a blocking buffer containing
2% bovine serum albumin (Merck) in PBS and 0.1% Tween
20 at room temperature for 1 h. Then, each blotted mem-
brane lane was incubated separately with the specific CB1

(1:200), DAGLα (1:100), MAGL (1:200), FAAH (1:200), calbindin

Frontiers in Neuroanatomy www.frontiersin.org June 2014 | Volume 8 | Article 56 | 3

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Rivera et al. CB1 and Ca2+-binding proteins in the hippocampus

Table 1 | Primary antibodies used.

Antigen Immunogen Manufacturing details Dilution References

CB1 Mouse CB1, C-terminal 31 aa (NM007726) Frontier Institute
Polyclonal antibody
Developed in rabbit
Code No.: CB1-Rb-Af380-1
Lot. No.: Not provided

1:200 Uchigashima et al.,
2007

DAGLα A 16-aa peptide from the C-terminal region
(CGASPTKQDDLVISAR)

Developed by our group
Polyclonal antibody
Developed in rabbit

1:250 Yoshida et al., 2006;
Suárez et al., 2011

MAGL Mouse MGL, 1-35 aa (NM_011844) Frontier Institute
Polyclonal antibody
Developed in rabbit
Code No.: MGL-Rb-Af200
Lot. No.: Not provided

1:200 Uchigashima et al.,
2011

FAAH Synthetic peptide from rat FAAH, aa
561-579 (CLRFMREVEQLMTPQKQPS)

Cayman
Polyclonal antibody
Developed in rabbit
Code No.: 101600
Lot. No.: 157878

1:200 Tsou et al., 1998b;
Gulyás et al., 2004

Calbindin Calbindin D28k purified from chicken gut:
MTAETHLQGVEISAAQFFEIWHHYDSDG

NGYMDGKELQNFIQELQQARKKAGLDL

TPEMKAFVDQYGKATDGKIGIVELAQVL

PTEENFLLFFRCQQLKSSEDFMQTWRKY

DSDHSGFIDSEELKSFLKDLLQKANKQIE

DSKLTEYTEIMLRMFDANNDGKLELTEL

ARLLPVQENFLIKFQGVKMCAKEFNKAF

EMYDQDGNGYIDENELDALLKDLCEKN

KKELDINNLATYKKSIMALSDGGKLYRA

ELALILCAEEN

Swant
Monoclonal IgG antibody
Produced in mouse myeloma cells
Code No.: 300
Lot. No.: 07 (F)

1:500 Celio, 1990;
Rüttimann et al., 2004

Calretinin Recombinant human calretinin 22k
(epitope within the first 4 EF-hands
domains):
MAGPQQQPPYLHLAELTASQFLEIWKHF

DADGNGYIEGKELENFFQELEKARKGSG

MMSKSDNFGEKMKEFMQKYDKNSDGK

IEMAELAQILPTEENFLLCFRQHVGSSAE

FMEAWRKYDTDRSGYIEANELKGFLSDL

LKKANRPYDEPKLQEYTQTILRMFDLNG

DGKLGLSEMSRLLPVQENFLLKFQGMKL

TSEEFNAIFTFYDKDRSGYIDEHELDALL

KDLYEKNKKEINIQQLTNYRKSVMSLAE

AGKLYRKDLEIVLCSEPPM

Swant
Monoclonal antibody
Developed in mouse
Code No.: 6B3
Lot. No.: 010399

1:500 Zimmermann and
Schwaller, 2002;
Rüttimann et al., 2004

Parvalbumin Parvalbumin purified from carp muscles:
MAFAGILNDADITAALQGCQAADSFDY

KSFFAKVGLSAKTPDDIKKAFAVIDQDK

SGFIEEDELKLFLQNFSAGARALTDAETK

AFLKAGDSDGDGKIGVDEFAALVKA

Swant
Monoclonal IgG antibody
Produced in mouse myeloma cells
Code No. 235
Lot. No.: 10-11 (F)

