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This review focuses on the vulnerability of a special interneuron type—the calretinin
(CR)-containing interneurons—in temporal lobe epilepsy (TLE). CR is a calcium-binding
protein expressed mainly by GABAergic interneurons in the hippocampus. Despite their
morphological heterogeneity, CR-containing interneurons form a distinct subpopulation of
inhibitory cells, innervating other interneurons in rodents and to some extent principal
cells in the human. Their dendrites are strongly connected by zona adherentiae and
presumably by gap junctions both in rats and humans. CR-containing interneurons are
suggested to play a key role in the hippocampal inhibitory network, since they can
effectively synchronize dendritic inhibitory interneurons. The sensitivity of CR-expressing
interneurons to epilepsy was discussed in several reports, both in animal models and
in humans. In the sclerotic hippocampus the density of CR-immunopositive cells is
decreased significantly. In the non-sclerotic hippocampus, the CR-containing interneurons
are preserved, but their dendritic tree is varicose, segmented, and zona-adherentia-type
contacts can be less frequently observed among dendrites. Therefore, the dendritic
inhibition of pyramidal cells may be less effective in TLE. This can be partially explained by
the impairment of the CR-containing interneuron ensemble in the epileptic hippocampus,
which may result in an asynchronous and thus less effective dendritic inhibition of the
principal cells. This phenomenon, together with the sprouting of excitatory pathway
axons and enhanced innervation of principal cells, may be involved in seizure generation.
Preventing the loss of CR-positive cells and preserving the integrity of CR-positive dendrite
gap junctions may have antiepileptic effects, maintaining proper inhibitory function and
helping to protect principal cells in epilepsy.
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INTRODUCTION
Calretinin (CR) is a calcium-bindig protein, belonging to the
calmodulin superfamily, which was shown to be present in many
brain regions (Rogers, 1987; Faas et al., 2007).

In the rodent hippocampus the majority of the CR-positive
cells seem to be GABAergic interneurons (Jacobowitz and Winsky,
1991; Miettinen et al., 1992; Liu et al., 1996).

They represent a distinct subpopulation of interneurons
(Gulyás et al., 1992; Liu et al., 1996) with a negligible overlap
with other calcium binding protein-containing interneurons—
parvalbumin and calbindin—in rat and monkey (Miettinen et al.,
1992; Rogers and Resibois, 1992; Seress et al., 1993b).

Interneurons of the hippocampus can be divided into three
main functional groups according to their role in the neuronal
network (Freund and Buzsáki, 1996). Perisomatic inhibitory cells
innervate the soma, axon initial segment or proximal dendrites of
principal cells (basket and axo-axonic cells) (Handelmann et al.,

Abbreviations: CA 1, 2, 3, regions of the Cornu Ammonis according to
Lorente de No; CR, calretinin; TLE, temporal lobe epilepsy.

1981; Emson et al., 1982; Somogyi et al., 1983; Kosaka et al.,
1985, 1987; Katsumaru et al., 1988; Seress et al., 1991, 1993a; Li
et al., 1992; Ribak et al., 1993; Halasy et al., 1996) and control the
output of principal cells (Arai et al., 1995; Freund and Buzsáki,
1996; Miles et al., 1996; Holmes and Levy, 1997). Dendritic
inhibitory cells innervate the distal dendrites of principal cells
(Kawaguchi and Hama, 1988; Gulyás et al., 1993; Han et al.,
1993; Buhl et al., 1994; Sik et al., 1994, 1995, 1997; Buckmaster
and Schwartzkroin, 1995; Halasy et al., 1996) and control the
generation of dendritic calcium spikes and synaptic plasticity
(Freund and Buzsáki, 1996; Miles et al., 1996). The interneuron-
selective inhibitory cells innervate other interneurons, and thus
have a role in the synchronization of dendritic inhibition (Acsády
et al., 1996; Gulyás et al., 1996; Hajos et al., 1996; Urbán et al.,
2002).

The different vulnerability of interneurons in temporal lobe
epilepsy (TLE) was shown in numerous animal models and
human patients (Babb et al., 1989; Houser, 1991; Sloviter, 1999;
Ben-Ari and Cossart, 2000; Bouilleret et al., 2000; André et al.,
2001; Ben-Ari, 2001; Arellano et al., 2004; Ben-Ari and Holmes,
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2005; Kuruba et al., 2011; Marx et al., 2013). In most studies,
the relative preservation of the inhibitory input to the periso-
matic domain of principal cells was described, whereas den-
dritic inhibition was found to be decreased (Cossart et al., 2001;
Sundstrom et al., 2001; Wittner et al., 2001, 2005; Maglóczky
and Freund, 2005; Tyan et al., 2014). The third functional type
of interneurons are specialized to innervate other interneurons
(Freund and Buzsáki, 1996; Gulyás et al., 1996) and contain VIP
or CR (Acsády et al., 1996; Gulyás et al., 1996). These neurons are
in an ideal position to regulate dendritic inhibition (Gulyás et al.,
1996; Hajos et al., 1996; Chamberland et al., 2010; Tyan et al.,
2014) and compensate the synchronizing effect of perisomatic
inhibition (Cossart et al., 2001; Maglóczky and Freund, 2005),
and therefore they may have a critic role in maintaining the
normal network activity and may prevent synchronous discharges
leading to epileptic seizures.

