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Despite decades of research, the role of calcium stores in dendritic spines structure,
function and plasticity is still debated. The reasons for this may have to do with the
multitude of overlapping calcium handling machineries in the neuron, including stores,
voltage and ligand gated channels, pumps and transporters. Also, different cells in the
brain are endowed with calcium stores that are activated by different receptor types,
and their differential compartmentalization in dendrites, spines and presynaptic terminals
complicates their analysis. In the present review we address several key issues, including
the role of calcium stores in synaptic plasticity, their role during development, in stress and
in neurodegenerative diseases. Apparently, there is increasing evidence for a crucial role
of calcium stores, especially of the ryanodine species, in synaptic plasticity and neuronal
survival.
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INTRODUCTION
Dendritic spines are the locus of most excitatory synapses in the
forebrain, and are subject to extensive modifications in the pro-
cess of growth, maturation and aging (Sala and Segal, 2014). The
main route for modifying the structure and functions of dendritic
spines is through influx of calcium from the extra synaptic space
into the dendritic spine, where an excess calcium concentration
triggers cascades of molecular events leading to these changes.
While the concentration of free intracellular calcium concentra-
tion [Ca2+]i in neurons is very low (in the range of 10–100 nM),
about four order of magnitude below the ambient extracellular
[Ca2+], some intracellular organelles contain fairly high [Ca2+]i,
similar to that of [Ca2+]o, and are considered to be “calcium
stores”. Under certain conditions, the nucleus can contain high
concentrations of calcium (Korkotian and Segal, 1996). A more
ubiquitous organelle is the mitochondrion, where [Ca2+] can
reach 100 µM by pumping it in using a specialized uniporter
(Rizzuto et al., 2012). Mitochondrial calcium plays an important
role in energy metabolism and cell survival, but will not be dealt
with herein. The other organelle containing a high [Ca2+]i which
is considered to be a “calcium store” is the endoplasmic reticulum
(ER), which is ubiquitous in dendrites, and is assumed to extend
into spines. The first suggestion for a possible calcium store in
dendritic spines, and more specifically in the spine apparatus (SA)
is that of Fifková et al. (1983) who conducted one of the earli-
est electron microscopic (EM) studies to find apparent calcium
deposits in the dendritic spines, in close association with the SA.
They suggested that the SA is a calcium sequestering organelle,
which regulates intraspinal calcium concentration during synap-
tic activity. A later study using three-dimensional reconstruction
of dendritic spines (Spacek and Harris, 1997) revealed a contin-
uum of the smooth ER into the SA, where it forms the typical
lamellar structure, which may occasionally reach the postsynaptic
density (PSD) at the synapse. Thus, there is a putative structure

within the dendritic spine, which may serve a role as a calcium
store. The identity and putative functions of this store in dendritic
spines is currently subject to extensive analysis.

THE IP3 RECEPTOR
The ER calcium stores are activated by two types of receptors, the
inositol 1,4,5 trisphosphate receptor (IP3R), and the ryanodine
receptor (RyR). The IP3R is of three isoforms, 1–3, and the
predominant neuronal one is the IP3R1, whereas the other two
are found primarily in non neuronal tissue (Fujino et al., 1995).
The RyR, which is activated by low concentrations of ryanodine
also has three isoform, RyR1–3, which are found primarily in
muscle cells, and are responsible for contraction, but are also
found throughout the brain (Galeotti et al., 2008; Kushnir et al.,
2010). Both IP3R1 and RyR are distributed across the entire
nervous system, with differential distribution in different neuron
type and neuronal compartment. EM analysis of the hippocam-
pus indicated that IP3R are present at high concentrations in
dendritic shafts and cell bodies, whereas RyR are present pri-
marily in dendritic spines and axons (Sharp et al., 1993). In
contrast, GABAergic neurons of the cerebellum contain high
concentrations of IP3R, also in dendritic spines. Consequently,
IP3Rs were studied extensively in cerebellar purkinje cells (Goto
and Mikoshiba, 2011). IP3 stores are important for maintenance
of dendritic spine morphology of purkinje cells in the cerebellum
(Sugawara et al., 2013). A slow [Ca2+]i surge, resulting from
activation of the IP3-receptors has been described in dendritic
spines of cerebellar purkinje cells which may have some functional
significance in these dendritic spines (Rose and Konnerth, 2001).

