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Despite many structural and functional aspects of the brain organization have been
extensively studied in neuroscience, we are still far from a clear understanding of the
intricate structure-function interactions occurring in the multi-layered brain architecture,
where billions of different neurons are involved. Although structure and function can
individually convey a large amount of information, only a combined study of these two
aspects can probably shade light on how brain circuits develop and operate at the
cellular scale. Here, we propose a novel approach for refining functional connectivity
estimates within neuronal networks using the structural connectivity as prior. This is
done at the mesoscale, dealing with thousands of neurons while reaching, at the
microscale, an unprecedented cellular resolution. The High-Density Micro Electrode
Array (HD-MEA) technology, combined with fluorescence microscopy, offers the unique
opportunity to acquire structural and functional data from large neuronal cultures
approaching the granularity of the single cell. In this work, an advanced method based
on probabilistic directional features and heat propagation is introduced to estimate the
structural connectivity from the fluorescence image while functional connectivity graphs
are obtained from the cross-correlation analysis of the spiking activity. Structural and
functional information are then integrated by reweighting the functional connectivity graph
based on the structural prior. Results show that the resulting functional connectivity
estimates are more coherent with the network topology, as compared to standard
measures purely based on cross-correlations and spatio-temporal filters. We finally use
the obtained results to gain some insights on which features of the functional activity are
more relevant to characterize actual neuronal interactions.

Keywords: connectomics, structural connectivity, functional connectivity, high-density Micro Electrode Array,

electrophysiology, graph heat kernel, probabilistic directional feature, Von Mises distribution

1. INTRODUCTION
Brain processing is widely recognized to be distributed over a
wide range of different scales, involving an impressive num-
ber of cells with heterogeneous phenotypes that are structurally
and functionally organized in a sophisticated and still unclear
architecture. Disentangling the intricate contributions of single
neurons constituting large brain circuits from the strongly cor-
related phenomena shaping brain function is one of the biggest
challenges in neuroscience. To complicate things further, most
of the neuronal processing taking place in the nervous system
is characterized by a limited observability and still requires the
additional improvement of currently existing neurotechnologies.
Indeed, while direct measurements are only possible at very small
scales (i.e., monitoring the intracellular potential of a few sin-
gle neurons or up to a few hundreds of neurons with 2-photon
microscopy), larger scale mechanisms can commonly be observed

through indirect non-invasive modalities (i.e., brain imaging)
but rather loosing the resolution of single cells. Given these two
opposite experimental approaches that have characterized the
neuroscientific research over the last decades, what still remains
unanswered is how to bridge the structural and functional aspects
observed at the different scales.

In the last few decades efforts have been put forward for the
investigation of the so-called connectome, i.e., the reconstruction
of the neural connectivity at different scales (Sporns et al., 2005;
Leergaard et al., 2012). The term connectomics has a very broad
scope, ranging from single-neuron interplays (microscale connec-
tomics) to pathways between large brain regions (macroscale con-
nectomics, Yap et al., 2010). Reconstructing the brain connectome
across these scales is fundamentally important to understand the
constituent parts of the nervous system, their multiple interac-
tions and the advanced cognitive functions that they support,
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both in normal and pathological neurodegenerative conditions.
By promoting the analysis of different aspects of brain behavior,
connectomic studies typically involve two complementary forms
of information: structure and function.

In the literature these two aspects are usually studied sepa-
rately. Part of the efforts focuses on a dense reconstruction of
the structural connectivity, while complementary studies address
the analysis of synchronous patterns of neuronal activation for
estimating the functional connectivity.

However, structure and function are tightly interrelated. By
looking at fine-scale interactions, we are learning that the func-
tional properties of single neurons are strongly driven by their
anatomical interconnections with other cells, dendritic arboriza-
tions, and synaptic distributions. At the same time, single-
neuron physical links affect the expression of functional patterns
throughout the entire network by placing constraints on which
functional interactions are more likely to occur. Consequently,
it is getting crucial to combine a detailed description of the
anatomical connectivity patterns with physiological parameters
to capture the way functional properties emerge from structural
configurations at the cellular scale.