In this review we focus on the fate of this special interneuron
type—the CR-containing interneurons—in TLE.

CR-CONTAINING CELLS IN THE RODENT HIPPOCAMPUS
Two types of CR-positive cells were found in the rat hippocampus
(Gulyás et al., 1992), spiny and spine-free dendritic cells. The
spine-free type can be observed in all subregions, and have a
small cell body with smooth dendrites running through sev-
eral layers. Their dendrites are often attached to each other
over long segments. At the electron microscopic level, several
puncta adherentiae were observed among contacting CR-positive
dendrites (Gulyás et al., 1992, 1996). The other, spiny type is
found exclusively in the hilus of the dentate gyrus and in the
stratum lucidum of the CA3 region. Their dendrites run hor-
izontally and are covered with spines. They receive the major-
ity of their inputs from mossy fibers (Gulyás et al., 1992).
Miettinen and colleagues have shown that the majority of the
former type belonged to GABAergic interneurons, whereas the
latter, spiny type was mainly GABA-negative (Miettinen et al.,
1992).

Hippocampal CR-positive cells of the mouse are similar
to the rat. However, there are species-specific differences
among human/rat and mouse hippocampal areas, i.e.,
young granule cells and mossy cells are CR-positive in mice,
whereas they are CR-negative in rats and humans (Liu
et al., 1996; Blasco-Ibáñez and Freund, 1997; Fujise et al.,
1998; Murakawa and Kosaka, 1999; Mátyás et al., 2004;
Seress et al., 2008). However, the main interneuron types,
e.g., the bipolar or bitufted, rarely spiny cells with dendro-
dendritic connections, are present both in rodents and humans
in hippocampal areas (Gulyás et al., 1992; Nitsch and Ohm,
1995; Urbán et al., 2002). This cell type is thought to be
responsible for the inhibition of other interneurons (Gulyás
et al., 1996). It is well preserved throughout evolution,
and therefore its role can be studied in rodent models of
epilepsy.

CR-CONTAINING CELLS IN THE HUMAN HIPPOCAMPUS
In the adult human hippocampus, CR is expressed by non-
principal cells (Nitsch and Ohm, 1995; Urbán et al., 2002).
Besides the interneurons, there are a few remaining Cajal-Retzius

cells at the border of stratum moleculare and stratum
lacunosum-moleculare that also show CR-immunoreactivity
(Abraham and Meyer, 2003). Unlike in mice and to some extent in
non-human primates, mossy cells of the human dentate gyrus are
negative for CR-immunostaining (Maglóczky et al., 2000; Seress
et al., 2008).

The distribution of the CR-positive elements shows the typical
distribution of a non-perisomatic inhibitory interneuron type.
They are abundant in the stratum radiatum and at the border of
lacunosum-moleculare in the Cornu Ammonis and in the hilus of
the dentate gyrus (Figures 1, 2; Nitsch and Ohm, 1995; Maglóczky
et al., 2000; Urbán et al., 2002).

The human CR-containing interneurons form a morpholog-
ically heterogeneous cell population: (i) multipolar or fusiform
cells in the hilus, with dendrites restricted mainly in this subre-
gion; (ii) fusiform cells in the strata moleculare and oriens with
horizontal dendrites; (iii) multipolar cells in all layers; and (iv) a
group of small cells with a few short dendrites in the dentate gyrus
(Nitsch and Ohm, 1995; Maglóczky et al., 2000; Urbán et al., 2002;
Tóth et al., 2010).

The human CR-positive interneuron population differs some-
what from those in the rat and mouse (Murakawa and Kosaka,
1999; Mátyás et al., 2004). In human, there is an abundant group
of multipolar CR-immunoreactive interneurons at the border of
the CA1 stratum lacunosum-moleculare, and a group of small
CR-positive cells in the dentate gyrus (Nitsch and Ohm, 1995),
which are absent in the rat. In addition, the characteristic spiny
CR-positive cells of the rat CA3 region (Gulyás et al., 1992) are
missing in the human (Nitsch and Ohm, 1995; Urbán et al., 2002).