Even though the IP3 receptor is not localized in den-
dritic spines of hippocampal neurons, its involvement in plas-
tic processes in this structure is well documented. IP3Rs are
assumed to mediate the action of acetylcholine (ACh) and other
neuromodulators, to cause release of calcium from stores and
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a subsequent change in AMPA and NMDA receptor functions
(Raymond and Redman, 2006; Fernández de Sevilla et al., 2008;
Fernández de Sevilla and Buño, 2010). IP3Rs probably medi-
ate the effects of brain derived neurotrophic factor (BDNF) on
neuronal plasticity in cultured cortical neurons (Nakata and
Nakamura, 2007). One possible mode of involvement of ER in cal-
cium release from IP3 stores has been proposed recently (Holbro
et al., 2009); synaptic activation of glutamate receptors could
evoke a delayed calcium surge in large spines that was blocked
by metabotropic glutamate receptor (mGluR) antagonists and
heparin (an antagonist of calcium release from IP3 stores). The
role of these delayed calcium surges in synaptic plasticity is not
entirely clear. A more direct role of IP3Rs in synaptic functions
is indicated by Sala et al. (2005), suggesting that activation of
mGluR which are located in dendritic spines, recruits IP3Rs
to release calcium from stores, so as to activate calcium-gated
K currents, which will modulate the efficacy of the transfer of
synaptic currents from the synapse on the spine head to the
dendritic shaft.

THE RYANODINE RECEPTOR
The more controversial store is the one associated with the
brain RyR (Verkhratsky, 2005; Zalk et al., 2007). There are three
isoforms of ryanodine receptors (RyR1–3) that are differentially
localized in dendrites and spines of central neurons. Several
RyR gene knockdown express specific behavioral phenotypes
including an antidepressant effect (Galeotti et al., 2008; Kushnir
et al., 2010). Its main attribute is that it is activated by calcium
influx into the cell, such that the influx of calcium ions through
the plasma membrane is amplified by release of calcium from
RyR-associated calcium stores. Caffeine, and low concentration
of ryanodine (0.5–1 µM) are agonists for this receptor, and
high concentration of ryanodine (100 µM) or cyclopiazonic acid
(CPA) are antagonists of the RyR. Initial studies (Mainen et al.,
1999; Kovalchuk et al., 2000) were unable to detect an effect
of CPA on subthreshold synaptically evoked rise of [Ca2+]i in
CA1 neurons of the hippocampus, a response that was shown to
be primarily mediated by activation of the NMDA receptor. In
contrast, Emptage et al. (1999) demonstrated that release from
stores is responsible for the rise of [Ca2+]i that is seen following
synaptic activation of CA1 neurons of cultured hippocampal slices
in that this rise is completely blocked by CPA or ryanodine, an
antagonist of the RyR. Interestingly, they did confirm that block-
ade of calcium-induced release of calcium from stores prolongs
the decay of the calcium rise following back propagating action
potential, as seen by Mainen et al. (1999) and Sabatini et al.
(2002). All three groups found that the size of the calcium tran-
sient associated with an action potential is not affected by CPA.
The reasons for the difference in the assumed store involvement
in the synaptic calcium rise between the Sabatini/Mainen and
the Emptage groups is not entirely clear, and it may have to do
with the type of preparation, acute slices vs. cultured slice or the
intracellular concentration and affinity of calcium sensor used by
the three groups (Fluo-4, low concentration, high affinity dye,
vs. high concentration, low affinity Oregon Green dye, in the
Sabatini/Mainen and Emptage groups, respectively), as well as the
sensitivity of the method of recording/imaging.