1:500 Celio, 1986; Bouilleret
et al., 2000

D28k (1:500), calretinin (1:1000), and parvalbumin (1:1000)
antibodies. Peroxidase-conjugated goat anti-rabbit, goat anti-
mouse, and goat anti-guinea pig antibodies (dilution 1:2000;
Promega, Madison, WI, USA) were added for 1 h at room

temperature. The specific protein bands were visualized using
the enhanced chemiluminiscence technique (ECL, Amersham)
and Auto-Biochemi Imaging System (LTF Labortechnik GmbH,
Wasserburg/Bodensee, Gemany). Western blot analysis showed
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Table 2 | Secondary antibodies used.

Antigen Produced in Conjugate to Manufacturing

details

Dilution

Anti-rabbit
IgG

Donkey Biotin GE Healthcare
Code No.: RPN1004
Lot. No.: 5356499

1:500

Anti-mouse
IgG

Goat Biotin SIGMA
Code No.: B 7264
Lot. No.: 125K6063

1:500

Anti-rabbit
IgG

Donkey Cy3 bis-NHS
ester

Jackson
ImmunoResearch
Code No.:
711-166-152
Lot. No.: 101675

1:300

Anti-mouse
IgG

Goat Fluorescein
Isothiocyanate
(FITC)

SIGMA
Code No.: F2012
Lot. No.: 107K6058

1:300

that each primary antibody detected a protein of the expected
molecular size (Figure 1B).

Additional control experiments were carried out in previ-
ous studies for antibody specificity. Hippocampus of wild-type
mouse was compared to CB1 (Uchigashima et al., 2007), DAGLα

(Yoshida et al., 2006; Suárez et al., 2011), MAGL (Uchigashima
et al., 2011), and FAAH (Gulyás et al., 2004) knock-out mice.
These studies showed that immunostaining was almost com-
pletely absent in the respective knock-out mouse hippocampus
when compared to wild-type mouse hippocampus (see references
in Table 1 for further information).

Calbindin D28k, calretinin and parvalbumin antibodies were
also evaluated for specificity and potency (see references in
Table 1) using several methods: (a) by indirect immunofluo-
rescent or immunoperoxidase labeling, as well as biotin-avidin
labeling, of 4% paraformaldehyde fixed brains; (b) by immunoen-
zymatic labeling of immunoblots; (c) by radioimmunoassay; or
(d) by immunohistochemistry on brain tissue of calbindin knock-
out mice, calretinin knock-out mice, and parvalbumin knock-out
mice, respectively.

RESULTS
In the present study, we first analyzed the distribution and,
secondly, the co-expression of either the CB1 receptor or the
enzymes DAGLα, MAGL, and FAAH with the CaBPs calbindin,
calretinin, and parvalbumin in the rat hippocampus. The inten-
sity of the immunoreactivity for each antibody used was sim-
ilar in all brains analyzed for the present study. Previously, we
performed Western blot analysis to ensure that CB1 receptor,
DAGLα, MAGL, FAAH, calbindin, calretinin, and parvalbumin
antibodies recognize the corresponding antigens in the rat hip-
pocampus (Figure 1B). Thus, Western blot analyses of protein
extracts from rat hippocampus revealed CB1 immunostaining as
a prominent band at approximately 52 kDa. Immunoblots for
DAGLα, MAGL, and FAAH also revealed a single band with
molecular masses of 120, 35, and 63 kDa, respectively. Analysis

of calbindin D28k, calretinin, and parvalbumin immunoblottings
confirmed expected bands of 28, 29, and 10 kDa, respectively
(Figure 1B).

