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Dendritic spines are the receptive contacts at most excitatory synapses in the central
nervous system. Spines are dynamic in the developing brain, changing shape as they
mature as well as appearing and disappearing as they make and break connections.
Spines become much more stable in adulthood, and spine structure must be actively
maintained to support established circuit function. At the same time, adult spines must
retain some plasticity so their structure can be modified by activity and experience. As
such, the regulation of spine stability and remodeling in the adult animal is critical for
normal function, and disruption of these processes is associated with a variety of late
onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix
(ECM), composed of a meshwork of proteins and proteoglycans, is a critical regulator
of spine and synapse stability and plasticity. While the role of ECM receptors in spine
regulation has been extensively studied, considerably less research has focused directly on
the role of specific ECM ligands. Here, we review the evidence for a role of several brain
ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse
formation, plasticity, and stability in adults.

Keywords: extracellular matrix, dendritic spine, chondroitin sulfate proteoglycans, agrin, reelin, extracellular
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DENDRITIC SPINES ARE HIGHLY STRUCTURED
POSTSYNAPTIC SIGNALING COMPARTMENTS
Dendritic spines are protrusions from the dendrite shaft of
neurons that comprise the receptive contact at most excitatory
synapses in the brain (Gray, 1959a,b; Harris and Kater, 1994;
Hering and Sheng, 2001). Ultrastructurally, dendritic spines are
composed of a thin neck supported by unbranched filamentous
actin (F-actin) and a bulbous head containing a network of
branched F-actin (Korobova and Svitkina, 2010; Tønnesen et al.,
2014). The spine head also contains the membrane-associated
postsynaptic density (PSD), a highly organized network of neu-
rotransmitter receptors, adhesion receptors, scaffolding proteins,
and downstream signaling molecules (Harris and Stevens, 1989;
Kennedy, 1994, 1997; Hunt et al., 1996; Walikonis et al., 2000;
Sheng and Kim, 2011; Harris and Weinberg, 2012). Scaffold-
ing proteins and cell adhesion molecules (CAMs) connect the
PSD to the spine actin cytoskeleton. Adhesion molecules also
connect to both the presynaptic partner and the extracellular
matrix (ECM) in and around the synaptic cleft (Figure 1A).
These and other dendritic spine proteins regulate actin filament
formation, turnover, and stability, thereby controlling dendritic
spine structure.

Spines have a unique structure that is intrinsic to their
function. The thin spine neck, ∼100–300 nm in diameter (Harris
and Stevens, 1989; Tønnesen et al., 2014), restricts diffusion
to compartmentalize biochemical and electrical postsynaptic

signaling (Majewska et al., 2000; Yuste et al., 2000; Sabatini et al.,
2002; Noguchi et al., 2005; Carter and Sabatini, 2008; Harvey
et al., 2008; Higley and Sabatini, 2012; Takasaki and Sabatini,
2014; Tønnesen et al., 2014). This compartmentalization enables
molecular modifications specific to individual spines and
synapses, including changes in synaptic efficacy and spine shape
and size. Overall spine head size varies considerably among
spines, from ∼200–1400 nm in diameter (Harris and Stevens,
1989; Tønnesen et al., 2014). Spine size correlates with synaptic
strength and larger spines commonly contain larger PSDs with
more AMPA-type glutamate receptors and appose axon terminals
with larger readily-releasable pools of neurotransmitter (Harris
and Stevens, 1988, 1989; Matsuzaki et al., 2001). Therefore, large
spines are more likely to produce strong excitatory postsynaptic
currents and have greater influence on neuronal firing and
network signaling.

DENDRITIC SPINE STRUCTURE IS DYNAMIC AND
REGULATED BY ACTIVITY AND DEVELOPMENT
Recent advances in imaging and single synapse stimulation tech-
niques have revealed that the size and transmission properties
of individual dendritic spines can be altered rapidly in response
to synaptic activity. Use of glutamate uncaging at individual
spines has shown that long-term activity-dependent synaptic
strengthening or weakening, also known as long-term potentia-
tion (LTP) and long-term depression (LTD), respectively, occur at
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FIGURE 1 | Dendritic spines are highly structured and plastic synaptic
specializations. (A) Schematic of a dendritic spine apposed to a presynaptic
terminal. The spine head and neck are supported by a network of filamentous
(F)-actin. Postsynaptic cell adhesion molecules (CAMs) connect to the
postsynaptic density (PSD) and F-actin in the spine, and extend from the
spine to associate with CAMs on the presynaptic terminal. Perisynapic and
putative synaptic cleft extracellular matrix (ECM) may interact with multiple
CAMs and other cell surface receptors. (B) Spine structural changes

accompany synaptic plasticity, with long-term potentiation (LTP) increasing
spine head size and long-term depression (LTD) decreasing head size.
(C) Mouse hippocampal CA1 neuron spine head sizes were obtained from
electron microscopy of the stratum radiatum. Spine head size and its variance
decrease as animals mature from P21 (juvenile) to P42 (adult). Figure
modified with permission from Kerrisk et al. (2013). (D) Spine motility, defined
as changes in spine length over time, is high in juvenile animals. By contrast,
spines from adult animals are relatively immotile.

discrete synapses and are associated with changes in spine size.
High frequency synaptic stimulation that causes LTP promotes
spine head enlargement, while low frequency stimulation that
causes LTD results in spine head shrinkage (Matsuzaki et al.,
2004; Nägerl et al., 2004; Zhou et al., 2004; Oh et al., 2013;
Figure 1B). Furthermore, smaller spines are more likely to be lost
following LTD-inducing stimulation paradigms (Bastrikova et al.,
2008).

Experiments using longitudinal transcranial imaging of indi-
vidual cortical spines support these ex vivo studies. Manipulating
sensory input alters the likelihood that dendritic spines will or
will not be lost (spine stability) over days, weeks, and months
(Oray et al., 2004; Zuo et al., 2005a,b; Lai et al., 2012). Addi-
tionally, in vivo imaging experiments in mouse models show that
stress and genetic abnormalities disrupt normal spine structural
dynamics and stability (Pan et al., 2010; Liston et al., 2013).
Excitingly, studies using imaging probes that report the activity
of specific signaling pathways are beginning to elucidate the
signaling events that underlie long-term changes in spine size
and signaling properties (Murakoshi et al., 2011; Murakoshi and
Yasuda, 2012; Lai and Ip, 2013; Oh et al., 2013; Zhai et al.,
2013).

Spine structural plasticity is also heavily influenced by devel-
opmental stage. Juvenile animals have increased variance in
spine head size (Sfakianos et al., 2007; Kerrisk et al., 2013;
Figure 1C) and much more dynamic spine motility relative to
spines in adult animals (Dunaevsky et al., 1999; Trachtenberg
et al., 2002; Majewska and Sur, 2003; Holtmaat et al., 2005;
Figure 1D). Furthermore, higher levels of spine formation and
loss occur in adolescent mice vs. adults (Grutzendler et al.,
2002).

While the age-dependent loss of spine plasticity has been
reproducibly observed, the mechanisms that underlie this
phenomenon are not well understood. Multiple synaptic proteins
and signaling events differ between juvenile and adult animals
as well as between wild type and disease-model animals, which
might help to explain differences in spine stability (Scheetz and
Constantine-Paton, 1994; Wu et al., 2009; Gundelfinger et al.,
2010; Charrier et al., 2012; Akbik et al., 2013; Koleske, 2013).
These observations do not, however, directly address whether
or how specific pairing of pre- and post-synaptic compartments
induces the machinery and mechanisms that confer increased
synapse and dendritic spine stability. While it is a difficult experi-
mental question to address, insights into this question are crucial
to understanding neurological disorders and how we can gain
control of synaptic flexibility.