The issue remained controversial when Brünig et al. (2004)
reported that they could not detect any effect of caffeine on
spine motility, unlike the effects of NMDA or AMPA receptor
activation. Furthermore, Harvey and Svoboda (2007) could not
confirm an involvement of RyR in tetanic stimulation-induced
spine head expansion, although Harvey and Collingridge (1992)
reported that thapsigargin blocks LTP in hippocampal slices.
These observations contrast with the effects of caffeine on [Ca2+]i
and spine morphology reported before (Korkotian and Segal,
1999), and the description of the presence of calcium stores in
dendritic spines (Harris, 1999). A more recent study supported
the link between stores and spines by proposing that the RyR 2
and 3 isoforms mediate the action of BDNF on dendritic spines
and on cognitive tasks associated with the hippocampus (Adasme
et al., 2011).

A possible molecular and structural substrate associated with
the RyR is the SA, which is enriched with synaptopodin (SP), an
actin binding protein that was originally detected in the kidney,
and later in the brain (Mundel et al., 1997; Deller et al., 2003;
Asanuma et al., 2005). Several studies contributed to the initial
association of SP with synaptic plasticity. In one, SP expression
was found to be enhanced following tetanic stimulation, an effect
that is assumed to underlie a transition from short to long-term
potentiation (Yamazaki et al., 2001; Fukazawa et al., 2003). It
was also demonstrated recently that rats exposed to an acute
swim stress expressed a rapid increase in SP-density specifically
in the dorsal hippocampus (Vlachos et al., 2008). Thus, dynamic
changes in SP accompany plasticity-related stimulation, and are
expected to play a role in enhanced memory formation in the
behaving animal. It has been proposed that SP is co-localized
with the RyR in dendritic spines of rat hippocampus (Vlachos
et al., 2009; Segal et al., 2010). Furthermore, a reduction in
SP in cultured hippocampal neurons by transfection with RNAi
construct led to a marked reduction in plasticity of dendritic
spines following several procedures commonly known to generate
spine plasticity (ibid). The association of SP with RyR may resolve
the inconsistencies among reports on the involvement of RyR in
synaptic plasticity, as only about a third of the spines contain the
spine apparatus and SP, while the others may not be affected by
activators of the RyR (Segal et al., 2010).

A more direct indication for a role of RyR in dendritic spine
[Ca2+]i variations has been proposed recently by the use of flash
photolysis of caged calcium inside dendritic spines (Korkotian
and Segal, 2011; Figure 1). A momentary increase in [Ca2+]i in
dendritic spines by photolysis of caged calcium is followed by
an exponential decay back to baseline level. However, in spines
that are endowed with a SP puncta, an additional slow non-
exponential component of elevated [Ca2+]i was seen, and this was
abrogated by RyR antagonists, indicating that a rise in free [Ca2+]i

is followed by a further increase, caused by its release from local
stores.

CALCIUM STORES AND PLASTICITY
The involvement of calcium stores in generation and maintenance
of long term potentiation has been studied extensively over the
past two decades (Meldolesi, 2001; Shimuta et al., 2001; Fitzjohn
and Collingridge, 2002; Bardo et al., 2006; Baker et al., 2013).
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FIGURE 1 | Transient rise of [Ca2+]i following flash photolysis of caged
EGTA in dendritic spines of cultured hippocampal neurons.
DsRed-transfected cells were loaded with a calcium indicator Fluo-4, and
with the caged EGTA, the flash was focused on different dendritic spines in
the field of view, and the transient elevation of [Ca2+]I was recorded using
line scan mode across the spine head and parent dendrite. The culture was
then exposed to thapsigargin, and the same spines were imaged again.
Following the experiment, cultures were fixed and immunostained for SP.
Comparisons were made between SP-containing (right arrowhead) and
SP-lacking spines (left arrowhead). For each sample (n = 9 spines), the
transient rise of [Ca2+]i in both the spine head (blue) and parent dendrite
(green) were plotted, before (continuous line) and after thapsigargin (dotted
line). A secondary “hump” in the transient rise of [Ca2+]i was seen only in
the SP(+) spines but not in the SP(−) ones. This hump was erased in the
presence of thapsigargin (after). Scale in image, 1 µm, ordinate is the
averaged transients (df/f). (modified from Korkotian and Segal, 2011).

