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Camillo Golgi’s “Reazione Nera” led to the discovery of dendritic spines, small appendages
originating from dendritic shafts. With the advent of electron microscopy (EM) they were
identified as sites of synaptic contact. Later it was found that changes in synaptic strength
were associated with changes in the shape of dendritic spines. While live-cell imaging
was advantageous in monitoring the time course of such changes in spine structure, EM is
still the best method for the simultaneous visualization of all cellular components, including
actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise
localization of molecules in relation to synaptic structures. Previous EM studies of spines
and synapses were performed in tissue subjected to aldehyde fixation and dehydration
in ethanol, which is associated with protein denaturation and tissue shrinkage. It has
remained an issue to what extent fine structural details are preserved when subjecting
the tissue to these procedures. In the present review, we report recent studies on the fine
structure of spines and synapses using high-pressure freezing (HPF), which avoids protein
denaturation by aldehydes and results in an excellent preservation of ultrastructural detail.
In these studies, HPF was used to monitor subtle fine-structural changes in spine shape
associated with chemically induced long-term potentiation (cLTP) at identified hippocampal
mossy fiber synapses. Changes in spine shape result from reorganization of the actin
cytoskeleton. We report that cLTP was associated with decreased immunogold labeling
for phosphorylated cofilin (p-cofilin), an actin-depolymerizing protein. Phosphorylation of
cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton.
Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying
the changes in spine shape associated with cLTP. The findings reviewed here establish
HPF as an appropriate method for studying the fine structure and molecular composition
of synapses on dendritic spines.
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INTRODUCTION
Early studies by Ramón y Cajal (1911) and his contemporaries
already indicated that dendritic spines are not artifacts of the sil-
ver impregnation technique introduced by Camillo Golgi (Golgi,
1873). Querton (1898) observed changes in dendritic spines
during hibernation, suggesting that dendritic spines are plas-
tic structural elements that are subject to modification in an
activity-dependent manner. By means of electron microscopy
(EM) Gray (1959) showed that spines are postsynaptic elements,
indicating that changes in spine number reflect changes in the
connectivity pattern of the neuronal network. While studying
network plasticity, many authors reported that afferent dener-
vation affected the number of dendritic spines on postsynaptic
cells. Thus, enucleation or dark rearing was found to result
in a loss of dendritic spines in Golgi-impregnated neurons of
the visual cortex (e.g., Valverde, 1967, 1968; Fifková, 1970).
In contrast, the stimulation of an animal increased the num-
ber of dendritic spines and synapses (see Shapiro and Vukovic,
1970; Frotscher et al., 1975; Greenough et al., 1985). As far as

the complex spines postsynaptic to hippocampal mossy fiber
boutons (MFB) are concerned, we showed some time ago that
removal of the entorhinal cortex during development results
in trans-synaptic malformation of these spines (Frotscher et al.,
1977). Collectively, these findings pointed to an inductive role
of afferent fibers in the formation of their postsynaptic ele-
ments (Hámori, 1973). These observations in fixed tissue were
supported by real-time microscopy studies showing de novo
formation of dendritic spines following long-term potentiation
(LTP) induction (Engert and Bonhoeffer, 1999). Recent studies
further revealed that the structure of individual spines is not
static but subject to change. Thin, long spines were assumed
to be nascent spines, compared to the large mushroom-shaped
spines that were associated with memory traces (Matsuzaki
et al., 2004). Thus, the different spine categories, thin, stubby,
and mushroom-shaped (Peters and Kaiserman-Abramof, 1970),
appeared to represent different functional states. Theoretical
considerations, as well as experimental data, led to the con-
clusion that dendritic spines are small devices that subserve
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chemical compartmentalization by amplifying and isolating
synaptically induced second messengers such as calcium (Koch
et al., 1992).

Changes in spine structure were accompanied by changes in
the actin cytoskeleton and shifts in the equilibrium between
F-actin and G-actin (Okamoto et al., 2004) by virtue of actin-
depolymerizing proteins such as cofilin. The severing activity of
cofilin is terminated by phosphorylation of the protein (Arber
et al., 1998; Yang et al., 1998), and increased spine size in LTP was
found to be associated with increased phosphorylation of cofilin
(Chen et al., 2007; Rex et al., 2009), indicating stabilization of the
spine cytoskeleton.