BRAIN DISORDERS INVOLVE LOSS OF DENDRITIC SPINE
STABILITY
Loss of dendritic spine stability in adulthood underlies several
major neurological and psychiatric disorders, which are accom-
panied by perceptual, cognitive, memory, and behavioral deficits.
For instance, cortical neurons in patients with Alzheimer’s dis-
ease, Parkinson’s disease, and other neurodegenerative disorders
or dementia have decreased synapse and spine densities (Catalá
et al., 1988; Katzman, 1989; Terry et al., 1991; Scheff and Price,
2003). Schizophrenia patients also have reduced cortical spine
densities (Garey et al., 1998; Glantz and Lewis, 2000), and
medium spiny neurons in Huntington’s disease patients show
spine densities that are increased earlier and reduced later in
disease progression (Ferrante et al., 1991). Whether spine loss
causes disease or results from other problems is unknown, but
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disrupted network connectivity via spine loss may underlie the
cognitive deficits that occur in these patients. These observations
demonstrate the importance of dendritic spine stability for
normal brain function and suggest that a deeper comprehen-
sion of spine stabilization mechanisms could lead to a better
understanding of these diseases and possibly new therapeutic
approaches.

EXTRACELLULAR MATRIX RECEPTORS CONTROL DENDRITIC
SPINE STABILITY AND REMODELING
Several studies demonstrate that specific ECM receptors can
regulate dendritic spine stability and remodeling. Brain ECM is
composed of secreted proteins and proteoglycans that assemble
into cross-linked meshworks to provide structural support to
the surrounding cells (Barros et al., 2011; Dansie and Ethell,
2011; Wlodarczyk et al., 2011; Soleman et al., 2013). The brain
ECM forms a gel that surrounds neurons and glia, including the
space adjacent to and between synapses (Nicholson and Syková,
1998). There, pre- and postsynaptic CAMs associate with one
another and with the ECM to initiate and maintain synaptic
contact (Bukalo and Dityatev, 2012; Missler et al., 2012). These
transmembrane cell adhesion proteins connect to the intracel-
lular dendritic spine actin network and influence the activities
of actin regulatory molecules, thereby controlling spine shape
(Huntley et al., 2002; Washbourne et al., 2004; Lin and Koleske,
2010; Benson and Huntley, 2012; Cheadle and Biederer, 2012;
Sloniowski and Ethell, 2012; Koleske, 2013). Many adhesion
molecules also influence synaptic transmission, a key regulator of
spine structure (Chan et al., 2006, 2007; Huang et al., 2006; Shi
and Ethell, 2006; Bukalo and Dityatev, 2012).

Integrin adhesion receptors are a major family of ECM
receptors. Engagement of ECM by integrins triggers changes
in cell morphology and motility powered by actin cytoskele-
tal rearrangements in diverse cell types (Horwitz et al., 1986;
Tamkun et al., 1986; Otey and Burridge, 1990; Tawil et al.,
1993; Wang et al., 1993; Chong et al., 1994; Gumbiner, 1996;
Schwartz and Horwitz, 2006; Schwartz, 2010). Integrins are
crucial in the brain as well, where they mediate processes
such as migration, axonal outgrowth and pathfinding, and
synaptic plasticity (DeFreitas et al., 1995; Chan et al., 2006,
2007; Shi and Ethell, 2006; Belvindrah et al., 2007a,b). Inte-
grin signaling also modulates spine head size and stability dur-
ing adolescence in mice (Warren et al., 2012; Kerrisk et al.,
2013).

Other ECM receptors also function in the brain during
adulthood, where they may stabilize spines. For example, dys-
troglycan, part of the dystrophin glycoprotein complex, plays
important roles in axonal pathfinding (Wright et al., 2012)
and synapse formation (Sato et al., 2008), but also associates
with mature inhibitory synapses and modulates synaptic plas-
ticity (Lévi et al., 2002; Satz et al., 2010; Pribiag et al., 2014).
ApoER2, a receptor for the ECM protein reelin, is expressed
from late embryonic periods through adulthood, where it is
essential for proper migration of cortical neurons in devel-
opment (Hack et al., 2007) but also plays roles in synapse
maintenance and plasticity (Beffert et al., 2005, 2006; Trotter
et al., 2011). These and other ECM receptor studies provide

strong evidence that ECM regulates dendritic spine stability and
remodeling.

STUDYING ECM-MEDIATED CONTROL OF SPINE STRUCTURE
POSES UNIQUE DIFFICULTIES
Extracellular matrix molecules at synapses are likely candidates
for regulators of synapse and dendritic spine stability. While
studies have identified ECM receptors important for neuronal
function and dendritic spine morphology, they often fail to iden-
tify the critical ECM ligands that drive these important processes.
This failure may be partially due to the inherent difficulty of
studying ECM components. Extracellular matrix molecules are
secreted, so in the brain where many different cell types are inter-
mingled, cell origin and site of function can be difficult to identify.
The heterogenous cell population in the brain also complicates
purification of ECM molecules from specific cell types. Addi-
tionally, many ECM molecules are large, such as laminins (800
kDa), and can have multiple interaction domains from the same
molecule driving distinct pathways (Colognato and Yurchenco,
2000). Extracellular matrix biochemical activities are also altered
by covalent modification and/or proteolytic processing, which
can be triggered by synaptic activity (Nedivi et al., 1993; Qian
et al., 1993; Sung et al., 1993; Szklarczyk et al., 2002; Chen et al.,
2008; Horejs et al., 2014). Furthermore, it can be difficult to
disentangle possible functions of ECM components in spine sta-
bilization, e.g., providing extracellular rigidity, mediating spine-
ECM adhesions, and/or inducing intracellular signaling cascades
(Figure 2).

Regardless of the challenges posed by studying the roles of
ECM in dendritic spine and synapse stability, emerging evidence
indicates that specific ECM components are key regulators of
dendritic spine and synapse structure, plasticity, and stability.
Here, we review the evidence that specific ECM components and
their interaction partners control dendritic spine and synapse
structure and how remodeling of the ECM may contribute to
dendritic spine plasticity and stability in adults.