DISTRIBUTION OF CB1, DAGLα, MAGL, FAAH IN THE ADULT RAT
HIPPOCAMPUS
To address the distribution of the immunohistochemical expres-
sion of CB1, DAGLα, MAGL, FAAH in the rat hippocampus,
coronal sections of the rat hippocampus were subjected to
immunohistochemical analysis (Figure 2). The distribution of the
immunohistochemical expression of the CaBPs calbindin, cal-
retinin, and parvalbumin in the rat hippocampus is shown in
the Figure S1. The results of this analysis are described in the
main and supplementary texts and summarized in a rating scale
included in Figure 2 and Figure S1. Gray-scale values measured
in the dentate gyrus, CA3 and CA1 (Figure 2M and Figure S1J)
are represented on an arbitrary scale of three labeling intensities,
from “f/s” meaning “low” fiber and/or somata (above the back-
ground density) to “fff/sss” meaning “high” fiber and/or somata
(according to the highest signal density in the specimen).

DENTATE GYRUS
Intense CB1 immunoreactivity in the dentate gyrus was asso-
ciated with a dense network of fibers in the molecular layer,
being more prominent in its inner part adjacent to the gran-
ular cell layer (Figure 2A). Most of these CB1 immunoreactive
(CB+

1 ) fibers in the inner part of the molecular layer may cor-
respond to the hilar mossy cell fiber terminals, whereas those
fibers in the outer parts may represent projections from the layer
II of entorhinal cortex. We also observed numerous fibers in
the polymorphic cell layer and in the granular cell layer. Fine
CB+

1 fibers showed numerous varicosities and terminals that sur-
rounded and defined cell bodies, being evident in the granular
cell layer (inset in Figure 2A). The intense DAGLα immunore-
activity in the dentate gyrus was mainly associated with a dense
neuropil that was particularly prominent in the molecular layer
and in the inner portion of the granular cell layer (Figure 2B).
The neuropil may represent the apical and basal dendritic field
of the granular cells. Weak staining was also observed in the
granular and polymorphic cell layers (inset in Figure 2B). The
dentate gyrus was characterized by the lack of MAGL immunore-
activity. Only scattered, weakly stained polymorphic cells can
be observed (Figure 2C, inset). FAAH immunoreactivity was
weakly detected in the somata of the granular cells, but was more
evident in a number somata of polymorphic cells (Figure 2D,
inset).

HIPPOCAMPAL CA FIELDS
A dense network of fibers intensely stained for CB1 characterized
the stratum pyramidale (SP) and two adjacent sublayers into the
strata radiatum (SR) and oriens (SO) from the CA3 to CA1 fields
(Figures 2E,I). So, the sublayer of CB+

1 fibers in the SR of CA3
defined the stratum lucidum (SL) and consisted of projections
from the granular cells of the dentate gyrus that innervated the
proximal part of the apical pyramidal dendrites. The remaining
part of the SR also showed numerous fibers in contrast to the low
number of fibers in the SO. It should be noted a well-defined band
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FIGURE 2 | Immunohistochemical expression of CB1 (A,E,I), DAGLα

(B,F,J), MAGL (C,G,K), FAAH (D,H,L) in the rat dentate gyrus (A–D), CA3

(E–H), and CA1 (I–L). Results are summarized in a rating gray-scale of the
immunoreactivity in somata and fibers of each layer and stratum of the
hippocampus (M). Three labeling intensities are represented from “f/s”
meaning “low” fiber and/or somata (above the background density) to

“fff/sss” meaning “high” fiber and/or somata (according to the highest signal
density in the specimen) or without immunoreactivity (–). Scale bars are
indicated in each image. Abbreviations: alv, alveus; DG, dentate gyrus; gcl,
granular cell layer; ml, molecular layer; pcl, polymorphic cell layer (hilus); SL,
stratum lucidum; SL-M, stratum lacunosum-moleculare; SO, stratum oriens;
SP, stratum pyramidale; SR, stratum radiatum.

of CB+
1 fibers that were observed along the boundary between the

SR and the stratum lacunosum-moleculare (SL-M) (Figure 2I).
Most of these fibers may represent Schaffer collaterals and com-
missural fibers, but possibly also direct axons from the layer
III of the entorhinal cortex. Most CB+