Several groups have reported on the changes in synaptic ultra-
structure following LTP induction (Desmond and Levy, 1988;
Buchs and Muller, 1996; Toni et al., 1999; Geinisman, 2000;
Harris et al., 2003). Collectively, these studies indicated restruc-
turing of synapses following LTP induction, ranging from synapse
enlargement to the formation of spine-like protrusions.

With the present review article we pursue the following
aims: first, we briefly summarize the literature on the fine
structure of synapses on dendritic spines. Naturally, such a
survey can only highlight some subjectively selected papers
and remains incomplete. Second, we address the issue of
tissue preservation for EM. We summarize recent studies in
which high-pressure freezing (HPF) was used as an alterna-
tive method to conventional aldehyde fixation of neural tissue.
Third, we report on the use of HPF in EM immunogold
labeling studies. Without fixation in aldehyde solution, anti-
genicity to phosphorylated cofilin (p-cofilin) was found to be
much better preserved than after conventional fixation for EM
(Studer et al., 2014). Thus, this review summarizes our knowl-
edge on spine synapses as well summarizing recent attempts to
improve the preservation of their fine structure and molecular
composition.

FINE STRUCTURE OF SYNAPSES ON DENDRITIC SPINES
Palade and Palay (1954) and Palay (1956, 1958) were the first to
describe synapses by using electron microscopic methods. How-
ever, it was Gray (1959) who clearly showed that the heads
of dendritic spines were postsynaptic elements of asymmetric
synapses. He called them “asymmetric” because their postsynaptic
density was thicker than the presynaptic membrane specializa-
tion. He differentiated them from the “symmetric” synapses
often found on cell bodies. Today, we know that the presy-
naptic boutons of asymmetric synapses on spines contain the
excitatory neurotransmitter glutamate, whereas the symmetric
contacts formed on cell bodies are GABAergic inhibitory synapses.
Harris and Weinberg (2012) have recently provided a comprehen-
sive survey of the ultrastructure of synapses in the mammalian
brain.

George Gray also discovered the spine apparatus, an enig-
matic organelle consisting of sacs of endoplasmic reticulum
intervened by electron dense bars (Gray, 1959). A spine appara-
tus is found in many, but not all, spines of forebrain neurons.
It is absent in spines of cerebellar Purkinje cells (Peters et al.,
1991). More recent studies have provided evidence that the spine
apparatus is involved in synaptic plasticity and learning and

memory. Thus, mouse mutants deficient in synaptopodin, a pro-
tein present in renal podocytes and dendritic spines (Mundel
et al., 1997; Deller et al., 2000), do not form this organelle
and are impaired in LTP and spatial learning (Deller et al.,
2003).

Spine counts roughly reveal the number of excitatory synapses
on dendritic spines, but there is no one-to-one relationship. In
addition to the synapse on the spine head, there may be contacts
on the spine neck (Peters and Kaiserman-Abramof, 1970), and
the presynaptic bouton of this second synapse may contain a dif-
ferent neurotransmitter, for instance acetylcholine (Frotscher and
Léránth, 1986).

In addition to their asymmetric membrane specializations and
the presynaptic vesicle-filled bouton, synapses on spines are rec-
ognizable by a widening of the extracellular space at the site of the
contact, i.e., the synaptic cleft. Synaptic contact zones or release
sites may be perforated by a small protrusion of the spine, the spin-
ule (Westrum and Blackstad, 1962; Tarrant and Routtenberg, 1977;
Sorra et al., 1998), assumed to be involved in trans-endocytosis
(Spacek and Harris, 2004). As first described by Steward and Levy
(1982), ribosomes are often found at the base of spines or near
synaptic contacts, suggesting local protein synthesis.