This work addresses this challenge by proposing a combined
structural and functional analysis of large neuronal networks
that are functionally resolved at an unprecedented resolution,
approaching the scale of single-neurons.

The joint study of structure and function has been recently
gaining interest in the context of brain imaging modalities
(Rykhlevskaia et al., 2008), where it is possible to observe large-
scale interactions. Recent attempts address the estimation of
functional connectivity guided by the structural connectivity as
prior (Deligianni et al., 2011; Chen et al., 2013; Zhu et al.,
2013). The underlying hypothesis is that the functional con-
nectivity must reflect the existence of structural paths connect-
ing functionally linked regions (Honey et al., 2010). However,
macroscale approaches are not suitable for single-neuron resolu-
tion as they deal with large areas (billions of neurons) that make
any fine-grained analysis unfeasible.

On the other hand, microscale connectomics achieves good res-
olution by focusing on single or few cells, but looses the informa-
tion on network-wide topology and interplays. A new branch of
investigation is recently emerging studying the so-called mesoscale
that, in principle, could overcome the limitations of micro and
macro studies. Mesoscale connectomics refers to the analysis of
connectivity at the level of neuronal circuits with a micrometric
spatial resolution (Sporns, 2012). Interestingly, high-level func-
tions such as learning and memory build on stratified non-linear
mechanisms that can be particularly witnessed at this scale (Jimbo
et al., 1999; Marom and Eytan, 2005). Although there is still no
clear indication about the possibility of bridging the gap between
the different scales at which the brain is currently investigated,
there are studies highlighting the role of specific neurons (hub
neurons) in determining emergent network dynamics (Bonifazi
et al., 2009).

Thanks to recent technological advances, it is nowadays pos-
sible to collect high-resolution structural and functional infor-
mation at the mesoscale from cultured neuronal networks. This
enables the development of new methodologies for a combined

structural and functional analysis at this scale. In particular, novel
generations of active Micro Electrode Arrays (MEAs), such as the
High-Density MEA (HD-MEA) chips introduced by Berdondini
et al. (2009), allow to record the electrical activity of neuronal net-
works from thousands of electrodes at sub-millisecond resolution
and at the granularity of the single cell. The combination of such
a high-resolution functional data with fluorescence microscopy
imaging can enable the unprecedented mapping of both activ-
ity and structure of neural assemblies at a cellular level. Indeed,
relatively sparse neuronal cultures–grown on-chip by seeding few
thousand cells–allow to acquire detailed spatio-temporal record-
ing of neuronal activity and topographic distribution of neurons
with respect to the electrode array. This provides the unique
chance of correlating functional activity with neuronal topology
over large assemblies.

This work proposes a computational framework for the joint
analysis of functional and structural connectivity at the mesoscale
which takes advantage of the remarkable spatial resolution offered
by HD-MEAs.

In particular, we start from the reasonable hypothesis that the
presence of a strong structural connection makes a functional
connection more likely to occur. The influence of the network
topology on the functional behavior has been already proven on
a theoretical level (Kriener et al., 2009). Furthermore, distance
and strength of cross-correlation have been proven to be related
also in vivo (Hirase et al., 2001) and in vitro (Shlens et al., 2006).
However, experimental studies at neuronal resolution covering
large networks are typically more difficult to carry out due to
both technological constraints and problem complexity. Here, we
address this task by developing a set of computational algorithms
that enables the combined structural and functional analysis of
networks with thousands of neurons.