The dendrites of the human CR-positive interneurons are
smooth or rarely spiny. Similarly to rats, long segments of CR-
positive dendrites of different cells are often attached to each
other, especially in the CA1 region (Figure 3; Urbán et al., 2002).
Zona- or puncta adherentia-type contacts were observed between
these dendrites at the electron microscopic level (Urbán et al.,
2002; Tóth et al., 2010).

EXTRINSIC CR-CONTAINING NETWORK
Besides the intrinsic hippocampal GABAergic CR-system deriv-
ing from the local CR-containing inhibitory interneurons, there
are extrinsic glutamatergic inputs that also contain CR. In
rats, monkeys and humans, a dense CR-positive fiber net-
work can be observed at the top of the granule cell layer
in the inner third of the stratum moleculare (Gulyás et al.,
1992; Nitsch and Léránth, 1993; Nitsch and Ohm, 1995). The
vast majority of the CR-positive terminals here are putative
excitatory terminals with a thick postsynaptic density (Gulyás
et al., 1992; Maglóczky et al., 2000). This excitatory path-
way was shown to be originating from the supramammil-
lary nucleus both in rats and monkeys (Nitsch and Léránth,
1993; Maglóczky et al., 1994; Borhegyi and Leranth, 1997) and,
besides the stratum moleculare, it also innervates the pyramidal
layer of the CA2 region (Nitsch and Léránth, 1993; Maglóczky
et al., 1994; Nitsch and Ohm, 1995). Finally, a dense CR-
positive axonal network can be seen at the border of strata
radiatum and lacunosum-moleculare in the CA1 region, with
numerous presumably excitatory CR-positive axon terminals
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FIGURE 1 | Light micrographs show the distribution and density of
CR-containing interneurons in the control (A, C) and epileptic human
hippocampus (B, D). CR-immunopositive cells can be observed in the entire
hippocampus. (A) They are present in large numbers in the control dentate
gyrus, especially in the hilus. The immunopositive cells in the outer part of the
molecular layer near the hippocampal fissure are presumably Cajal-Retzius
cells. (B) The epileptic dentate gyrus contains less immunopositive cells. (C)
Many CR-positive interneurons can be seen in the control CA1 region,

scattered throughout all layers. The largest amount of cells is present in the
stratum radiatum and at the border of stratum lacunosum-moleculare. (D) The
sclerotic epileptic CA1 region contains only a few CR-immunopositive
interneurons with short and distorted, often segmented dendrites. GD:
dentate gyrus; m: stratum moleculare; g: stratum granulosum; h: hilus; CA1:
Cornu Ammonis 1; o: stratum oriens; p: stratum pyramidale; lm: stratum
lacunosum-moleculare; opr: strata oriens-pyramidale-radiatum. Scales: 500
µm in (A) and (C); 100 µm in (B) and (D).

giving asymmetric synapses with thick postsynaptic densities
(Urbán et al., 2002). In rats and monkeys, this pathway was
shown to originate from the thalamic reunions nucleus (Amaral
and Cowan, 1980; Fortin et al., 1996; Bokor et al., 2002;
Drexel et al., 2011).

FUNCTION OF CR-CONTAINING INTERNEURONS IN THE
HIPPOCAMPUS
The CR-positive interneurons are interneuron-selective
inhibitory cells in the CA1 region of the rat hippocampus (Gulyás
et al., 1996). Meskenaite have shown that the postsynaptic
targets were partially GABAergic local circuit neurons in the
monkey neocortex (Meskenaite, 1997). According to Urbán
et al. a large proportion of these cells also belong to this
functional type of interneuron in the human hippocampal CA1
region, innervating other CR-containing dendrites or unstained
interneuron dendrites (Urbán et al., 2002). Additionally, in

humans, there is a population which innervates the dendrites of
the pyramidal cells (dendritic inhibitory interneurons) (Urbán
et al., 2002).

Interneuron-selective cells were suggested to be important in
the synchronization of dendritic inhibitory cells (Gulyás et al.,
1996; Maglóczky and Freund, 2005; Chamberland et al., 2010;
Tyan et al., 2014). This is supported by the fact that: (i) their
dendrites are strongly connected by zona adherentiae and possibly
by gap junctions in rats (Gulyás et al., 1992, 1993), which allows
the synchronous activation of the connected cell population
(Galarreta and Hestrin, 1999; Gibson et al., 1999); (ii) their
dendrites often run parallel with each other in the human CA1
region, forming close contacts; additionally, zona adherentiae
were identified in these segments at the electron microscopic
level (Urbán et al., 2002), which is a characteristic structure to
support the development of gap junctions (Kosaka and Hama,
1985); and (iii) the calbindin-containing dendritic inhibitory
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interneurons are innervated by CR-positive inhibitory cells in
both rats and humans (Figure 4; Gulyás et al., 1996; Tóth et al.,
2010).