The fine structural characteristics of spine synapses briefly
described here were observed in sections of a thickness of about
50 nm. The heads of large dendritic spines have a diameter of
up to 1 μm and are thus much larger. This implies that conven-
tional thin sections only show a small fraction of the spine, its
synapses and organelles – unless three-dimensional reconstruc-
tions from complete series of thin sections were performed. This
is relevant for conclusions regarding the regular occurrence of
organelles in a spine or the frequency of synaptic contacts, and
one should therefore rather talk of spine profiles when looking
at single sections. Moreover, with the exception of some struc-
turally unique synapses, in single sections we hardly know what
the presynaptic and postsynaptic partners are. We do not know
the functional history of a given spine or spine profile, nor do we
know its age. Finally, we cannot be sure that all structures we see
represent their native state in the living animal, which needs to be
anesthetized and fixed with aldehyde solutions for subsequent EM.
Given all these obstacles, it is remarkable that thorough EM anal-
yses provided reliable data on structural changes at spine synapses
associated with functional synaptic plasticity such as LTP. Intu-
itively, one would assume that synaptic strengthening is not only
associated with a de novo formation of dendritic spines (Engert
and Bonhoeffer, 1999) but also with an increase in the number
of synaptic contacts. Remarkably, most investigators using con-
ventional fixation and embedding procedures found neither an
increase in synapse number (Geinisman, 2000) nor splitting of
spines (Harris et al., 2003), but modification of preexisting con-
tacts. For instance, Desmond and Levy (1988) reported an increase
of synaptic interface surface area in LTP, and Geinisman (2000)
showed an increase in the number of perforated synapses at the
expense of non-perforated synapses. Harris et al. (2003) provided
evidence of the formation of small spine-like protrusions that
encountered presynaptic boutons already synapsing with neigh-
boring spines. Toni et al. (1999) used calcium accumulation to
determine activated synapses and observed an increase in the
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proportion of axon terminals contacting two or more dendritic
spines.

A couple of questions arise at this point: How can we reli-
ably identify potentiated synapses in a volume of tissue? How
can we reliably identify the presynaptic and the postsynaptic
neuron of a given synaptic contact? Can we optimize tissue fix-
ation and dehydration to minimize protein denaturation and
shrinkage?

HIGH-PRESSURE FREEZING AS AN ALTERNATIVE TO
CONVENTIONAL ALDEHYDE FIXATION FOR EM
In conventional EM the tissue is subjected to chemical fixation
using aldehyde solutions and is dehydrated in ascending series of
ethanol. These steps are associated with protein denaturation and
tissue shrinkage, respectively, depending on the water content of
the various tissue components. Little information is available in
the literature on how quickly the tissue is fixed upon exposition
to the aldehyde solution. In addition, perfusion of an animal with
fixation solution requires anesthesia, opening of the chest, and
rinsing of the circulatory system with a rinsing solution before the
fixative is administered. It is unknown to what extent these manip-
ulations interfere with the preservation of fine-structural detail,
in particular with the preservation of subtle structural changes
induced by a preceding stimulation experiment. As far as den-
dritic spines are concerned, it has been previously shown, using
real-time microscopy, that they undergo structural changes upon
stimulation (Matsuzaki et al., 2004), but we do not know whether
subtle stimulation-induced ultrastructural changes in spine shape,
in synaptic structure, and in the molecular composition of spine
synapses are preserved by conventional fixation and dehydration
procedures.

One way to avoid conventional fixation and dehydration
is by shock-freezing the tissue under high pressure, followed
by cryosubstitution of the tissue water. HPF immobilizes the
tissue in less than a second, resulting in tissue vitrification
and excellent preservation of ultrastructural detail (Studer et al.,
2001, 2014). Following HPF, the samples are collected in liquid
nitrogen and then transferred to the freeze-substitution device.
There, the tissue water is substituted by acetone and the sample
osmicated for embedding in Epon. For EM immunogold label-
ing, the water is substituted by methanol (without osmication)
and the sample embedded in Lowicryl HM20 (for details see
Studer et al., 2014).