ECM PROTEINS ARE KEY REGULATORS OF DENDRITIC SPINE
AND SYNAPSE STABILITY AND REMODELING
CHONDROITIN SULFATE PROTEOGLYCANS RESTRICT FUNCTIONAL
PLASTICITY AND STABILIZE SPINES
Chondroitin sulfate proteoglycans (CSPGs), including the
lecticans (aggrecan, neurocan, versican and brevican), phospha-
can, and leucine-rich CSPGs, are major components of the
mature brain ECM. Each CSPG consists of a multi-domain pro-
tein core, important for interactions with other ECM molecules,
as well as multiple glycosaminoglycan (GAG) side chains that
can be degraded by the bacterial enzyme chondroitinaseABC
(chABC). The GAG chains are critical for many CSPG functions
(Galtrey and Fawcett, 2007), and the pattern of sulfation can
define the specific response of the CSPG to signaling partners
(Gama et al., 2006). Some CSPGs, notably brevican (Yamada
et al., 1994), also exist in non-proteoglycan forms, and loss of
CSPG protein core genes is associated with neurological disease
(Cichon et al., 2011; Mühleisen et al., 2012). Many CSPGs assem-
ble to form dense peri-neuronal nets (PNNs) around inhibitory
neurons (Kwok et al., 2011), which can be identified by staining
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FIGURE 2 | Mechanisms of spine stabilization and remodeling by
extracellular matrix (ECM) proteins. Extracellular matrix components can
stabilize and remodel dendritic spines by a variety of different mechanisms.
Structural restriction: ECM components such as chondroitin sulfate
proteoglycans (CSPGs) can form a matrix around dendritic spines to provide
extracellular rigidity and physically restrict spine motion. Adhesion: classical
ECM proteins such as fibronectin and RGD-containing proteins can act as
adhesion substrates and bind to integrin adhesion receptors to remodel
spines. Ligand/receptor-driven intracellular signaling: ECM proteins like
reelin function as ligands for non-adhesion receptors to drive intracellular
signaling cascades that regulate spine remodeling and formation. Epitope
unmasking by proteases: extracellular proteases such as tissue
plasminogen activator (tPA) and the matrix metalloproteinase (MMPs) can
cleave ECM proteins to reveal cryptic ligands that drive intracellular
signaling to change spine morphology.

for GAG epitopes. In addition, a subset of excitatory neurons are
also surrounded by more diffuse CSPGs (Wegner et al., 2003).

While the role of specific CSPG core proteins in dendritic
spine structure and plasticity has not been extensively studied, a
wealth of evidence indicates that the GAG chains of CSPGs restrict
circuit plasticity in vivo, particularly in the visual system. In the
primary visual cortex of rodents and other mammals, cells that
receive geniculocortical inputs representing both eyes typically
respond more strongly to stimulation of one eye, a phenomenon
called ocular dominance (OD). Monocular deprivation (MD)
enforced by closing one eye increases the proportion of cells

that respond to stimulation of the open eye while reducing the
proportion that respond to the closed eye, but only during a
critical period for OD plasticity from P19-P35 (Wiesel and Hubel,
1963; Gordon and Stryker, 1996). Chondroitin sulfate proteo-
glycan expression in primary visual cortex increases through
this critical period, and rearing mice in the dark, which delays
critical period closure, also delays the developmental increase
in CSPGs. This suggests that CSPG expression may be causally
linked to the age-dependent loss of plasticity (Pizzorusso et al.,
2002). Indeed, while MD normally cannot induce OD plastic-
ity in adult rats after the critical period, MD can shift OD in
adult rats that have had chABC injected directly into primary
visual cortex (Pizzorusso et al., 2002). In a similar critical period
plasticity paradigm, fear memories can be robustly erased by
extinction training only during an early critical period, but
chABC degradation of PNNs in the amygdala reinstates the ability
to erase fear memories in adult rats (Gogolla et al., 2009). In
addition, mice lacking the CSPGs neurocan or brevican have
deficits in LTP maintenance without other apparent developmen-
tal defects, suggesting a role for CSPGs in adults (Zhou et al.,
2001; Brakebusch et al., 2002). These results demonstrate that
CSPGs are critical for the functional stability of neuronal circuits
in vivo.

Chondroitin sulfate proteoglycans normally stabilize dendritic
spines. The physiological changes induced by MD are associated
with a reduction in spine density of layer II/III visual cortical
neurons responsive to the deprived eye (Mataga et al., 2004;
Pizzorusso et al., 2006). This loss of spines can be rescued by
opening the deprived eye and closing the previously open eye,
but only in juvenile animals. However, chABC treatment rein-
states this plasticity in adult animals, demonstrating that CSPGs
normally stabilize existing spines (Pizzorusso et al., 2006). Loss of
CSPGs also enhances spine motility, measured as the magnitude
of fluctuations in spine length over time (Figure 1C). Spine
motility decreases with age (Majewska and Sur, 2003), but chABC
treatment of adult visual cortex in vivo and of hippocampal
organotypic slices in vitro enhances spine motility (Orlando et al.,
2012; de Vivo et al., 2013), reverting spines to a more immature
phenotype. This is similar to the effect of MD, which also increases
spine motility (Oray et al., 2004). These results demonstrate
that CSPGs stabilize dendritic spine structure and movement
(Figures 3A,B).

Chondroitin sulfate proteoglycans interact with interneurons
in PNNs and the development of inhibitory circuits is associated
with closure of the critical period, suggesting the effects of chABC
treatment on OD plasticity and spine stability may reflect alter-
ations of inhibitory circuits (Pizzorusso et al., 2002). However,
emerging evidence indicates that CSPGs can also act directly on
spines, independently of PNNs and GABAergic neurons. Orlando
et al. (2012) have shown that microinjection of chABC into
the stratum radiatum of hippocampal slices, which lacks PNNs
but has diffuse CSPG staining, increases CA1 pyramidal neuron
spine motility and the number of spines with outgrowths from
their heads, mimicking the effects of chABC bath application.
This demonstrates that CSPGs normally stabilize spine structure
and reduce spine head outgrowths independently of PNNs and
inhibitory function (Orlando et al., 2012). These increases in
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FIGURE 3 | Chondroitin sulfate proteoglycans around spines restrict
spine dynamics and functional plasticity. (A) In juvenile animals during
the critical period, CSPG expression is low and visual monocular deprivation
(MD) can increase spine motility in primary visual cortex and drive changes
in ocular dominance (OD) plasticity. (B) In adult animals after the critical
period, CSPG expression is high and MD can no longer increase spine
motility or drive OD plasticity. However, treatment with chondroitinaseABC
(chABC) to degrade CSPG glycosaminoglycan (GAG) chains allows MD to
once again increase spine motility and drive OD plasticity in adults,
demonstrating that CSPGs restrict spine remodeling and functional
plasticity in adult animals.

both motility and spine head outgrowth with chABC application
require β1 integrin function, which has been shown to be involved
in dendrite and spine stability (Warren et al., 2012). While CSPGs
interact with and inhibit integrin function (Wu et al., 2002; Tan
et al., 2011), whether these specific interactions regulate spine
stability is unclear, and should be the target of future studies.

RGD PEPTIDES, AND POSSIBLY FIBRONECTIN, REGULATE DENDRITIC
SPINE REMODELING
In the brain, there is little expression of most of the fibrous ECM
proteins such as fibronectin, vitronectin, and the collagens that
are major ECM components in other tissues (Ruoslahti, 1996a).
Fibronectin mRNA and protein can be detected at low levels in
discrete populations of neurons and astroglia, and its expression
is increased in the hippocampus of adult animals by kainic acid
treatment (Hoffman et al., 1998), but very little is known about
the function of fibronectin in the brain. Instead, researchers have
more commonly used synthetic peptides common to fibronectin
and other matrix proteins that carry an arginine-glycine-aspartate
(RGD) motif critical for binding to integrins and for adhesion
(Ruoslahti and Pierschbacher, 1987; Ruoslahti, 1996b). RGD
peptides have also been shown to evoke changes in synaptic
plasticity and structural stability. For example, RGD peptides
block the maintenance phase of LTP (Staubli et al., 1990; Bahr
et al., 1997; Chun et al., 2001) and potentiate NMDA receptor
(NMDAR) currents (Lin et al., 2003; Bernard-Trifilo et al., 2005),
demonstrating that RGD-containing proteins may be involved in
adult plasticity. RGD peptides also regulate structural stability in
mature neurons, as treatment of 14 DIV cultured hippocampal
neurons with RGD peptides induces an elongation of existing