Dendritic inhibitory interneurons innervate the distal den-
dritic tree of pyramidal cells. The synchronization of dendritic
inhibitory cells is a crucial process to provide an effective
inhibitory control of excitatory synaptic input of pyramidal cell
dendrites (Miles et al., 1996; Chamberland et al., 2010; Tyan et al.,
2014).

These observations suggest that CR-containing cells form a
unique inhibitory cell population in the hippocampus. Despite
their low number, they play a key role in hippocampal inhibitory
circuits. By synchronizing the dendritic inhibitory interneurons,
they can control the efficacy of excitatory inputs to pyramidal
cells (Maglóczky and Freund, 2005; Tyan et al., 2014). There-
fore, studying their fate in different brain disorders, especially in
epilepsy, is of special interest.

CHANGES IN THE NUMBER AND DISTRIBUTION OF
CR-POSITIVE INTERNEURONS IN THE HUMAN EPILEPTIC
HIPPOCAMPUS
The sensitivity of CR-expressing cells to epilepsy was discussed in
several reports, both in animal models and in humans (Maglóczky
and Freund, 2005; Barinka and Druga, 2010; Tóth et al., 2010).
CR-containing cells were also found to be sensitive in focal cortical
dysplasias (Barinka et al., 2010).

However, the published data on the sensitivity of human CR-
containing cells in epilepsy is controversial. According to Blümcke
et al. the CR-containing cells are preserved in epilepsy (Blümcke
et al., 1996); moreover, the number of CR-positive Cajal-Retzius
cells is even increased (Blümcke et al., 1999; Thom et al., 2002).
However, our group observed increased vulnerability of CR-
positive cells in human TLE, including the CR-positive Cajal-
Retzius cells (Figure 1; Maglóczky et al., 2000; Tóth et al., 2010).

The contradiction possibly emerged from the sensitivity of CR-
immunostaining to the length of the post mortem delay of the
applied control samples (Figure 2). The post mortem delay in
the studies of Blümcke et al. varied between 6 h and up to 3
days (Blümcke et al., 1996, 1999). In our studies, post mortem
delays for control samples were between 2–4 h (Maglóczky et al.,
2000; Tóth et al., 2010). According to Urbán et al. the age of
the subject, the post mortem delay and the fixation procedure
has an extreme impact on the quality and quantity of CR-
immunostaining (Urbán et al., 2002). The preservation of the
immersion-fixed control samples with short post mortem delays
was comparable to the perfusion-fixed animal tissue and immedi-
ately fixed epileptic samples (Tóth et al., 2010).

According to our results, the number of CR-containing cells
decreased significantly, both in the dentate gyrus (especially in
the hilus) (Maglóczky et al., 2000; Tóth et al., 2010) and in the
sclerotic CA1 region (Figures 1, 2; Tóth et al., 2010). The den-
sity of the presumably persisting CR-positive Cajal-Retzius cells
(Abraham and Meyer, 2003) at the border of the stratum molecu-
lare and hippocampal fissure was also significantly reduced (Haas
et al., 2002; Tóth et al., 2010), even in the non-sclerotic samples
(Tóth et al., 2010).

In addition, the preserved cells had an altered mor-
phology, suggesting the degeneration of their dendritic tree
(Maglóczky et al., 2000; Tóth et al., 2010; Figure 3). In
the non-sclerotic epileptic CA1 region, the number of CR-
positive cells was unchanged. However, their dendrites were
varicose, and contacts between the CR-positive dendrites were
less frequently seen (Tóth et al., 2010; Figure 3). Consistently,
zona adherentia-type contacts were rarely observed between
CR-positive dendritic profiles at the electron microscopic level
(Tóth et al., 2010), decreasing the possibility of the establish-
ment and maintenance of gap junctions (Fukuda and Kosaka,
2000).

Thus, the synchronous activation of these interneuron-
selective inhibitory cells is possibly impaired in the human epilep-
tic hippocampus. As part of the CR-containing cells are dendritic
inhibitory interneurons in humans, this means that by losing their
zona adherentia-type dendro-dendritic contacts, the CR-positive
population of dendritic inhibitory cells also loses the ability to
function synchronously.

SYNAPTIC REORGANIZATION OF CR-POSITIVE INTERNEURONS IN THE
HUMAN EPILEPTIC DG AND CA1
Electron microscopic examinations revealed that the CR-
containing interneuronal (inhibitory) synaptic network is also
changed in the epileptic human samples.