1 fibers contained numer-
ous varicosities and terminals that mainly surrounded unstained
pyramidal cell bodies and dendrites (inset in Figure 2I), but also
defined cell profiles in the SR and SO (inset in Figure 2E). We
could not observe CB+

1 fibers in the alveus. In the hippocampal
CA fields, intense DAGLα+ neuropil characterized the SO, SR,
and SL-M, whereas the SP and the boundary between the SR and

SL-M showed low immunostaining for DAGLα (Figures 2F,J).
Most of the neuropil may represent the dendritic field of the pyra-
midal neurons, being more prominent in the SO, that is, in its
basal dendritic tree. An intense network of MAGL+ fibers (pos-
sibly axon terminals) characterized the hippocampal CA fields,
being more pronounced in the SR and SO from CA3 to CA1
(Figures 2G,K). Interestingly, numerous MAGL-containing peri-
cellular basket terminals surrounded numerous unstained pyra-
midal cell somata, mostly in the CA3 field (inset in Figure 2G).
The SL-M and the alveus showed very weak staining for MAGL
(Figure 2K). FAAH immunoreactivity was intensely detected in
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the somata and proximal dendrites of the pyramidal neurons
from CA3 to CA1 (Figures 2H,L). FAAH+ neurons were also
observed in the SR and SO, as well as small cells in the alveus
(insets in Figure 2L).

CO-LOCALIZATION OF CB1 AND CaBPs IN THE ADULT RAT
HIPPOCAMPUS
To study the co-expression of CB1 and the CaBPs calbindin
D28k, calretinin, and parvalbumin in the hippocampus, coronal
sections were subjected to double-immunolabeling and confo-
cal microscope analysis. Calbindin was highly expressed in most
granular cells of the dentate gyrus, few cells of SP and SR of
CA3 and a high number of cells in the SP and SO of CA1
(Figures 3A–G). Thus, the intense network of CB1 immunoflu-
orescent fibers were closely surrounding the calbindin+ cells
localized in the granular cell layer of the dentate gyrus and the SP
of CA3 and CA1 fields (Figures 3D–G). In the SP of CA1, CB1+
fibers were localized around calbindin+ cell bodies and proxi-
mal axons in a basket-like manner (Figures 3F,G). CB1+ fibers
and terminals were also observed within the intense calbindin+
neuropil of the SL of CA3 (Figure 3E).

Regarding calretinin, we could observe that few CB1+ ter-
minals were closely attached to the surface of calretinin+ cells
localized in the inner border of the granular cell layer of the
dentate gyrus and the SP of CA3 and CA1 (Figures 3H–L).

Interestingly, both CB1 and parvalbumin immunofluores-
cences were localized showing an intercalated meshwork of ter-
minals, mostly around unstained principal cell profiles, in the
granular cell layer of the dentate gyrus and the SP of CA3 and CA1
(Figures 3M–R). Thus, some CB1+ terminals were also attached
to a number of parvalbumin+ cells localized between the gran-
ular and polymorphic cell layers of the dentate gyrus, the SP of
CA3 and the SR of CA1 (Figures 3P–R, insets).

CO-LOCALIZATION OF DAGLα AND CaBPs IN THE ADULT RAT
HIPPOCAMPUS
To study the co-expression of DAGLα and the CaBPs calbindin
D28k, calretinin, and parvalbumin in the hippocampus, coro-
nal sections were also subjected to double-immunolabeling and
confocal microscope analysis. A high number of calbindin+ cells
localized in the granular cell layer of the dentate gyrus and the
SP of CA1 were closely surrounded by DAGLα+ neuropil and
processes (Figures 4A–F, inset). On the other hand, we couldn’t
find DAGLα+ neuropil surrounding calbindin+ cells in the SP of
CA3 (Figure 4E). DAGLα+ processes were also observed within
the intense calbindin+ neuropil of the SL of CA3 (Figure 4E).