spines and causes filopodia formation. These changes can be
blocked by NMDAR and CaMKII antagonists, suggesting that
integrins regulate the stability of dendritic spines via NMDARs
and CaMKII in vitro (Shi and Ethell, 2006). To be clear, studies
using RGD peptides do not demonstrate that any specific RGD-
containing ECM protein functions in the brain, as many extra-
cellular proteins have RGD motifs, but they strongly suggest the
involvement of integrin receptors in these diverse processes. In
addition to traditional “outside-in” integrin activation described
above, integrin adhesion can be activated by intracellular signal-
ing partners in an “inside-out” mechanism (Calderwood, 2004;
Moser et al., 2009). Inside-out signaling is active but has not been
well studied in neurons, and may help explain changes in integrin-
mediated ECM contact with changes in neuronal activity. For
example, it has recently been shown that reelin signals through
its receptors ApoER2 and VLDLR to promote integrin α5β1
adhesion to fibronectin by an inside-out mechanism to control
neuronal positioning during cortical development (Sekine et al.,
2012). More work needs to be done in the future to establish
which RGD-containing brain proteins have effects on synaptic
signaling, plasticity and spine structure, and how these signaling
mechanisms interact with inside-out signaling pathways.

REELIN ENHANCES GLUTAMATERGIC TRANSMISSION AND
PLASTICITY AND MAY STABILIZE SPINES
Reelin is a 385 kDa secreted ECM protein that is a key regula-
tor of neuronal migration in development (Tissir and Goffinet,
2003; D’Arcangelo, 2014). However, even after neurons have
reached their proper destination, reelin continues to modulate
synaptic signaling pathways to control dendritic spine struc-
ture and synaptic plasticity. Reelin is expressed by layer I
and II GABAergic interneurons, primarily Cajal-Retzius cells
(Rodriguez et al., 2000), which project to other cortical layers
where they secrete reelin into the ECM. Upon release, reelin
surrounds and adheres to dendritic shafts and spines of cortical
pyramidal cells (Rodriguez et al., 2000; Pappas et al., 2001),
suggesting that it might regulate spine structure (Rodriguez et al.,
2000). Indeed, younger (P21-P31) heterozygous reelin+/– mice,
which have grossly normal neuron positioning but only half
the level of reelin (Liu et al., 2001; Pappas et al., 2001), have
significantly reduced dendritic spine density and altered spine
morphology (Liu et al., 2001; Niu et al., 2008; Iafrati et al.,
2014). Interestingly, by adulthood reelin+/– mice exhibit only
minimal spine density loss compared to wild type, suggest-
ing that compensatory mechanisms promote additional spine
development when reelin levels are reduced (Ventruti et al.,
2011).

In adult animals, reelin continues to promote synaptic func-
tion and regulate spine morphology. Adult reelin+/– mice have
reduced levels of synaptic signaling molecules (Ventruti et al.,
2011) as well as deficits in excitatory postsynaptic responses,
LTP, and LTD (Qiu et al., 2006a), while addition of recombinant
reelin to hippocampal slices or direct injection into the ventricles
significantly enhances hippocampal LTP (Beffert et al., 2005;
Pujadas et al., 2010; Rogers et al., 2011). Recombinant reelin also
increases NMDA and AMPA currents in cultured hippocampal
slices and primary hippocampal cultures (Chen et al., 2005; Qiu
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et al., 2006b; Groc et al., 2007; Qiu and Weeber, 2007). These
results together demonstrate that reelin is both necessary and
sufficient for adult plasticity and glutamatergic signaling. Reelin is
also sufficient to promote spine remodeling, as postnatal overex-
pression of reelin in the mouse forebrain increases spine head size
as well as the number of spines with multiple synaptic contacts,
while leaving spine density unchanged. Turning off this reelin
overexpression decreases spine size and density, indicating that
in some cases reelin may also interact with spine stability mecha-
nisms (Pujadas et al., 2010). In addition, injection of recombinant
reelin into the ventricles of adult mice increases hippocampal CA1
spine density (Rogers et al., 2011), suggesting that reelin may
also promote spine formation in adults. Interestingly, injection
of reelin leads to an hours-long transient increase in reelin levels
(Rogers et al., 2011), while genetic overexpression would cause
a constant increase, suggesting the timing and duration of reelin
expression may be important for its effect on spines. Together,
these results indicate that in different contexts, reelin promotes
synaptic transmission and plasticity and modulates spine dynam-
ics and stability. Further work on stability would benefit from a
conditional reelin knockout mouse that could be used to test the
necessity of reelin for spine stability in adult animals.

Reelin levels also appear to affect disease pathology in humans.
For example, reelin expression is reduced approximately 50% in
patients with schizophrenia (Impagnatiello et al., 1998; Berretta,
2012) and reelin haploinsufficiency in mice causes increased neu-
ron packing density, decreased GAD67 levels, reduced pre-pulse
inhibition and loss of dendritic spines, all features associated
with schizophrenia pathology (Tueting et al., 1999; Liu et al.,
2001). Reelin may also be neuroprotective against Alzheimer’s
disease, as it has been shown to interact with soluble amyloid-β42,
protect against amyloid-β42-induced spine loss and neuron death
in cultured neurons, and reduce amyloid plaque development and
memory loss in J20 Alzheimer’s model mice (Pujadas et al., 2014).
Together, these data show that reelin, which has important roles
in neuron development and positioning, also plays critical roles in
late onset diseases after development is complete.

AGRIN PROMOTES FILOPODIA AND DENDRITIC SPINE FORMATION
Agrin is best known for its prominent role in development of
the vertebrate neuromuscular junction (NMJ) synapse, where it
is deposited by motor neurons to induce acetylcholine receptor
clustering in the muscle (Gautam et al., 1996; Glass et al., 1996;
Sanes and Lichtman, 2001). Agrin is also widely expressed in the
brain, with the highest levels of agrin expression coinciding with
the peak period of synaptic development (O’Connor et al., 1994;
Cohen et al., 1997). Indeed, antisense-mediated knockdown of
agrin inhibits synapse development in cultured neurons (Ferreira,
1999; Bose et al., 2000). In contrast to knockdown systems, how-
ever, cultured agrin–/– neurons do not exhibit synaptic deficits
(Li et al., 1999; Serpinskaya et al., 1999), suggesting that com-
pensatory mechanisms may arise in the absence of endogenous
agrin (Bose et al., 2000). Interestingly, knockdown of agrin in both
mature (McCroskery et al., 2009) and immature (McCroskery
et al., 2006) neuronal cultures reduces dendritic filopodia num-
ber, and agrin overexpression or clustering in immature cultured
rat and mouse hippocampal neurons is sufficient to induce

filopodia in vitro (Annies et al., 2006; McCroskery et al., 2006).
As filopodia are precursors for dendritic spines (Ziv and Smith,
1996), these results support a role for agrin in promoting synapse
and spine formation even in mature neurons. Indeed, agrin–/–
mice in which perinatal lethality is rescued by muscle-specific
agrin re-expression exhibit decreased cortical dendritic spine den-
sity (Ksiazek et al., 2007).