Despite the sensitivity and loss of CR-containing interneurons
in the DG (Maglóczky et al., 2000; Tóth et al., 2010), an increased
frequency of CR-positive interneuronal terminals was found in
epilepsy (Maglóczky et al., 2000). Dentate granule cells receive
an excess excitation in epilepsy due to mossy fiber sprouting
(Davenport et al., 1990b; Houser et al., 1990; Represa et al.,
1990; Sloviter, 1994; Mathern et al., 1995; Zhang et al., 2009).
Although the increase of the frequency of CR-positive inhibitory
terminals was low, regarding the severe cell loss, this might mean
a sprouting of the remaining CR-containing inhibitory cells as a
compensatory mechanism to offset the enhanced excitatory input
on granule cell dendrites.

In controls, the majority of the CR-positive inhibitory
axon terminals contacted CR-positive interneurons and pyra-
midal cells in the CA1 region (Figure 5; Tóth et al., 2010).
In the epileptic samples, the proportion of CR-positive tar-
gets was significantly reduced. The decreased innervation
of other CR-positive dendrites may reflect the impairment
of the CR-containing interneuronal network. The ratio of
unstained interneuron dendrites increased among the targets,
whereas pyramidal cells were less frequently innervated, even
in those patients where the pyramidal cells were present (non-
sclerotic patients) (Figure 5; Tóth et al., 2010). The fre-
quency of CR-positive terminals giving symmetric synapses
was decreased, whereas those giving asymmetric synapses
was increased in the epileptic CA1 region (Tóth et al.,
2010).

Taken together, these results suggest that both synaptic
and dendro-dendritic contacts of CR-positive interneurons are
impaired even in the non-sclerotic epileptic human hippocampi,
in the absence of any major principal cell- and CR-containing
interneuron loss (Tóth et al., 2010).
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FIGURE 2 | Camera lucida drawings show the number and
distribution of CR-immunoreactive cells in control human
hippocampi with different post mortem delay (A, B) and in epileptic
human hippocampi with different degrees of principal cell death (C,
D). CR-containing cells were present in all regions of the hippocampus
(A). Their number was significantly reduced in control samples with long

post mortem delay (B) and in the sclerotic epileptic cases (D). In the
non-sclerotic tissues (C) the number and distribution of
CR-immunoreactive cells were similar to the control, with short post
mortem delay (A). The volume of the sclerotic hippocampi is reduced
because of the shrinkage of the CA1 region due to the loss of CA1
pyramidal cells (D). GD: dentate gyrus; Scale: 1 mm.

CHANGES TO THE EXTRINSIC CR-CONTAINING SYSTEM IN
HUMAN EPILEPTIC HIPPOCAMPUS
Besides the changes affecting the intrinsic CR-containing system,
the extrinsic CR-expressing pathways also show alterations. In the
epileptic dentate gyrus, the CR-containing excitatory pathway—
originating from the supramammillary nucleus—is expanded to
the outer two thirds of the molecular layer (Figure 3; Maglóczky
et al., 2000). This observation was confirmed at the electron
microscopic level: whereas in controls the majority of the CR-
positive excitatory terminals were located in the inner molecular
layer, the frequency of terminals was similar in the inner and
outer moleculare in the epileptic cases (Maglóczky et al., 2000).
The extension of the supramammillary pathway was independent
from the granule cell dispersion, as it occurred in all the subjects
examined. The relative increase of the frequency of CR-positive
terminals giving asymmetric synapses in the CA1 region could
also reflect the sprouting of an excitatory pathway originating

presumably from the thalamus (Amaral and Cowan, 1980; Bokor
et al., 2002).

EPILEPSY MODELS AND THE FATE OF CR-CONTAINING
INTERNEURONS
Numerous models of epilepsy were developed to study the mech-
anisms of seizures and epilepsy including genetic models, in vitro
slice models, in vivo induced seizures, acquired focal models etc.
(Pitkanen et al., 2006). In most cases rodents were used for in vivo
chronic models, and the cortical and hippocampal areas were
especially studied.