High-pressure freezing has been developed since rapid freez-
ing without pressure only preserved the very surface of the tissue,
whereas more remote portions showed ice crystal formation dam-
aging cells and organelles. Shock-freezing of the tissue surface
was pioneered by Van Harreveld et al. (1965), who studied the
extracellular space in central nervous tissue. Heuser et al. (1979)
dropped the tissue on a cooled metal block to capture synap-
tic vesicle fusion. Freezing under high pressure, however, lowers
the freezing point of water and increases vitrification depth 10-
fold (Sartori et al., 1993). Although HPF thus seems to be a clear
improvement when compared to chemical fixation using aldehy-
des, we do not want to conceal the problems associated with this
approach. First, tissue samples need to be small and easily acces-
sible to be rapidly frozen. This may turn out to be critical when

the sample needs to be transferred from the recording chamber
to the high-pressure freezer, which causes a time delay. More-
over, in order to fit into the cavity of the specimen carrier, the
region of interest might have to be punched out from a larger
tissue sample. Ice crystal formation may occur when the samples
or the instruments to handle them during further preparation
are not properly cooled. Finally, warming up in an organic sol-
vent prior to polymerization may lead to a reorganization and
loss of some proteins (see Studer et al., 2014, for critical steps
of the HPF procedure). Taken together, HPF is an alternative to
conventional aldehyde fixation, but application of this complex
method makes it necessary to carefully select the questions to be
addressed.

Brain biopsies and acute brain slices have successfully been sub-
jected to HPF (Studer et al., 2014). Optimal results were obtained
with slice cultures (Zhao et al., 2012a,b; Studer et al., 2014). In
contrast to acute slices, in which numerous neurons and their
processes are acutely damaged by slice preparation, the tissue is
allowed to recover and reorganize in slice cultures during incu-
bation in vitro, and tissue debris is removed, thus resulting in
flattening of the slice. When prepared, slice cultures are about
300 μm in thickness and flatten to about 200 μm during an
incubation period of 1–2 weeks. Slice cultures are thus opti-
mal for HPF since they are sufficiently thin to be completely
frozen without the formation of ice crystals. Moreover, tissue-
specific characteristics are nicely preserved in this culture model
(“organotypic”slice cultures), even after extended periods of incu-
bation in vitro. We recognized all known tissue components and
good fine-structural preservation of stratum lucidum of the hip-
pocampal region CA3 in slice cultures subjected to HPF. The
unmyelinated mossy fiber axons, their giant expansions, and
their postsynaptic complex spines (excrescences) originating from
proximal dendrites of CA3 pyramidal neurons, were clearly dis-
cernible under these conditions (Zhao et al., 2012a,b; Studer et al.,
2014; Figure 1). With regard to dendritic spines, we noticed an
excellent preservation of their synaptic contacts and prominent
asymmetric membrane specializations, the characteristic widen-
ing of the extracellular space at active zones (synaptic cleft), and
organelles such as ribosomes and the spine apparatus (Figure 2).
Moreover, we were able to monitor subtle changes in spine fine
structure associated with the induction of chemical LTP (cLTP)
by using slice cultures that were immediately subjected to HPF
following the experiment (Zhao et al., 2012a). Other investigators
that applied HPF to the study of the nervous system observed
filamentous projections from the postsynaptic membrane special-
ization, linking the postsynaptic density to the actin cytoskeleton
(Rostaing et al., 2006), and they studied the three-dimensional
architecture of the presynaptic terminal matrix (Siksou et al.,
2007).

cLTP-INDUCED FORMATION OF SMALL SPINES AT
HIPPOCAMPAL MOSSY FIBER SYNAPSES
Long-term potentiation can be induced in various ways. Chem-
ical LTP is advantageous when using HPF since the tissue can
be incubated in the drug for a certain period of time and then
be shock-frozen without any additional manipulation. In con-
trast, electrical stimulation requires the removal of the tissue
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FIGURE 1 | CA3 region of Hippocampus in a slice culture incubated for

2 weeks in vitro (DIV). The tissue was high-pressure frozen in the
absence of chemical fixatives, subjected to freeze substitution, osmicated,
and finally embedded in Epon (see Studer et al., 2014, for details on the
method). Note that all tissue components of stratum lucidum are well
preserved after the incubation period and subsequent freezing procedure.