We observed DAGLα+ neuropil and processes on the surface
of the somata and proximal axons of calretinin+ cells localized in
the granular cell layer of the dentate gyrus and the SP of CA1/3
fields (Figures 4G–L, insets).

An intercalated network of processes and terminals showing
immunofluorescence for DAGLα and parvalbumin, respectively,
were found surrounding unstained principal cell profiles in the
granular cell layer of the dentate gyrus and the SP of CA1/3 fields
(Figures 4M–R). Some DAGLα+ processes were also observed
close to a number of parvalbumin+ cells localized in the SP of
CA1/3 fields (Figure 4Q, inset).

CO-LOCALIZATION OF MAGL AND CaBPs IN THE ADULT RAT
HIPPOCAMPUS
MAGL+ terminals were observed adjacent to some calbindin+
cells in SP of CA1, as well as unstained cell profiles, in the SP
of CA3 and CA1(Figures 5A–F, inset). We couldn’t find MAGL
labeling surrounding calbindin+ cells in the granular cell layer of
the dentate gyrus (Figure 5D). MAGL+ terminals were also found
on the surface of few calretinin+ cells observed in the SP of CA1/3,
but not in the dentate gyrus (Figures 5G–L). MAGL+ terminals
were found intercalated into the meshwork of parvalbumin+ ter-
minals, mostly close to unstained principal cell profiles, in the SP
of CA3 and CA1 but not in the dentate gyrus (Figures 5M–R). No
expression of MAGL was found in the parvalbumin+ cells.

CO-LOCALIZATION OF FAAH AND CaBPs IN THE ADULT RAT
HIPPOCAMPUS
FAAH/calbindin co-expression was neither detected in the den-
tate gyrus nor in the CA3 (Figures 6A,B,D). All calbindin+
cells detected in the SP of CA1 showed FAAH expression
(Figures 6C,E,F, insets). FAAH labeling was specifically local-
ized in the inner surface of somata and the proximal axons
of the calbindin+ cells (Figure 6F). FAAH and calretinin
(Figures 6G–L) or FAAH and parvalbumin (Figures 6M–R)
co-expressions have not been found in the hippocampus.
However, parvalbumin+ fibers and terminals were observed
around FAAH+ cells in the principal cell layers of CA1/3 fields
(Figures 6Q,R).

ANALYSIS OF ORTHOGONAL SECTIONING
We have also conducted several z-scanning series and represented
orthogonal sectioning views to analyze selected labeling from
different orientations (Figure 7). As a consequence, we can get
a better appraisal of the double immunofluorescence when the
co-localization is doubtful. Thus, we selected several orthogonal
representations of z-series for CB1, FAAH, DAGLα, calretinin,
and parvalbumin showing the three planes of view for one point,
as was indicated by the crossed dashed lines in Figure 7 (YX
plane, YZ plane, and YX plane). We can observe in two planes of
each orthogonal representation that both labeling were adjacent,
suggesting a closely approximation of the two proteins analyzed
and confirming the results previously described for each double
immunofluorescence.

DISCUSSION
The role of the endocannabinoid 2-AG on the retrograde sup-
pression of excitatory/inhibitory synaptic transmission requires
both release from membrane precursors by the Ca2+-dependent
DAGLα and the activation of CB1 receptors that modulate
Ca2+-dependent mechanisms such as the inhibition of neu-
rotransmitter release (D’Amico et al., 2004; Di et al., 2005;
Katona and Freund, 2008). Thus, the identification of spe-
cific 2-AG/CB1signaling system-containing neural substrates that
express selective Ca2+-binding proteins (CaBPs) should be
considered when analyzing the functional significance of the
cannabinoid signaling associated with calcium handling and
hippocampal function. Our study provides evidence for an
anatomical distribution of 2-AG/CB1 signaling system in the
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FIGURE 3 | Co-localization of CB1 and calbindin, calretinin, or

parvalbumin in the rat hippocampus. Low resolution epifluorescence
photomicrographs (A–C,H–J,M–O) and high resolution confocal laser
scanning photomicrographs (D–G,J–L,P–R) showing labeling for
calbindin, calretinin, or parvalbumin (green) and CB1 (red) in dentate

gyrus, CA3, and CA1 areas. Arrows indicate CB1 expression in fiber
terminals surrounding cells expressing calbindin, calretinin, and
parvalbumin. (L) Image showing the overlap of a Z-serie with a
size-depth of 14.1 μm. For abbreviations see Figure 2. Scale bars are
indicated in each image.