The pathological changes of the brain were classified and the
sensitivity of neurons was monitored in most models. It was
shown that GABAergic cells are more preserved than principal
cells (Babb et al., 1989; Davenport et al., 1990a; Houser, 1991;
Ben-Ari, 2001; Ben-Ari and Holmes, 2005). However, certain
neurochemically identified groups of interneurons proved to be
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FIGURE 3 | High power light micrographs from control and epileptic
samples showing the morphology of CR-positive interneuron
dendrites. Many CR-positive interneurons are located in the hilus of the
control dentate gyrus (A). They usually have long and smooth dendrites
arborizing densely in the stratum moleculare. In the inner molecular layer a
dense network of CR-positive axon terminals can be observed, which
presumably originate from the supramammillary nucleus (A, arrowheads).
In the sclerotic epileptic gyrus dentatus (B) most of the CR cells disappear,
and the CR-positive supramammillary input extends to the entire stratum
moleculare (B, arrows). The dispersion of the granule cell layer can also be
observed in many epileptic cases. In the control CA1 region (C), dendrites
of CR-positive interneurons are usually long, smooth and vertically oriented.
They are often juxtaposed and run together over short segments (C,
arrows). However, in the non-sclerotic samples (D) the dendrites are
varicose and the contacts between CR-positive interneuron dendrites are
less frequent than in controls (D, arrow). s.g.: stratum granulosum; Scales:
(A, B): 50 µm; (C, D): 20 µm.

FIGURE 4 | High power light micrographs showing the innervation of
calbindin-containing interneurons by CR-positive fibres. By double
immunolabeling experiments, applying DAB and DAB-Ni as chromogens,
we show that both in the control (A) and in the epileptic (B) human CA1
region, the axon terminals of the CR-containing interneurons (black reaction
product) innervate the calbindin-containing interneurons (brown reaction
product) (arrows). Scale: 10 µm.

sensitive to epileptic injury, like somatostatin cells in TLE (de
Lanerolle et al., 1989; Mitchell et al., 1995; Sundstrom et al., 2001).
Interestingly, as compared to other GABAergic interneurons, the
fate of CR-containing interneurons was less examined in epilepsy.

Hippocampal CR-positive cells were shown to be vulnerable
to excitotoxic cell damage in ischaemia (Freund and Maglóczky,
1993) and in various models of epilepsy (Figure 6; Magloczky and
Freund, 1993; Maglóczky and Freund, 1995; Ben-Ari and Cossart,
2000; Bouilleret et al., 2000; André et al., 2001; Domínguez et al.,
2003; Slézia et al., 2004; van Vliet et al., 2004; Cobos et al., 2005;
Tang et al., 2006; Wu et al., 2012; Huusko et al., 2013).

SIMILARITY TO HUMAN TLE
For a detailed comparison to human TLE, data from chronic
models of TLE concerning the CR-positive interneurons is sum-
marized here. These models usually show remarkable similarity to
human hippocampal pathology in TLE (Sloviter, 1996; Bernard
et al., 1998; Ben-Ari, 2001; Sharma et al., 2007; Curia et al.,
2008; Tang and Loke, 2010; Carriero et al., 2012), including
sclerosis, loss of pyramidal cells in the CA1 and CA3c regions,
hilar interneuronal loss, and the preservation of calbindin-
containing interneurons (Sloviter et al., 1991; Wittner et al.,
2002).

Reduction in the number of CR-containing cells was found in
the hippocampus after electrical induction of status epilepticus
(van Vliet et al., 2004), in traumatic brain injury (Huusko et al.,
2013), in a kainate model of TLE (Figure 6; Magloczky and
Freund, 1993; Maglóczky and Freund, 1995) and in the pilo-
carpine model of epilepsy (André et al., 2001; Tang et al., 2006;
Zhang et al., 2009; Wu et al., 2012). CR-positive cells showed
sensitivity for single status epilepticus without recurrent seizure
(Fabene et al., 2001).
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FIGURE 5 | High power electron micrographs from control (A, B, E) and
epileptic CA1 region (C, F-non sclerotic, D-sclerotic). In the control
samples, dendrites of CR-positive interneurons are often attached to each
other by zona adherentia-type contacts (d1 and d2 in A, arrowheads).
Terminals of CR-positive interneurons establish symmetric synaptic
contacts (B, C, D, arrows). In the control CA1 region they frequently
terminate on pyramidal cell dendrites (B). In the non-sclerotic epileptic
samples, unlabeled interneuron dendrites are more often targeted (C).
Almost all of the targets belonged to interneuron dendrites in the sclerotic
CA1 region (D). In addition, CR-positive terminals giving asymmetric
synaptic contacts (presumably excitatory) were also frequently observed
both in control (E, arrow) and epileptic samples (F, arrow). Most of them
were located in the stratum lacunosum-moleculare. Scale: 500 nm.