A role for agrin in spine and synapse stability is also supported
by studies of neurotrypsin (also called motopsin or Prss12),
an extracellular protease whose only known substrate is agrin
(Gschwend et al., 1997; Molinari et al., 2002; Reif et al., 2007;
Stephan et al., 2008). neurotrypsin–/– mice have reduced CA1
apical dendritic spine density (Mitsui et al., 2009). Neurotrypsin
is released from presynaptic neurons in response to NMDAR-
mediated activity and cleaves agrin at the synapse, suggesting
that neurotrypsin might be involved in activity-dependent plas-
ticity. Indeed, while neurons in hippocampal slices from adult
neurotrypsin–/– mice have normal electrophysiological LTP, LTP-
inducing stimuli fail to induce the formation of new filopodia
in the knockouts, suggesting that neurotrypsin is required for
some aspects of structural plasticity that accompany LTP in
adult animals. Interestingly, a soluble cleavage fragment of agrin
produced by neurotrypsin can rescue the loss of LTP-induced
filopodia formation in neurotrypsin–/– mice (Matsumoto-Miyai
et al., 2009; Figure 4). These results suggest a role for neu-
rotrypsin and agrin in supporting new spine formation follow-
ing LTP induction protocols in mature animals. Further work
should address the molecular mechanisms downstream of agrin
cleavage that promote filopodia formation and whether and
how these new filopodia form functional dendritic spines and
synapses.

TENASCINS ARE REQUIRED FOR SYNAPTIC PLASTICITY AND MAY
INTERACT WITH SPINES
The tenascins are a family of ECM proteins that oligomerize
through a tenascin association domain and interact with other
ECM proteins and receptors through tenascin’s EGF-like and
fibronectin type III-repeats (Jones and Jones, 2000). Tenascin
R (TNR) and tenascin C (TNC) are both expressed in the
brain, TNR exclusively so, where they play roles in synaptic
plasticity.

Tenascin R is required for normal plasticity, synaptic trans-
mission, and behavior. Tenascin R knockout mice have impaired
hippocampal LTP but normal LTD, increased basal synaptic trans-
mission, and anxiety and motor deficits (Bukalo et al., 2001;
Saghatelyan et al., 2001; Freitag et al., 2003; Gurevicius et al.,
2004). Tenascin R is mainly associated with CSPGs in PNNs
around inhibitory interneurons (Brückner et al., 2000), where
it crosslinks some CSPG family members (Aspberg et al., 1997).
Tenascin R’s affect on LTP is due to it carrying the human natural
killer-1 (HNK1) carbohydrate epitope (Kruse et al., 1985) which
normally interferes with γ -aminobutyric acid type B GABAB

receptor function. GABAB receptors block GABAA receptor-
mediated inhibition by reducing presynaptic GABA release
through a retrograde mechanism (Saghatelyan et al., 2001, 2003).
Therefore the loss of HNK1 with tenascin-R–/– disinhibits GABAB

receptors, allowing them to block GABAA-mediated inhibition
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FIGURE 4 | Agrin cleavage by neurotrypsin plays an important role in
filopodia formation following LTP. In wild type animals after an LTP
stimulus, agrin is cleaved by neurotrypsin (top left) and the agrin fragment
promotes growth of new dendritic filopodia (top right). In neurotrypsin
knockout mice, agrin cannot be cleaved (bottom left) and new filopodia are

not formed in response to an LTP-inducing stimulus (bottom right). However,
application of a soluble recombinant neurotrypsin-dependent agrin cleavage
fragment rescues this phenotype, promoting new filopodia growth after LTP
even in neurotrypsin knockout hippocampal slices. See Matsumoto-Miyai
et al. (2009).

and increase excitatory transmission (Saghatelyan et al., 2000,
2001; Nikonenko et al., 2003), raising the threshold for LTP
induction (Bukalo et al., 2007).

A key role for TNR in spine stability has been described
in the GABAergic granule cells of the olfactory bulb, which
have non-conventional dendritic spines that serve both pre- and
post-synaptic functions. Tenascin R is expressed and deposited
in the olfactory bulb only in adults. Granule cells born in
adult tenascin-R–/– mice have reduced spine density and reduced
migration to the olfactory bulb, while granule cells born in
juvenile animals are normal. The reduction in spine density is
not secondary to migration defects, as interfering with TNR
function after wild type adult-born granule cells have migrated
to the olfactory bulb produces a similar reduction in spine density
(David et al., 2013). These results demonstrate that TNR regulates
the strength of inhibitory contacts onto excitatory neurons to alter
adult synaptic plasticity and also regulates spine stability on a
subset of inhibitory interneurons.

Tenascin C plays a role in modulating hippocampal plasticity.
Tenascin C expression is high early in development but decreases
through adolescence and is very low in adults (Ferhat et al.,
1996). However, TNC expression can be transiently induced in
adult animals by stimuli that cause LTP (Nakic et al., 1998),
suggesting a role for TNC in plasticity. Indeed, tenascin-C–
/– mice have reduced hippocampal CA1 LTP and lack CA1
LTD, though LTP in other regions of the hippocampus is
normal (Evers et al., 2002; Strekalova et al., 2002). The spe-
cific role for TNC in neuron structure has been understudied,
although one study suggests that TNC knockout causes redis-
tribution of stubby dendritic spines in cortex away from pri-
mary dendrites and toward higher order dendrites (Irintchev
et al., 2005). Further studies will undoubtedly reveal more

detailed functions for TNC in spine formation, plasticity, and
stability.

LAMININS ORGANIZE AND MAINTAIN SYNAPSES
Laminins are large, secreted, heterotrimeric glycoproteins made
up of alpha (α), beta (β), and gamma (γ) subunits that interact
with numerous transmembrane proteins, including integrin
receptors, α-dystroglycan, and basal CAM/Lutheran (Horwitz
et al., 1985; Buck and Horwitz, 1987; Smalheiser and Schwartz,
1987; Gehlsen et al., 1988; Ignatius and Reichardt, 1988; Gee
et al., 1993; Henry and Campbell, 1996; El Nemer et al., 1998;
Kikkawa et al., 2007; Aumailley, 2013; Yousif et al., 2013). Multiple
α, β, and γ genes have been identified and they can combine
to form over a dozen distinct heterotrimers (Aumailley et al.,
2005; Aumailley, 2013). Each of the three subunits of laminin
have an N-terminal short arm region, which mediates interactions
with transmembrane receptors and other ECM molecules, and a
coiled-coil domain, which mediates heterotrimerization. The α

subunits also have a C-terminal globular domain that engages
with cell surface receptors, including several integrins and α-
dystroglycan (Colognato and Yurchenco, 2000; Aumailley, 2013).

Early experiments revealed that laminins can promote neurite
growth from various cultured neuronal cells (Manthorpe et al.,
1983; Liesi et al., 1984; Lander et al., 1985). Subsequently, Sanes
and colleagues identified key roles for laminins at the NMJ where
specific laminin subunits control development, maturation, and
stability of the synapse (Sanes, 1982; Hunter et al., 1989a,b;
Martin et al., 1995; Patton et al., 1997, 2001; Nishimune et al.,
2008; Samuel et al., 2012). For example, β2 subunit-containing
laminins are produced by the muscle and localize to the center
of the synapse to direct acetylcholine receptor clustering (Martin
et al., 1995). Additionally, an interaction between the β2 subunit
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and a presynaptic voltage-gated calcium channel maintains active
zone organization (Nishimune et al., 2004). The α4 and α5
laminin subunits also play roles at the NMJ where they signal
through the ECM receptor dystroglycan to promote postsynaptic
maturation. The combined loss of laminins α4 and α5 results in
smaller, much less elaborate synapses, and loss of α5 alone from
the muscle causes a delay in synapse maturation (Nishimune et al.,
2008). Interestingly, loss of laminin α4 also causes premature
aging at the NMJ, accelerating age-related phenotypes by several
months (Samuel et al., 2012). This work and additional evidence
in the peripheral nervous system established laminins as major
players in synapse formation and maintenance.