Several compounds, known to produce long term enhancement
of synaptic reactivity, have been suggested to act by releas-
ing of calcium from stores (Auerbach and Segal, 1994; Welsby
et al., 2006). Furthermore, direct release of calcium from stores,
using caffeine, produced a calcium store-dependent, NMDA-
independent LTP (Martin and Buno, 2003). These authors sug-
gest that the LTP is mediated presynaptically, to affect release
of glutamate from terminals. Likewise, a brief exposure to caf-
feine, acting via a RyR, primed the conversion of short term
to long term potentiation (Sajikumar et al., 2009). These and
similar studies where tetanus-induced LTP could be blocked by
drugs which interfere with the release of calcium from stores
(Harvey and Collingridge, 1992) demonstrate the importance of
calcium stores in the generation and maintenance of LTP. An
interesting intra-hippocampal differential distribution of RyRs
across the septo-temporal axis has been demonstrated (Grigoryan
et al., 2012), which affects the ability of ryanodine and caffeine

to enhance LTP in CA1 region of the hippocampal slice. This
indicates that the activation of RyR in relation to neuronal plas-
ticity is likely to be region-specific. Furthermore, the involve-
ment of the stores can be exerted through the regulation of
delivery of glutamate receptors to the synaptic site (Korkotian
and Segal, 2006, 2007), or through regulation of one of several
calcium-dependent processes in the dendrite, the spine or the
synapse.

LOADING OF CALCIUM INTO STORES
RyRs are unique in that they are activated by an influx of calcium
to induce release of calcium from the stores. That is, if calcium
ions enter the cell via voltage or ligand gated channels, the RyR
store cause further release of calcium ions, so as to amplify
the action of the influxed ions. However, the influx of calcium
through ion and ligand gated channels is only one of two main
mechanisms that feed calcium into the stores. The other one is
independent of the synapse-related ion channels, and is unique in
that it senses a reduction in calcium concentrations in the store,
to activate influx of calcium directly through the membrane,
irrespective of afferent activity. This process is called store-
operated calcium entry (SOCE) and has been studied extensively
in non-neuronal tissue, with only few studies examining its role in
central neurons. The reduction of [Ca2+]i in the stores is sensed
by stromal interacting protein (STIM), which is localized to the
cytoplasm. Upon demand (i.e., low [Ca2+]i), STIM moves to the
plasma membrane where it binds to Orai, a calcium channel that
is voltage and extracellular ligand-independent. Both STIM and
Orai are found in some dendritic spines (Figure 2). Following
binding to STIM, Orai allows influx of calcium ions into the
cytoplasm, where they are pumped into the ER stores. The
malfunctioning of peripheral STIM/Orai complex has been
associated with severe immunodeficiency syndrome (Feske et al.,
2010). In the brain there are two species of STIM, STIM1, which
has been shown recently to link to mGluRs and play a critical
role in cerebellar neurons (Hartmann et al., 2014), and STIM2
(Sun et al., 2014) which appears to regulate influx of calcium in
forebrain neurons, and be related to Alzheimer’s disease (AD)
(below). STIM and Orai have been identified in several neuronal
compartments (Korkotian et al., 2014), and they are assumed
to play an important role in the formation and maturation of
dendritic spines.

There is a long standing issue concerning the development
of spines; what is formed first, spines which grow in search for
a presynaptic partner, or synapses that are made first on the
dendritic shaft, followed by extension and formation of spines.
If indeed Orai allows influx of calcium that is independent of
synaptic activity, it can be considered to have a pivotal role in
spine formation, and help form spines even in the absence of
a synapse. Consequently, spines are not formed by an extrinsic
factor, e.g., presynaptic activity, but by an intrinsic need to fill up
stores, which allows a local rise of [Ca2+]i, sufficient to activate
actin polymerization and formation of spines, which then hunt
for a presynaptic partner, or collapse, in its absence. In any
case, the presence of Orai in dendritic spines is an additional
evidence for the important role of calcium stores in dendritic
spine formation and plasticity.
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FIGURE 2 | Colocalization of STIM1 and Orai1 (top) and RyR3 and SP
(bottom) in cultured hippocampal neurons. Cells were transfected with
DsRed to image morphology (blue) and subsequently immunostained for
STIM1 (red, top) and Orai1(green), or RyR (red) and SP (green, bottom).
Scale 1 µm for both images. Colocalization of STIM and Orai are obvious in
some but not all spines, such that either both or none were immunostained
in the dendritic spines. Similarly, RyR and SP were colocalized in some but
not all dendritic spines.