hippocampus, by identifying the localization and co-expression
of CB1, DAGLα, MAGL, and FAAH and the CaBPs calbindin, cal-
retinin, and parvalbumin that have not been previously described.
Due to the specific localization of CB1 and MAGL in axon termi-
nals, DAGLα in dendritic spines, FAAH in somata and dendrites,

and CaBPs in certain cell bodies and fibers, we were able to
describe at least four neural networks, which are differentially dis-
tributed in the hippocampus (Figure 8). However, it should be
also noted that there are some exceptions in a regional-dependent
manner: (1) CB1+ terminals, DAGLα+ neuropil, and MAGL+
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FIGURE 4 | Co-localization of DAGLα and calbindin, calretinin, or

parvalbumin in the rat hippocampus. Low resolution epifluorescence
photomicrographs (A–C,G–I,M–O) and high resolution confocal laser
scanning photomicrographs (D–F,J–L,P–R) showing labeling for calbindin,

calretinin, or parvalbumin (green) and DAGLα (red) in dentate gyrus, CA3, and
CA1 areas. Arrows indicate DAGLα process labeling around cells expressing
calbindin, calretinin, and parvalbumin. For abbreviations see Figure 2. Scale
bars are indicated in each image.

terminals were tightly attached to calbindin+ neurons in the prin-
cipal cell layers (Figure 8A). We couldn’t detect DAGLα+ pro-
cesses surrounding calbindin+ cells in CA3 and MAGL+ termi-
nals surrounding calbindin+ cells in the dentate gyrus and CA3.
(2) We observed that hippocampal cells containing calretinin
were closely surrounded by CB+

1 terminals, DAGLα+ neuropil,

and MAGL+ terminals. However, we couldn’t find DAGLα+
processes and MAGL+ terminals surrounding calretinin+ cells
in the dentate gyrus (Figure 8B). (3) We also found that hip-
pocampal cells containing parvalbumin were clearly surrounded
by terminals and processes expressing CB1 and DAGLα, but
not MAGL. We couldn’t find DAGLα+ processes surrounding
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FIGURE 5 | Co-localization of MAGL and calbindin, calretinin, or

parvalbumin in the rat hippocampus. Low resolution epifluorescence
photomicrographs (A–C,G–I,M–O) and high resolution confocal laser
scanning photomicrographs (D–F,J–L,P–R) showing labeling for calbindin,

calretinin, or parvalbumin (green) and MAGL (red) in dentate gyrus, CA3, and
CA1 areas. Arrows indicate MAGL fiber terminals closely attached to cells
expressing calbindin and calretinin, but not parvalbumin. For abbreviations
see Figure 2. Scale bars are indicated in each image.

parvalbumin+ cells in the dentate gyrus (Figure 8C). (4) A num-
ber of hippocampal pyramidal cells co-expressed both calbindin
and FAAH in CA1, which could be innervated by parvalbumin+
terminals (Figure 8D). We didn’t observe FAAH expression in
calbindin+ cells found in dentate gyrus and CA3. Regarding these
results, we observed that terminals and processes that expressed

parvalbumin and CB1, DAGLα, or MAGL were tightly attached
in an intercalated manner around cells of the principal cell layers
(Figure 8E). Finally, Figure 8F shows a scheme that summarizes
the putative anatomical organization of the structures that express
2-AG/CB1 signaling system-related molecules associated with the
CaBPs.
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FIGURE 6 | Co-localization of FAAH and calbindin, calretinin or

parvalbumin in the rat hippocampus. Low resolution epifluorescence
photomicrographs (A–C,G–I,M–O) and high resolution confocal laser
scanning photomicrographs (D–F,J–L,P–R) showing labeling for calbindin,

calretinin, or parvalbumin (green) and MAGL (red) in dentate gyrus, CA3, and
CA1 areas. Asterisks indicate FAAH expression in calbindin+ pyramidal cells
localized specifically in CA1. For abbreviations see Figure 2. Scale bars are
indicated in each image.