This could not be done on conventional MEAs that typically
integrate 60–256 microelectrodes, and where existing studies are
typically limited to the analysis of network-wide electrophysi-
ological activity. Consequently, the absence of any anatomical
evidence to support functional hypotheses strongly limits the
potentiality of this analysis. Few recent attempts have been
presented in literature addressing multimodal studies at the
mesoscale. Abdoun et al. (2011) introduced the NeuroMap soft-
ware tool for handling MEA recordings co-registered with fluo-
rescence images. However, in this tool, the image is used only
for visualization purposes. Another multimodal study has been
proposed by Becchetti et al. (2012) for differentiating the func-
tional activity of excitatory and inhibitory neurons from MEA
recordings and GAD67-GFP imaging. Their method is based on
a manual extraction of the structural information (i.e., visu-
ally classifying excitatory from inhibitory cells) lacking in any
further characterization of the network anatomy (e.g., the topol-
ogy). As no structural connectivity information is available, the
assessed statistical properties of the electrophysiological signals
only account for local functional dynamics, discarding more com-
plex network interactions. Furthermore, in both cases the use of
standard MEAs (up to few hundred electrodes) offers poor spa-
tial resolution. Unlike HD-MEAs, these systems cannot provide
the possibility of monitoring both single-cell activity and wide
network dynamics at the same time.
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In this paper, we propose a framework for integrating mul-
timodal information acquired on HD-MEAs with the aim of
refining the estimate of functional connectivity using the struc-
tural connectivity as prior. Specifically, we localize neurons with
respect to the electrode array and estimate the structural connec-
tivity of the electrodes to compute the topological distance along
the paths connecting them. This is used as structural information
to refine a rough estimate of functional connectivity based only
on cross-correlations. As extensively suggested in the literature
(Feldt et al., 2011), graph theory is used to support the analysis by
describing the network connectivity with graph representations.
Neuronal networks perfectly fit into this framework as it provides
the flexibility to characterize both structure and function from
anatomical and electrophysiological observations (Bullmore and
Sporns, 2009).

An overview of the proposed approach is provided in Figure 1.
Structural connectivity maps are first estimated from fluorescence
images of the neuronal culture by using local directional features
and heat propagation (Ullo et al., 2013). The obtained prior on
the existing anatomical links is then used to refine the estimate of
functional connectivity which is obtained from cross-correlation
measures of the electrophysiological signals, as introduced by
Maccione et al. (2012). In this fashion, the anatomical informa-
tion offers a reference space facilitating the interpretation of the
observed functional interactions.

The contributions of this paper are twofold. First, we introduce
a computational framework capable of estimating the structural
connectivity of large neuronal assemblies and we show how more
reliable estimates of functional connectivity can be obtained by
incorporating such structural information as prior. Second, we
use the obtained results to formulate new hypotheses on rele-
vant features of the electrophysiological activity that can better
characterize functional interactions between neurons.

2. MATERIALS AND METHODS
2.1. ELECTROPHYSIOLOGICAL RECORDINGS AND CELL CULTURE

STAINING
Cell cultures were recorded by means of High-Density Micro
Electrode Arrays (HD-MEAs). These commercially available
devices (www.3brain.com), have been extensively described in
Imfeld et al. (2008) and Berdondini et al. (2009). Briefly, high-
density MEAs allow simultaneous extracellular recordings from
4096 square electrodes (pitch = 42 μm) arranged in a 64 × 64
layout (2.7 by 2.7 mm2 active area) at a sampling rate of about
7 kHz per channel.

Primary hippocampal neurons from rat embryos at E18 were
dissociated by enzymatic digestion and seeded on HD-MEAs
previously sterilized and coated with polylisine adhesion factor
(Maccione et al., 2010, 2012). Drops of 30–50 μL were seeded
over the active area of the chip at a nominal low concentra-
tion of 100–150 cell/μL. After 2–3 weeks in incubator, cultures
develop a sparse interconnected network structure showing syn-
chronous functional activity. Extracellular electrophysiological
recordings of neuronal signals were acquired at 18–19 Days In
Vitro. Spontaneous activity was recorded for 10–15 min as con-
trol condition, followed by another 10–15 min recording under
chemical stimulation by adding 30 μMol Bicucculline.