Although CR-immonopositive interneurons are morpholog-
ically and functionally different (Gulyás et al., 1992), no selec-
tive loss of a certain morphological type was found in the
models of epilepsy. The spiny CR-positive cells in the stra-
tum lucidum of CA3 regions showed profound sensitivity, as
they die both in ischaemia (Freund and Maglóczky, 1993)
and epilepsy (Magloczky and Freund, 1993; Maglóczky and
Freund, 1995; André et al., 2001; Domínguez et al., 2003;
Zhang et al., 2009) presumably due to their strong mossy fiber
input, which is further enhanced in epilepsy. The bipolar cells—
presumably responsible for interneuron specific inhibition—are
also strongly decreased in number, and their dendritic tree is
reduced in size and shows segmentation in epileptic hippocampi
(Figure 6; Magloczky and Freund, 1993; Slézia et al., 2004;
Zhang et al., 2009), similarly to that found in human TLE (Tóth
et al., 2010). Besides synaptic contacts, CR-immunopositive cells

FIGURE 6 | CR-immunostained sections of hippocampal subfields in
control and kainate-treated epileptic rats after one weak survival time.
In control (A–C) CR-containing interneurons are numerous in all subfields of
the hippocampus. They are heterogeneous in shape and localization (panel
A), they posses smooth or sparsely spiny dendrites. In the CA1 region
bipolar cells are dominant with long, parallel running dendrites (panel B).
Arrowheads point to the dendritic contacts. In the hilus (H) of the dentate
gyrus (DG, panel C) they are mostly multipolar cells, and parallel running
dendrites are also present here (arrowheads). In the hippocampi of the
kainate-treated rats (D–F) the number of CR-containing cells is profoundly
decreased in all subfields. In CA1 (panel E) the surviving cells have
segmented, varicose dendrites (arrowheads). In the hilus the decrease in
the number of cells is more severe than in the CA1. Arrows point to the
dying, faint cells with reduced/absent dendritic tree. DG: dentate gyrus; gc:
granule cell layer; H: hilus. Scales: (A,D): 100 um; (B–F): 20 um.

are also connected by their dendritic tree (Figure 6; Gulyás
et al., 1992), and therefore the disruption of the dendritic
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connections may cause dysfunction of these cells in rodent
models.

Interestingly, even a small dose of kainate (Maglóczky and
Freund, 1995) may cause reduction in the number of CR-
containing cells, especially in the hilus, suggesting that hilar CR-
positive interneurons may be more sensitive than neurons in other
subfields (Figure 6).

Analyses of the time course of the cell loss showed that it
begins soon after excitotoxic insults (Freund and Maglóczky,
1993; Maglóczky and Freund, 1995). After few hours, a significant
decrease can be seen in the hilus and CA3 of the rat.

However, granule cells and mossy cells also contain CR in
mice (Liu et al., 1996; Fujise et al., 1998; Mátyás et al., 2004),
especially in young animals (Blasco-Ibáñez and Freund, 1997;
Brandt et al., 2003). In older animals the CR-staining of the prin-
cipal cells is weaker. In addition, induction of status epilepticus
may transiently accelerate the production of newly formed neu-
rons (Kralic et al., 2005), which are mostly granule cells (Hester
and Danzer, 2013). Therefore, more numerous CR-positive cells
might be seen in the epileptic mice after pilocarpine-induced
epilepsy, their number is decreased at the chronic phase with the
decreasing tendency of neuron production (Kralic et al., 2005)
and weakening of the CR-immunopositivity of principal cells with
time (Brandt et al., 2003).

MECHANISM OF DEATH OF CR-CONTAINING NEURONS
The exact mechanism of death of CR-containing cells is not
known. According to the morphological signs (Martin, 2001),
CR-containing cells die by a necrotic type of excitotoxic degen-
eration, not by apoptosis. Their electron microscopic examina-
tion shows degenerating cytoplasm, decaying mitochondria and
numerous phagocytic vacuoles, suggesting the overproduction of
abnormal proteins and energy failure (Maglóczky et al., 2000;
Tóth et al., 2010).

Although these cells contain a calcium binding protein, they
proved to be extremely sensitive for epileptic and ischemic con-
ditions with large calcium ion influx. One explanation of their
extreme sensitivity can be their strong connectivity with each
other, as they may react to the insults as a network (Gulyás
et al., 1992; Tóth et al., 2010). On the other hand, they contain
thin cytoplasm and they are poor in organelles. Therefore we
can assume that their energy supply is weaker and makes them
vulnerable to excitotoxic stress (Hipólito-Reis et al., 2013). The
increased excitability of CR-positive cells in epilepsy, caused by
the upregulation of a voltage-gated Na channel (Kim et al.,
2008) may also contribute to their vulnerability to excitotoxic
insults.