As known from many studies in perfusion-fixed material, the stratum
lucidum mainly contains the thin unmyelinated axons of the mossy fibers
(MF) and their giant boutons (mossy fiber bouton, MFB). The postsynaptic
elements, the proximal dendrites (D) of CA3 pyramidal cells, are located in
between the bundles of mossy fibers and give rise to large complex
spines (S) for the contact with MFBs. Scale bar: 1 μm.

from the recording chamber and transfer to the high-pressure
freezer, which includes a time delay. Moreover, electrical stim-
ulation affects an indeterminate number of synapses, whereas
a large fraction of synapses are stimulated when using cLTP
(Hosokawa et al., 1995). In the studies reported on here, we
induced cLTP by exposing the tissue, organotypic slice cultures

of hippocampus, to 25 mM tetraethylammonium (TEA) for
10 min. Control tissue was exposed to the control medium
during that period of time. Whole-cell patch-clamp record-
ings from TEA-exposed CA3 pyramidal neurons, the target cells
of hippocampal mossy fibers (MF), did indeed show strong
potentiation of excitatory postsynaptic potentials (EPSPs) when
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FIGURE 2 | High-pressure frozen slice culture after 2 weeks of

incubation in vitro. Freeze substitution, osmication, and embedding in
Epon. Large complex spines (S) of a CA3 pyramidal cell dendrite,
engulfed by a large MFB. The arrow points to a spine apparatus with
sacs of smooth endoplasmic reticulum and electron-dense bars.

Arrowheads indicate active zones. Note the widening of the
extracellular space at synaptic sites and prominent postsynaptic
densities that extend fine filiform protrusions into the spine cytoplasm.
Occasionally, ribosomes are seen near active zones. Scale bar:
200 nm.

compared to recording under control conditions (Zhao et al.,
2012a,b). Following TEA treatment and incubation in control
medium, respectively, the tissue was immediately shock-frozen
using an EM PACT2 high-pressure freezer from Leica Microsys-
tems (Vienna). The material was then subjected to cryosub-
stitution and embedding in Epon or Lowicryl HM20 (Zhao
et al., 2012a,b; Studer et al., 2014). Epon embedding was used

for studies on structural changes at spine synapses, whereas
Lowicryl embedding was preferred in immunogold labeling
experiments.

In our analysis, we focused on the easily identifiable mossy
fiber synapse in the hippocampus formed between axons of den-
tate granule cells and large complex spines on proximal dendrites
of CA3 pyramidal neurons (Blackstad and Kjaerheim, 1961;
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Hamlyn, 1962). When studying TEA-exposed tissue and control
tissue in the electron microscope, several observations were made.
First, we noticed small omega-shaped invaginations of the presy-
naptic membrane of MFBs following TEA treatment. Most likely,
these membrane invaginations represent vesicle fusions with the
presynaptic membrane as a result of the strong TEA-induced
stimulation. In fact, quantitative assessment of the number of
vesicles in stimulated and non-stimulated tissue revealed a signif-
icant decrease in the number of vesicles in MFBs of TEA-treated
cultures when compared to control cultures (Zhao et al., 2012a).
We interpreted this decrease in synaptic vesicles, together with
an increased number of fusion events, as resulting from stim-
ulation, and expected to see an increase in the length of the
presynaptic MFB membrane. Indeed, while there was no differ-
ence in the area of MFB profiles, there was an increase in the
ratio of mossy fiber perimeter/mossy fiber area, indicating a more
labyrinthine course of the presynaptic membrane in stimulated
mossy fiber synapses. On the postsynaptic side, we observed an
increase in the complexity of the large spines or excrescences in con-
tact with MFBs. In particular, we observed the formation of small,
filopodia-like protrusions originating from the large complex

spines (Zhao et al., 2012a,b). Thus, the more labyrinthine course
of the presynaptic membrane was accompanied by a more convo-
luted appearance of the postsynaptic spine surface. These results
confirmed and extended previous work on experience-dependent
growth of mossy fiber synapses observed in light microscopic
studies (Galimberti et al., 2006, 2010). The formation of these
filopodia-like protrusions was accompanied by an increase in the
number of synaptic contacts. Collectively, these findings indicated
growth of mossy fiber synapses in response to intense stimula-
tion. Moreover, the results showed that HPF combined with EM
is a suitable method of capturing such activity-induced changes at
spine synapses with high resolution. The reader is referred to our
original paper (Zhao et al., 2012a) for the complete data set and to
our protocol for details on the methods (Studer et al., 2014).