Our results confirm data from previous studies on the pres-
ence and localization of CB1, DAGLα, MAGL, and FAAH (Tsou
et al., 1998a,b; Egertová and Elphick, 2000; Egertová et al., 2003;
Gulyás et al., 2004; Yoshida et al., 2006; Suárez et al., 2009),
as well as the CaBPs calbindin, calretinin, and parvalbumin, in
the rodent hippocampus (Baimbridge and Miller, 1982; Kosaka

et al., 1987; Gulyás et al., 1992; Miettinen et al., 1992). Thus, it
has been well-documented that CB1 and MAGL labeling con-
stituted axon terminals, DAGLα labeling represented dendritic
spines and FAAH was present in somata and dendrites of princi-
pal cells (Egertová and Elphick, 2000; Gulyás et al., 2004; Yoshida
et al., 2006). Calbindin immunoreactivity was described in the
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FIGURE 7 | Orthogonal sectioning views. Selected z-scanning series of
images showing double immunofluorescence (red and green) of CB1,
FAAH, DAGLα, calretinin, and parvalbumin. To analyze the labeling from

different orientations, it is represented the three planes of view for one
point, as was indicated by the crossed dashed lines (YX plane, YZ plane,
and YX plane).

granular cells of the dentate gyrus, pyramidal cells of CA1 and
scattered interneurons of the hippocampal SR (Baimbridge and
Miller, 1982). Calretinin immunoreactivity was almost exclusively
described in the GABAergic non-pyramidal spiny-free cells in
all layers of the dentate gyrus and the CA1/3 fields, being most
abundant in the polymorphic cell layer of the dentate gyrus
(hilus). Interestingly, it has been also described the existence
of GABA-negative calretinin-containing spiny neurons that were
specifically localized in the polymorphic cell layer of the dentate
gyrus and the SL of CA3 (Gulyás et al., 1992; Miettinen et al.,
1992). Parvalbumin+ cells were specifically localized in the granu-
lar and polymorphic cell layers of the dentate gyrus and the strata
oriens and pyramidale in CA1/3 fields of the rat hippocampus
(Kosaka et al., 1987). They have been considered a subpopula-
tion of GABAergic interneurons, including basket and axo-axonic
cell types, which innervate the somata and proximal axons of
pyramidal cells, respectively (Soriano et al., 1990).

In the present study, we observed that calbindin+, calretinin+,
and parvalbumin+ cells were tightly attached to CB+

1 fiber
terminals. Most CB+

1 terminals surrounding the somata and

proximal dendrites of pyramidal neurons were cholecystokinin+
(CCK) GABAergic interneurons (basket cells) and, to a lower
extent, calbindin D-28k+ GABAergic interneurons (Katona et al.,
1999; Marsicano and Lutz, 1999; Tsou et al., 1999). However,
parvalbumin+ GABAergic interneuron terminals localized in
pyramidal cell layers were negative for CB1 (Katona et al., 1999;
Marsicano and Lutz, 1999). Regarding our results, we can suggest
that most fiber terminals containing CB1/CCK probably inner-
vate both calbindin+ pyramidal neurons (probably including
calbindin+/FAAH+ pyramidal neurons in CA1) and calretinin+
and parvalbumin+ interneurons localized in the principal layers
of the hippocampus (Gulyás et al., 1991; Marsicano and Lutz,
1999). Moreover, parvalbumin+ fiber terminals, which represent
another GABAergic interneuron type, could specifically inner-
vate FAAH+/calbindin− pyramidal neurons in CA3. Regarding
the functional implication, it has been demonstrated that (1)
parvalbumin+ CA1 interneurons are required for spatial working
memory but not for spatial reference (Murray et al., 2011); and
(2) the specific CB1 activation in the hippocampus impairs work-
ing tasks (Wise et al., 2009). So, it could be conceivable that the
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FIGURE 8 | Schematic representation that hypothesizes the neuronal