CALCIUM STORES AND STRESS
Exposure to stress can cause lasting effects in specific regions in
the brain including the hippocampus. Following stressful experi-
ence, CA1 region of the dorsal hippocampus shows a lower ability
to express LTP, and a larger long term depression (LTD) (Maggio
and Segal, 2007). Surprisingly, CA1 of ventral hippocampus (VH)
expresses larger LTP following the same stress. In previous studies
we ascribed this metaplastic properties of VH to the recruitment
of calcium stores (Grigoryan et al., 2012). In more recent studies,
stress has been shown to cause an increase in beta adrenergic
receptor activation of protein kinase A (PKA), which in turn reg-
ulates release of calcium from stores (Grigoryan and Segal, 2013).

Dysregulation of RyR activation by the enhanced PKA results in
release of calcium from stores, which perhaps can enhance ability
to express LTP, but may also have long term detrimental conse-
quences to cell function and survival (Stutzmann and Mattson,
2011; Liu et al., 2012). While these studies do not address directly
the role of RyR in dendritic spines, there is accumulating evidence
that chronic stress severely reduces dendritic spine density as well
as ability to express LTP, which may be directly related to the
deterioration of mechanisms for regulation of release of calcium
from stores (Andres et al., 2013).

CALCIUM STORES IN NEURODEGENERATIVE DISEASES
Several studies suggest that synapse and dendritic spines dys-
functions are preceding and contributing to the eventual neu-
ronal death and neurodegeneration in AD (Youn et al., 2007; Yu
et al., 2012). Strikingly, recent work by Stutzmann and Mattson
(2011) associates AD neuropathology with an over-expression
of RyRs in dendrites and particularly in spines. Furthermore,
caffeine caused a large facilitation of reactivity to tetanic stim-
ulation in neurons from young 3xTg mouse hippocampus but
not from controls (Grigoryan et al., 2014). This supersensitiv-
ity to activation of the RyR was noticed before the emergence
of neuropathology in these mice, indicating that activation of
RyR stores may lead rather than lag behind the pathology of
AD. These results indicate that the association of RyR with
dendritic spines, and their role in release of calcium from
stores in relation to synaptic plasticity may be more impor-
tant than originally suggested, especially in the development
of AD.

This is also supported by post-mortem tissue sample anal-
ysis from patients with AD that consistently showed promi-
nent synapse and dendritic spine loss in the hippocampus and
throughout the cortex, the principal areas affected by AD-related
pathology (DeKosky and Scheff, 1990; Knafo et al., 2009).

Indeed the number of synapses and spines elimination is often
greater than the expected level for the amount of lost neurons and
better correlates with the cognitive decline, suggesting that the
primary synaptic failure is a prominent pathogenic cause of AD
(Walsh and Selkoe, 2004; Verpelli and Sala, 2012).

The identification of specific genes associated with the patho-
genesis of AD will lead to a better understanding of the molecular
mechanisms underlying synapse and spine alterations. Mutations
in three major genes implicated in beta amyloid (Aβ) metabolism,
amyloid precursor protein (APP) and presenilin1 (PS1) have
been associated to familial AD with an autosomal dominant
form of inheritance and early onset of the disease (Bertram and
Tanzi, 2008; Bertram et al., 2010). These mutations cause a well-
documented increase in production of Aβ oligomers that at the
end are responsible for inducing spine alterations, and reduce
spine density (Shankar et al., 2007).