CONCLUSION—CONSEQUENCES OF THE VULNERABILITY OF
CR-POSITIVE INTERNEURONS
The alterations and/or sensitivity of different calcium-binding
protein-containing interneurons in human TLE were discussed
in several reports (Sloviter et al., 1991; Maglóczky et al., 2000;
Wittner et al., 2001, 2002; van Vliet et al., 2004; Tóth et al., 2010).
Calbindin-containing interneurons seem to be preserved and
enlarged, and display a sprouted axonal arbor. The parvalbumin-
containing cells are also preserved, although many of them most

likely loose immunoreactivity for parvalbumin due to calcium-
overload (Johansen et al., 1990). In contrast, CR-containing
interneurons are highly sensitive. The different vulnerability of
these calcium-binding protein containing interneurons probably
depends on the distinct input-output properties of these cells
and the intrinsic enzymatic properties, number of mithochondria
etc., rather than the type of the calcium-binding protein they
express. CR-containing interneurons were shown to be vulnerable
in epilepsy in most published studies. Decreased cell number
(Magloczky and Freund, 1993; Maglóczky and Freund, 1995;
André et al., 2001; Slézia et al., 2004; van Vliet et al., 2004; Tang
et al., 2006; Muzzi et al., 2009), altered dendritic tree, decreased
amount of dendritic contacts between cells (Tóth et al., 2010) and
a synaptic reorganization of CR-positive inhibitory terminals were
described (Maglóczky et al., 2000; Tóth et al., 2010).

These results are of special interest, since dendritic inhibition
was shown to be impaired in epilepsy, together with an intact peri-
somatic inhibition (Cossart et al., 2001). This can be only partially
explained by the sensitivity of somatostatin and neuropeptide Y-
containing dendritic inhibitory interneurons (de Lanerolle et al.,
1988; Mitchell et al., 1995; Sundstrom et al., 2001), since the axons
of these cells show a remarkable sprouting (de Lanerolle et al.,
1989; Sperk et al., 1992). In addition, the well preserved (Sloviter
et al., 1991) calbindin-containing dendritic inhibitory cells also
show an axonal sprouting (Wittner et al., 2002). However, despite
of the sprouting of dendritic inhibitory cells, dendritic inhibition
of pyramidal cells was found to be ineffective in TLE (Cossart
et al., 2001; Ben-Ari and Dudek, 2010).

Taken together, these findings suggest that the sensitivity of CR
containing interneurons plays an important role in the impair-
ment of dendritic inhibition in epilepsy:

1. the synchronous activation of these interneuron-selective
inhibitory cells is possibly impaired, leading to an asyn-
chronous and less effective dendritic inhibition

2. the CR-containing population of dendritic inhibitory cells
are also impaired, further decreasing the efficacy of dendritic
inhibition

3. due to the changes in their synaptic target distribution, they
innervate principal cell dendrites less frequently in epileptic
human hippocampus

Since the impaired dendritic inhibition may cause a less effec-
tive control of the efficacy and plasticity of excitatory inputs to
principal cells, and subsequently to the formation of principal
cell assemblies connected by abnormally potentiated synapses, the
impairment of CR-positive cells can be involved in epileptogenesis
and seizure generation (Maglóczky and Freund, 2005; El-Hassar
et al., 2007; Tóth et al., 2010). Furthermore, these excitatory
inputs were shown to undergo sprouting both in animal models
(Perez et al., 1996; Esclapez et al., 1999; Ben-Ari, 2001; Lehmann
et al., 2001) and humans (Lehmann et al., 2000; Magloczky,
2010), partly explaining why severe intractable seizures can occur
even in non-sclerotic patients, where the majority of principal and
non-principal cells are preserved (Maglóczky and Freund, 2005;
Magloczky, 2010; Tóth et al., 2010). The excessive reorganization
of the hippocampal inhibitory network, the sprouting of either
intrinsic or afferent excitatory pathways, together with the intact
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output from the CA1 region, may render the non-sclerotic hip-
pocampus a potent epileptogenic region (Maglóczky and Freund,
2005; Magloczky, 2010).

The sensitivity of CR-expressing interneurons for excito-
toxic insults was also shown in animal models (Magloczky and
Freund, 1993; Maglóczky and Freund, 1995; André et al., 2001;
Domínguez et al., 2003; Zhang et al., 2009). Since the early loss
of these cells can be observed in the acute and latent phase
of epileptogenesis (Zhao et al., 2008), we can hypothesize that
recurrent seizure generation might be associated with a loss of a
certain amount of CR-positive cells, among other factors.

Prevention of the loss of CR-positive cells and preserving
the integrity of the attached CR-positive dendrites may have
antiepileptic effects, protecting the proper inhibitory function
and helping to spare principal cells in epilepsy (Tóth et al.,
2010). Since they die by degeneration after excitotoxic insults in
the acute-to-latent phases, one therapeutic possibility may be to
promote their survival during the initial phase of epilepsy.
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