substrates containing 2-AG/CB1 signaling system and the CaBPs

calbindin, calretinin, and parvalbumin in the different hippocampal

regions. (A) Calbindin+ neurons in principal cell layers were closely
surrounded by CB+

1 , DAGLα+, and MAGL+ terminals and processes. (B)

Hippocampal cells containing calretinin were closely surrounded by CB+
1 ,

DAGLα+, and MAGL+ terminals and processes. (C) Hippocampal cells
containing parvalbumin were closely surrounded by processes expressing

CB1 and DAGLα, but not MAGL. (D) A number of hippocampal pyramidal
cells co-expressed both calbindin and FAAH in CA1, which could be
surrounded by parvalbumin+ terminals. (E) Fibers and puncta expressing
parvalbumin and CB1, DAGLα, or MAGL were arranged in an intercalated
manner around cells of the principal cell layers. (F) A Scheme that
summarizes the putative anatomical organization of the neuronal
substrates that express 2-AG/CB1 signaling system-related molecules
associated with the CaBPs.

innervations of CB1+ fibers on parvalbumin+ interneurons and
the lack of neurons with CB1/parvalbumin co-expression should
be relevant in the functioning of the spatial memory.

It was described that DAGLα is accumulated in postsynaptic
pyramidal spines, which are closely attached to CB1 inhibitory
terminals (Yoshida et al., 2006). We observed that terminals
and processes expressing parvalbumin and CB1, DAGLα, or
MAGL were arranged in an intercalated manner around cells
of the principal cell layers. Our results agree with the proxim-
ity between DAGLα+ processes and CB1+ terminals, but also
suggested that DAGLα+ processes could also be tightly attached
to MAGL and parvalbumin terminals. Thus, we can speculate
that DAGLα+ processes could be associated to at least two types

of GABAergic interneurons, CB1+/CCK+ inhibitory interneu-
rons and parvalbumin+ inhibitory interneurons. It is reasonable
to suggest that the tiny neuropil labeling for DAGLα observed
in the non-principal cell layers can represent dendritic spines
of granular and pyramidal cells. However, the localization of
DAGLα+ neuropil closely circling calbindin+, calretinin+, and
parvalbumin+ cells in the principal cell layers may suggest a
different origin that must be investigated in future studies.

We observed that calbindin+ pyramidal cells expressed FAAH
specifically in the CA1 field. It is possible that these cells can be
specifically innervated by CB1+/CCK+ terminals. Since calcium
influx is a requirement for the synthesis of endocannabinoids
(Tsou et al., 1998b; Bisogno et al., 2003; Nyilas et al., 2008;
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Gao et al., 2010; Tanimura et al., 2010) and FAAH is associ-
ated with the membrane of cytoplasmic organelles known to
store Ca2+ (Gulyás et al., 2004), the specific co-expression of
the NAE-hydrolyzing enzyme FAAH and the calcium-binding
protein calbindin in CA1 pyramidal cells also suggests the pos-
sibility of a functional relationship between the clearance of
endocannabinoids and the buffering of intracellular calcium in
the postsynaptic structures of these neurons.

In conclusion, our data showed that the identification of
specific 2-AG/CB1 signaling system-containing neural substrates
that expressed the CaBPs calbindin, calretinin, and parvalbumin
provide a neuroanatomical framework that shed light to the iden-
tification of the cellular networks that can be involved in the
functioning of the hippocampal endocannabinoid system.
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