Appropriate controls are an important issue in studies on
synaptic plasticity. As mentioned, TEA-stimulated slice cultures of
hippocampus were compared to non-stimulated cultures. In addi-
tion, we used slice cultures from Munc13-1 mouse mutants that are
impaired with respect to vesicle priming and docking (Augustin
et al., 1999). Indeed, when we compared TEA-stimulated Munc13-
1 slice cultures with non-stimulated cultures from these mutants,

FIGURE 3 | (A,B) High-pressure frozen slice culture of hippocampus
incubated in vitro for 2 weeks. Freeze substitution, embedding of the tissue
in Lowicryl HM20 (no osmication), and postembedding immunogold labeling
for p-cofilin in thin sections of the CA3 region. Note the specific
accumulations of gold grains (arrows) at synaptic sites of MFB. Only
occasionally are gold grains seen at other locations. Thin sections were

incubated in rabbit anti-p-cofilin (ser3; 1:100; Santa Cruz Biotechnology,
Heidelberg, Germany); secondary antibodies were gold-labeled
(goat-anti-rabbit, 10 nm gold grains; British Biocell, Cardiff, UK). Sections
were post-stained with uranyl acetate and lead citrate. For control, the
primary antibody was omitted; no specific staining was seen under these
conditions. Scale bar: 200 nm.
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no differences were observed with respect to the formation of the
filopodia-like spine protrusions and number of synaptic contacts
(Zhao et al., 2012a). Also, there was no difference in the number
of synaptic vesicles and the perimeter of the presynaptic bouton
membrane between stimulated and non-stimulated cultures of
Munc13-1 mutant mice.

CHANGES IN COFILIN PHOSPHORYLATION INDUCED BY cLTP
Tetraethylammonium-induced stimulation resulted in the forma-
tion of small spines and new synaptic contacts. However, when
measuring the length of these synaptic contacts, we noticed that
they were shorter than in controls (Zhao et al., 2012a). We regarded
this as a hint that the spine-like protrusions and their synap-
tic contacts were still in the process of growth after the 10-min
TEA stimulation. Restructuring of spines requires remodeling
of the actin cytoskeleton, which is particularly enriched in den-
dritic spines (Fischer et al., 1998, 2000; Matus, 2000; Star et al.,
2002; Fukazawa et al., 2003; Okamoto et al., 2004; Hotulainen
et al., 2009; Hotulainen and Hoogenraad, 2010). Remodeling of
the actin cytoskeleton involves active, actin-depolymerizing (non-
phosphorylated) cofilin to build new actin filaments and change
spine shape. Accordingly, levels of p-cofilin might be decreased in
early phases of LTP induction and may be associated with spine
restructuring.

In our studies on structural synaptic plasticity of mossy fiber
synapses we used HPF and postembedding immunogold labeling
for p-cofilin following cLTP induction by TEA. Consistent with
previous EM immunogold studies for cofilin (Racz and Weinberg,
2006), we noticed accumulations of gold grains at synaptic con-
tacts (Figure 3; Studer et al., 2014). Interestingly enough, we found
a statistically significant decrease in the number of gold grains at
mossy fiber synapses of TEA-stimulated slice cultures when com-
pared to non-stimulated cultures (Figure 4). In TEA-stimulated
cultures the number of gold grains at active zones of mossy fiber
synapses, up to a distance of 100 nm from the membrane spe-
cialization, amounted to 3.7 ± 2.7 SD compared to 5.6 ± 3.0 SD
in the control cultures. This result suggested a relative increase in
non-p-cofilin and hence active cytoskeletal reorganization at the
time point of immobilization by HPF. Remarkably, this decrease in
p-cofilin immunoreactivity was not observed in TEA-stimulated
slice cultures from Munc13-1 mutant mice (TEA: 4.5 ± 2.8 SD;
control: 4.6 ± 3.3 SD; Figure 4), consistent with the lack of TEA-
induced structural changes at spines in slice cultures from these
mutants (Zhao et al., 2012a). Our results are in line with other
studies pointing to an involvement of cofilin in changes in spine
structure and reorganization of the actin cytoskeleton associated
with LTP (Fukazawa et al., 2003; Lisman, 2003; Zhou et al., 2004;
Chen et al., 2007; Rex et al., 2009). In mutants deficient in LIM
kinase-1 (LIMK-1), the kinase that phosphorylates cofilin, LTP
is enhanced associated with changes in spine morphology and a
reduced length of the postsynaptic density (Meng et al., 2002).