Recent evidence also supports roles for laminins in main-
taining synapse structure and stability in the central nervous
system. Mice lacking the laminin β2 subunit have disrupted hip-
pocampal synapse structure, including misaligned pre- and post-
synaptic partners and increased PSD length (Egles et al., 2007).
Co-culturing experiments indicate that β2 laminin is produced
by postsynaptic neurons in this system. In the hippocampus,
kainic acid injection to induce excitotoxic injury degrades laminin
γ1 and causes neuron death. These effects are absent in mice
lacking the protease tissue plasminogen activator (tPA) and can
be blocked with inhibitors of plasmin, an extracellular protease
that is the substrate of tPA and degrades laminins. Importantly,
adding a laminin antibody to disrupt laminin-neuron interac-
tions can restore neuronal sensitivity to excitotoxic insult in
tPA-deficient mice (Chen and Strickland, 1997). Furthermore,
plasmin-mediated laminin degradation is associated with reduced
LTP (Nakagami et al., 2000), although specific effects on dendritic
spine size or stability have not been investigated.

The roles of laminins in the brain are not as well characterized
as their roles in the peripheral nervous system. Nonetheless,
these observations suggest that laminins function at synapses to
maintain neuronal stability and synapse structure and function.
More work is necessary to describe functions of specific laminin
subunits in the brain as well as the receptors that mediate CNS
laminin:neuronal interactions.

NETRIN:DCC SIGNALING REGULATES SPINE MORPHOLOGY AND LTP
Netrins are laminin-related proteins that play diverse conserved
roles in neuronal morphogenesis and stability (Ishii et al., 1992;
Serafini et al., 1994, 1996; Barallobre et al., 2000; Adler et al.,
2006; Colón-Ramos et al., 2007; DeNardo et al., 2012; Smith
et al., 2012). In mice and humans, the netrin family consists of
three secreted molecules, netrins 1, 3, and 4, and two membrane-
bound, GPI-anchored proteins, netrin G1 and G2. Receptors for
secreted netrins include deleted in colorectal cancer (DCC), the
UNC5 family of proteins, and specific integrin receptors (Chan
et al., 1996; Keino-Masu et al., 1996; Leonardo et al., 1997;
Yebra et al., 2003; Stanco et al., 2009). Interestingly, netrins share
homology with the short arm regions of the β or γ subunits
of laminin (Lai Wing Sun et al., 2011) and netrin 4 binds the
short arm of laminin γ1 and γ3 subunits to form netrin:laminin
complexes and disrupt laminin:laminin interactions (Schneiders
et al., 2007).

Recent work suggests netrin:DCC interactions might regulate
synapse structure and function in the brain. Loss of DCC after

initial development causes smaller dendritic spine head size and
impairs learning and LTP. Also, Netrin-1 and DCC co-fractionate
from synapses of mature rats, and DCC is present at spines of CA1
pyramidal neurons in mature (60 DIV) cultured hippocampal
slices (Horn et al., 2013). While this suggests that netrin can
regulate both spine morphology and synaptic transmission in
adulthood, further study is needed to understand the roles of
netrins at synapses in the adult CNS.

ECM PROTEASES REGULATE SPINE AND SYNAPSE
STABILITY AND REMODELING
TISSUE PLASMINOGEN ACTIVATOR CREATES A PERMISSIVE
ENVIRONMENT FOR SPINE DESTABILIZATION
Tissue plasminogen activator (tPA) is a secreted extracellular
serine protease best known for its role in cleaving and activating
plasminogen into the active protease plasmin to prevent blood
clots in the circulatory system (Collen, 1999). In the CNS, tPA
is expressed and secreted widely (Sappino et al., 1993; Strick-
land, 2001), though its activity is located primarily in neurons
of the hippocampus, amygdala, cerebellum and hypothalamus
(Sappino et al., 1993; Baranes et al., 1998; Lochner et al., 2006).
Tissue plasminogen activator was first identified as an activity-
dependent immediate early gene strongly induced in rat hip-
pocampus after seizures or LTP (Qian et al., 1993), suggesting
a role for the protease in adult plasticity. Indeed, tPA–/– mice
have deficits specifically in hippocampal LTP maintenance (Frey
et al., 1996; Huang et al., 1996) with no problems in short term
potentiation paradigms like pre-pulse facilitation or early-phase
LTP. Tissue plasminogen activator is also sufficient to support
late-phase LTP, as genetic overexpression of tPA enhances LTP
proportional to the amount of gene overexpression (Madani et al.,
1999). Tissue plasminogen activator can also regulate plasticity in
other systems, including cerebellar motor learning (Seeds et al.,
2003) and striatal LTD (Calabresi et al., 2000), and tPA–/– mice
are resistant to chemically-induced synaptic potentiation (Huang
et al., 1996; Baranes et al., 1998).

Tissue plasminogen activator is a key regulator of dendritic
spine stability during plasticity, both in the visual system and in
response to stress. Tissue plasminogen activator becomes acti-
vated in binocular primary visual cortex during MD, and tPA
knockout blocks MD-induced OD plasticity shifts. Importantly,
this loss of plasticity can be rescued by recombinant tPA (Mataga
et al., 2002), demonstrating a critical role for tPA in OD plasticity.
In addition, MD upregulates spine motility, and this effect can be
mimicked by direct application of tPA or plasmin to visual cortex.
Importantly, the increased motility induced by MD occludes that
caused by plasmin application, suggesting that plasmin and MD
function in the same pathway to permit MD-induced structural
plasticity (Oray et al., 2004). In addition, while 4 days of MD
causes spine pruning in visual cortex during the OD critical
period, this spine loss is blocked in tPA–/– mice, indicating
that tPA is also required for spine pruning in response to MD
(Mataga et al., 2004). Chronic stress can also cause spine loss
in the hippocampus and amygdala. Plasminogen is activated
around dendritic spines by chronic stress, and knockout of tPA or
plasminogen blocks stress-induced spine loss (Pawlak et al., 2005;
Bennur et al., 2007). These results suggest that tPA negatively
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regulates spine stability and that its activation creates a permissive
environment that destabilizes spines and promotes their loss.

One open question in the field is what substrates of tPA pro-
mote plasticity in each of these paradigms. Classically, tPA cleaves
plasminogen to make the active protease plasmin, which can
then degrade ECM targets. Indeed, plasmin can degrade laminin
and the CSPG phosphacan to regulate LTP and hippocampal
mossy fiber outgrowth (Nakagami et al., 2000; Wu et al., 2000).
Plasmin also likely degrades ECM proteins in the MD paradigm,
but its exact targets are unknown (Oray et al., 2004). However,
it is important to note that tPA certainly has other non-ECM
targets in the brain. For example, the loss of late LTP in tPA
and plasminogen knockouts is mostly due to reduced proBDNF
cleavage to create the mature form of BDNF (Pang et al., 2004).
In addition, tPA can cleave the NR1 subunit of the NMDAR
to potentiate NMDAR currents (Nicole et al., 2001). It is clear
from these varied results that tPA and plasmin target a variety of
ECM and non-ECM proteins to regulate synaptic and structural
plasticity. It will be important to clearly identify the critical tPA
targets in each experimental paradigm to better understand the
role of tPA in dendritic spine regulation.