Mouse models of AD show behavioral deficits in reference
and working memory but also dendritic and synaptic alterations,
similar to what can be described in human patients. For example
the human APP Tg2576 transgene mouse model shows a reduced
spine density in hippocampal neurons from CA1 and dentate
gyrus, even before the development of amyloid plaques, sug-
gesting that soluble pathological Aβ oligomers initiate synapses
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alterations before neurodegeneration (Middei et al., 2008). Simi-
larly, APP/PS1 transgenic mice showed alterations in spine density
and morphology in dendrites in proximity of plaques but also a
significant decrease in the frequency of large spines in neurons of
plaque-free regions (Knafo et al., 2009).

Amyloid peptides have been shown to cause calcium rise, and
neuronal degeneration. Paula-Lima et al. (2011) proposed that
the amyloid oligomers stimulate RyR mediated calcium release,
to induce mitochondrial fragmentation and loss of calcium reg-
ulation, ending in cell death. On the other hand, Zeiger et al.
(2013) suggest that calcium influx through SOCE actually reduces
formation of amyloid beta peptide, the evil molecule in AD.
Thus, whether activation of SOCE is beneficial or detrimental
to cell function in an AD environment remains to be eluci-
dated. A more recent study, using Presenilin-mutant, familial
AD-like mouse model, found that suppression of IP3Rs alle-
viates the AD symptoms. This study links calcium stores to
AD, and proposes novel strategies for the treatment of the
disease.

Many other genes have been identified as high risk factors to
develop AD in the elderly. Among these genes apolipoprotein E
(APOE) is the most important and studied risk factor. ApoE has
three major isoforms, apoE2, E3 and E4 and apoE4 is associated
with high risk of developing the disease, while the other ApoE
seem to be neuroprotective. Transgenic mice for the human
ApoE isoforms showed that indeed ApoE4 transgene has reduced
spine density in the dentate gyrus and in the cortex in an age-
dependent manner, while mice expressing human ApoE2 and
ApoE3 have normal numbers of spines. One study also showed
that in the human brain there is an inverse correlation between
ApoE4 expression and spine density in dentate gyrus neurons
(Dumanis et al., 2009). Interestingly the transgene expression
of ApoE2 in two different mouse models of AD (Tg2576 and
PDAPP mice) can rescue spine density to normal levels (Lanz
et al., 2003). Thus all the mouse models of AD show alter-
ation of spine morphology that correlates well with synaptic and
behavioral dysfunctions. Consequently, measuring spine mor-
phology is a good readout of the progression and severity of the
pathology.

Which are the molecular mechanisms causing spine degenera-
tion in AD? Recent results suggest that some signalling pathways
regulating synaptic plasticity are involved. For example cofilin
and drebrin, the actin-binding proteins with opposite effects on
actin dynamics (see above), are both affected in AD. Cofilin
phosphorylation and activity is up-regulated by Aβ 1–42 peptide
in a concentration-dependent manner thus causing alteration in
actin polymerization (Knobloch and Mansuy, 2008). In strik-
ing contrast, drebrin, the postsynaptic protein that binds and
stabilizes actin in spines, is severely reduced in the brains of
patients with AD and in transgenic animal models of the disease
(Counts et al., 2012). Thus, a major initiating factor is probably
associated with the malfunction of the RyR, causing a change in
basal [Ca2+]i, and consequently changes in calcium associated
processes responsible for the spine cytoskeleton. Current studies
(Shilling et al., 2014; Sun et al., 2014) attempt to ameliorate the
AD-associated morphological deterioration by addressing specif-
ically calcium stores.

CONCLUSIONS
Recent accumulating evidence indicates that calcium stores of
the RyR type have a pivotal role in dendritic spine development,
plasticity and longevity. Disruption of this role of RyR in any stage
of life will retard the functionality of the spine, the parent dendrite
and the neuron of origin, leading to mental deterioration and AD.
Recent attempts to ameliorate AD development focus on the RyR,
and the regulation of [Ca2+]i in the affected neurons.
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