An interesting side effect of the immunogold labeling studies
was that, in general, the number of gold grains indicating p-cofilin
immunoreactivity was much larger in slice cultures subjected to
HPF, compared to cultures conventionally fixed using aldehyde
solutions. It is of note that this was not due to increased back-
ground staining (Studer et al., 2014). These observations point

FIGURE 4 | Quantitative estimation of the number of gold grains per

active zone at mossy fiber synapses in stratum lucidum of CA3 in

hippocampal slice cultures subjected to HPF, freeze substitution,

embedding in Lowicryl HM20 (no osmication), thin-sectioning, and

immunogold labeling for p-cofilin. The number of gold grains at mossy
fiber synapses is significantly higher in wild-type control cultures (wt-con)
compared to wt cultures treated with TEA (wt-TEA; mean ± SD;
**p < 0.01). This difference between control tissue and TEA-treated tissue
was not observed in cultures from Munc13-1 mutants (m13-con and
m13-TEA, respectively). n.s., not significant. All gold grains within 100 nm
of the postsynaptic density were regarded as specific labeling and were
counted (60 active zones per experimental group; two-sided Student’s
t -test; α = 0.05). See Studer et al. (2014) for details on the method.

to an increased signal-to-noise ratio of immunolabeling follow-
ing freezing, freeze substitution, and embedding in Lowicryl,
as similarly described in previous studies (e.g., Moreira et al.,
1998). This is likely because protein denaturation by aldehydes and
robust dehydration in ethanol are avoided. Thus, HPF combined
with freeze substitution and Lowicryl embedding may be a useful
alternative to conventional EM immunocytochemical methods.

MOSSY FIBER BOUTONS AND THEIR POSTSYNAPTIC
SPINES ARE RESTRUCTURED IN AN ACTIVITY-DEPENDENT
MANNER
Numerous studies, including those on the famous patient H.M.,
have indicated that the hippocampal formation plays an important
role in learning and memory processes. What does this mean at
the level of cells, projections, and synapses? Sensory perception of
novel, probably dangerous changes in the environment will require
behavioral adjustment to cope with the new situation. In higher
centers, such as the cerebral cortex and hippocampus, behavioral
adjustment involves associations and recall of previous, similar sit-
uations. It is generally assumed that this “learning” about a novel
environment is achieved by modification of the neuronal circuit.
Information about the environment is fed into the hippocampus
via the entorhinal cortex, which receives input from a large variety
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of sensory centers. Circuit modification is then assumed to take
place in the hippocampus, particularly in the synapses of the trisy-
naptic pathway (Andersen et al., 1971), involving the synapses of
entorhinal fibers with dentate granule cells, granule cell synapses
(mossy fiber synapses) with CA3 pyramidal neurons and mossy
cells, and CA3 pyramidal cell projections (Schaffer collaterals) to
CA1 pyramidal neurons. Plasticity of transmission at hippocampal
synapses, including changes in the structure of spines and synap-
tic contacts as seen in LTP or LTD (long-term depression), has
accordingly become a widely studied cellular model of learning
and memory processes.

Potentiation or depression of synaptic transmission is asso-
ciated with molecular and structural changes at synapses. In
this review, we report on the formation of finger-shaped pro-
trusions emerging from the complex spines of mossy fiber
synapses and de novo formation of active zones in response to
cLTP induction. These structural changes were associated with
decreased phosphorylation of cofilin, suggesting active remodel-
ing of the actin cytoskeleton in the complex spines. It is most
likely that these fine-structural and molecular changes underlie
the experience-dependent increase in complexity of mossy fiber
synapses observed in light microscopic studies (Galimberti et al.,
2006, 2010).
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