MATRIX METALLOPROTEINASES PLAY DIVERSE ROLES IN DENDRITIC
SPINE REMODELING IN DISEASE, DEVELOPMENT, AND PLASTICITY
Matrix metalloproteinases (MMPs) are a large class of secreted
and transmembrane proteases that can degrade many ECM pro-
teins, transmembrane receptors, and other signaling proteins
(Visse and Nagase, 2003). Matrix metalloproteinases were initially
identified as critical for brain function because the mRNA for
TIMP1, an endogenous inhibitor of MMPs, is upregulated in
a kainic acid-induced epilepsy model, suggesting an activity-
dependent role for MMPs in epilepsy (Nedivi et al., 1993; Rivera
et al., 1997; Jaworski et al., 1999). In the kindling model of
epilepsy (Morimoto et al., 2004), MMP9 knockout delays seizure
onset while MMP9 overexpression speeds onset (Wilczynski et al.,
2008). In addition, MMP2 and MMP9 are expressed in neurons
and glia and are upregulated by kainate treatment (Szklarczyk
et al., 2002), and other MMPs may also be expressed after injury or
certain stimulations (Bilousova et al., 2006; Meighan et al., 2006).
Importantly, kainate-induced seizures cause hippocampal spine
loss that is blocked in MMP9–/– mice (Wilczynski et al., 2008).

MMP9 activity is also important in another pathophysio-
logical condition, Fragile X syndrome (FXS). Mice with FXS
have more long and thin spines than wild type mice, especially
early in development. Treatment of FXS mice or hippocampal
cultures derived from these mice with minocycline to inhibit
MMP9 can normalize spine morphology (Bilousova et al., 2009),
suggesting that hyperactive MMP9 in development prevents spine
maturation. Indeed, MMP9 has recently been shown directly to
be hyperactive in FXS mice, and disruption of the MMP9 gene
in FXS mice normalizes the spine, behavioral, and signal trans-
duction defects associated with FXS (Sidhu et al., 2014). These
results demonstrate that pathophysiological activation of MMP9
can promote changes in dendritic spine morphology associated
with disease (Figure 5A).

Matrix metalloproteinases also play roles in developmental
processes such as spine protrusion and early maturation. For

FIGURE 5 | Matrix metalloproteinases play diverse roles in dendritic
spine remodeling in disease, development, and plasticity. (A) In Fragile
X syndrome (FXS), MMP9 is hyperactive and dendritic spines are elongated
early in development. MMP9 loss of function or inhibition with minocycline
normalizes these spine defects. In epilepsy models, seizure-induced spine
loss is blocked by inhibition of MMP activity. (B) In development, activation
of MMPs, particularly MMP9, causes spine thinning and elongation, while
MMP inhibition promotes the maturation of filopodia into mature,
mushroom shaped spines. (C) Matrix metalloproteinases play a different
role in adult plasticity, cleaving unknown ECM proteins to reveal cryptic
integrin ligands that drive spine enlargement during LTP. In addition to
changes in spine size, MMP activity is required for the maintenance phase
of LTP.

example, bath application of activated MMP9 to young hip-
pocampal cultures or organotypic slices and overexpression of
activated MMP9 cause dendritic spines to become longer and
thinner (Michaluk et al., 2011). Similarly, treatment of matur-
ing hippocampal cultures with MMP7 causes spine elongation
(Bilousova et al., 2006). By contrast, MMP inhibition of cul-
tured neurons promotes maturation of thin filopodial spines into
mature mushroom-shaped spines (Tian et al., 2007; Bilousova
et al., 2009: Figure 5B). Matrix metalloproteinase activation
promotes spine elongation at least in part through cleavage
of intercellular cell adhesion molecule 5 (ICAM5). Full length
ICAM5 is found in immature neurons and is cleaved by MMPs
to release a soluble extracellular domain that promotes filopodial
elongation (Tian et al., 2007). Soluble ICAM5 also increases
AMPA receptor expression and cofilin phosphorylation, pheno-
types that are associated with spine maturation and depend on β1
integrin (Conant et al., 2011; Lonskaya et al., 2013). Interestingly,
ICAM5 localization in cortical neurons shifts during synapse
development from predominately dendritic filopodia and spines
to predominately the dendritic shaft, and this developmental shift
is blocked in MMP9–/– mice (Kelly et al., 2014). These data
indicate that ICAM5 is an important substrate of MMP9 during
synaptogenesis. Together, these results show that MMPs have
central roles in dendritic spine development and maturation.
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Table 1 | Role(s) of ECM proteins in synaptic plasticity and/or regulation of spine structure.

ECM molecule Role(s) in synaptic plasticity and/or reg-
ulation of spine structure

Evidence for role References

CSPGs Inhibit adult MD-induced OD plasticity Degradation of CSPG GAG chains by treat-
ment with chABC permits MD-induced OD
plasticity after CP closure in adults.

Pizzorusso et al. (2002)

Inhibit adult fear memory erasure Treatment with chABC permits fear mem-
ory erasure after CP closure in adults.

Gogolla et al. (2009)

Required for LTP maintenance Adult neurocan and brevican knockouts
have deficits in LTP maintenance.

Zhou et al. (2001), Brakebusch et al.
(2002)

Inhibit recovery of spine loss due to adult
MD

Treatment with chABC allows spine density
to recover in adults after MD when the
opposite eyelid has been resutured.

Pizzorusso et al. (2006)

Inhibit spine motility Treatment with chABC increases spine
motility.

Orlando et al. (2012), de Vivo et al.
(2013)

RGD peptides Inhibit LTP maintenance RGD application to slices or cultured neu-
rons inhibits the late phase of LTP.

Staubli et al. (1990), Bahr et al.
(1997), Chun et al. (2001)

Potentiate NMDA
receptors

RGD application increases NMDAR-
mediated currents.

Lin et al. (2003), Bernard-Trifilo et al.
(2005)

Increase spine length and promote filopodia
formation

RGD application elongates existing spines
and induces dendritic filopodia formation.

Shi and Ethell (2006)

Reelin Enhances LTP Recombinant reelin enhances LTP magni-
tude.

Beffert et al. (2005)

Promotes glutamatergic transmission Recombinant reelin increases NMDAR and
AMPAR currents.

Chen et al. (2005), Qiu et al. (2006b),
Groc et al. (2007), Qiu and Weeber
(2007)

Increases spine density Spine density is reduced in reelin+/– mice
and enhanced by recombinant reelin.

Liu et al. (2001), Niu et al. (2008),
Rogers et al. (2011, 2013), Iafrati
et al. (2014)

Increases spine head size and promotes
multi-synapse spines

Recombinant reelin drives these pheno-
types.

Pujadas et al. (2010)

Agrin Promotes filopodia formation Filopodia formation is promoted by agrin
clustering or overexpression and reduced
by agrin knockdown.

Annies et al. (2006), McCroskery
et al. (2006, 2009)

Increases spine density Spine density is reduced in agrin–/– and
neurotrypsin–/– mice.

Ksiazek et al. (2007), Mitsui et al.
(2009)

Required for
LTP-induced filopodia formation

LTP-induced filopodia formation is blocked
in neurotrypsin–/– mice.

Matsumoto-Miyai et al. (2009)

Tenascins TNR is required for LTP LTP is impaired in TNR–/– mice. Bukalo et al. (2001), Saghatelyan
et al. (2001)

TNR promotes basal transmission Basal excitatory transmission is increased
in TNR–/– mice.

Saghatelyan et al. (2001), Gurevicius
et al. (2004)

TNR required for olfactory bulb granule cell
spine density

Spine density of newborn olfactory bulb
granule cells is decreased in TNR–/– mice.

David et al. (2013)

TNC is required for LTP and LTD LTP and LTD are impaired in TNC–/– mice. Evers et al. (2002), Strekalova et al.
(2002)

TNC is required for proper spine distribution
along dendrites

Cortical dendritic spines are shifted toward
higher order dendrites in TNC–/– mice.

Irintchev et al. (2005)

Laminin Protects against excitotoxicty Disrupting laminin resensitizes
excitotoxic-insensitive neurons.

Chen and Strickland (1997)

May stabilize LTP Laminin degradation and loss of LTP are
correlated.

Nakagami et al. (2000)

May be required for
synaptic structure

β2 laminin is required for synapse alignment
and PSD length.

Egles et al. (2007)

Netrin May be required for LTP LTP is impaired in DCC–/– mice. Horn et al. (2013)
May inhibit spine
growth

Spine heads are smaller in DCC–/– mice. Horn et al. (2013)

tPA Stabilizes LTP late phase Late LTP is destabilized in tPA–/– mice and
stabilized by recombinant tPA.

Huang et al. (1996), Frey et al.
(1996), Baranes et al. (1998), Madani
et al. (1999)

Required for OD
plasticity

OD plasticity is blocked in tPA–/– mice. Mataga et al. (2002)

(Continued)
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Table 1 | Continued

ECM molecule Role(s) in synaptic plasticity and/or
regulation of spine structure

Evidence for role References

Increases spine motility Spine motility is upregulated by recombinant
tPA.

Oray et al. (2004)

Required for
MD-induced spine
pruning

Spine pruning caused by MD does not occur
in tPA–/– mice.

Mataga et al. (2004)

Require for
stress-induced
spine loss

Spine loss caused by stress is blocked in tPA–
/– and plasminogen–/– mice.

Pawlak et al. (2005), Bennur et al.
(2007)

MMPs Required for kainate-induced spine loss Spine loss is blocked in MMP9–/– mice. Wilczynski et al. (2008)
Required for FXS
phenotypes

MMP9 inhibition or deletion rescues spine
and behavioral phenotypes in FXS model
mice

Bilousova et al. (2009), Sidhu et al.
(2014)

Promote spine elongation Spine elongation is promoted by MMP activa-
tion and blocked by MMP inhibition in young
systems.

Bilousova et al. (2006, 2009), Tian
et al. (2007), Michaluk et al. (2011)

Regulate ICAM5
cleavage and function

ICAM5 inhibits spine maturation, and MMPs
are required for ICAM5 cleavage to promote
spine elongation.

Tian et al. (2007), Conant et al.
(2011), Lonskaya et al. (2013)

Required for LTP late phase LTP late phase is lost in MMP9–/– and
MMP2–/– mice or when MMPs are inhibited.

Nagy et al. (2006), Wang et al.
(2008)

Required for
spatial learning

Morris water maze acquisition is blocked by
MMP inhibition.

Meighan et al. (2006)

Promote LTP-induced spine volume increase LTP-induced spine volume increase is blocked
by MMP inhibition and promoted by local
MMP application.

Wang et al. (2008), Szepesi et al.
(2014)

Abbreviations: CSPG-chondroitin sulfate proteoglycans; GAG chains-glycosaminoglycan side chains; MD-monocular deprivation; OD-ocular dominance; LTP-long term

potentiation; LTD-long term depression; chABC-chondroitinase ABC; CP-critical period; RGD peptide-Arginine-Glycine-Aspartate peptide; DCC-deleted in colorectal

cancer (netrin receptor); tPA-tissue plasminogen activator; TNR/C-tenascin R or C; MMP-matrix metalloproteinase; FXS-Fragile X syndrome.

It is important to consider that the effects of MMPs on
dendritic spines can differ greatly depending on the method
of MMP manipulation and the maturity of the system. The
MMP-dependent elongation of spines discussed above is depen-
dent on manipulation of MMP activity in young or maturing
systems or under pathophysiological conditions and requires
general application of MMP-affecting drugs for long periods
of time. In more mature systems and with local application of
MMPs during plasticity events, MMP activity has the oppo-
site effect. For example, local application of active MMP9 to
dendritic spines in acute hippocampal slices is by itself suf-
ficient to potentiate synapses and increase spine volume, the
same changes that are caused by theta-burst pairing, which
induces LTP. Notably, MMP9-induced potentiation and spine
enlargement are occluded by prior theta-burst pairing, suggest-
ing that MMP9 activation and LTP induction function in the
same pathway to consolidate spine enlargement and LTP (Wang
et al., 2008). Similarly, chemical LTP induction in mature cul-
tured neurons increases spine head size of smaller spines in
an MMP-dependent manner (Szepesi et al., 2014). In agree-
ment with these findings, MMP9 is required for maintenance
of LTP and LTP-induced spine volume increase in acute hip-
pocampal slices from adult animals (Nagy et al., 2006; Wang
et al., 2008), and inhibition of MMPs 3 and 9 blocks acquisi-
tion of spatial learning in adult animals (Meighan et al., 2006).

Importantly, many of these acute phenotypes in mature sys-
tems depend on integrin β1 function (Nagy et al., 2006; Wang
et al., 2008), suggesting that MMPs may reveal cryptic inte-
grin ligands in the ECM that maintain spine structural plas-
ticity in mature neurons (Figure 5C). Given the diverse effects
of MMP targeting treatments on spine development, plasticity,
and maintenance, further studies should address the molecular
basis for the differential effects of MMP manipulation in both
young and mature systems (Dziembowska and Wlodarczyk, 2012;
Stawarski et al., 2014). In addition, the specific ECM molecules
that signal through integrins are unknown, and future studies
will hopefully link proteolysis of specific proteins by MMPs
with specific changes in dendritic spines to understand the sig-
naling mechanisms involved in MMP-mediated dendritic spine
remodeling.

CONCLUSION
Precise regulation of dendritic spine and synapse formation,
plasticity, and stability is essential for proper circuit and brain
function. Emerging evidence indicates that ECM proteins, their
receptors, and ECM proteases are major physiological regulators
of spines and synapses (Table 1). Extracellular matrix molecules
are potent regulators of the actin cytoskeleton, which dictates
dendritic spine morphology and powers dynamic changes in
dendritic spine shape. Moreover, the ECM surrounds neurons and
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its composition is influenced greatly by synaptic activity, making
it an ideal substrate to influence spine and synapse structure and
physiology.

Future studies in this field will be critical to identify the
molecules that signal through ECM receptors such as integrins to
control spine stability and plasticity. Elucidating these molecules
and the mechanisms by which they function is essential to
understand how differential stability and plasticity are achieved
in adulthood vs. development, and in healthy individuals vs.
those with neurodegenerative or late-onset psychiatric disease.
Only then can we target these mechanisms therapeutically to gain
control of synaptic flexibility and stability.
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