After electrophysiological recordings, neuronal tissues were
fixed on the chip array in 4% paraformaldehyde for 20 min and
stained with NeuN for neuronal nuclei and β3-tubulin for axonal
and dendritic arborization (Maccione et al., 2012). Cultures were
then inspected under a microscope, collecting multiple fields at
20× magnification with a micro positioning stage. The acquired
portions were then stitched together using Adobe Photoshop CS3
and the open source free software Fiji (http://fiji.sc/Fiji).

2.2. MULTIMODAL DATASET DESCRIPTION
The combination of the HD-MEA technology with the
immunofluorescence microscopy results in multimodal datasets,
each consisting of a high-resolution fluorescence image—i.e., the
structural data—and a set of electrophysiological recordings—i.e.,
the functional data1.

For the purpose of our experiments, two different neuronal
networks were cultured on HD-MEAs under the same experi-
mental conditions. Figure 5A shows the fluorescence images of
the two cultures. In each neuronal culture about one thousand of
cells were grown, showing a strong degree of structural connectiv-
ity. As we aim at investigating the excitatory functional connectiv-
ity, we focus on the analysis of the electrophysiological recordings
with added Bicucculline, a blocker of the inhibitory pathway.
This choice limits the number of potential inhibitory connec-
tions and is a desirable condition since the cross-correlation (as
defined by Equation 3) is only designed to detect excitatory func-
tional connections (Garofalo et al., 2009). The raw electrical
signal recorded by each electrode was encoded, after spike detec-
tion (Maccione et al., 2009), as a sparse vector of size fs × tr ,
where fs is the sampling frequency and tr is the recording time
interval. The whole network recording is arranged in a sparse
matrix, where the indexing (i, j) refers to the electrode at row
i and column j in the electrode array. Each electrode (i, j) is
then associated to a vector with the time stamps of the corre-
sponding spiking activities. This encoding of the spiking activity
is used as input data for estimating the functional connectivity
(see Section 2.4).

The presented cases of study were selected as representative in
terms of number of neurons, density of connections and number
of functionally-correlated signals. Detailed information on each
dataset are reported in Table 1. First order statistics on cell culture
dynamics are in line with previous studies (Maccione et al., 2012).

2.3. STRUCTURAL CONNECTIVITY ANALYSIS FROM FLUORESCENCE
IMAGES

Dissociated neuronal cultures show extensive and fuzzy connec-
tivity that makes structural analysis computationally hard. To
tackle this challenge, a method based on heat propagation is used
to estimate the structural connectivity of neuronal assemblies
with dense connectivity, as reported in Ullo et al. (2013).

The method provides a description of the network topology in
terms of a graph where nodes correspond to the electrodes and
edges represent structural connections. In fact, this provides the

1Imaging and electrophysiological datasets will be available on CARMEN
(https://portal.carmen.org.uk) upon request of access credentials to the cor-
responding author.
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FIGURE 1 | Overview of the approach. Structural and functional connectivity maps are separately estimated from the multimodal datasets acquired on
HD-MEAs. The functional graph is then refined using the structural information as prior.
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Table 1 | HD-MEA dataset description.

Dataset Image size # Active electrodes MFR (Hz) MBR (#burst/min) MFIB (Hz) MBD (ms)

Chip-253 2985 × 2982 146 1.63 ± 0.12 8.76 ± 0.06 71.23 ± 0.25 122.80 ± 0.60

Chip-250 2928 × 2946 181 0.77 ± 0.09 4.08 ± 0.04 59.82 ± 0.29 150.38 ± 0.88

common reference frame to relate the functional signal recorded
by the HD-MEA to the network anatomy.

Maps of electrode connectivity are determined using a Graph
Heat Kernel (GHK) framework (Belkin and Niyogi, 2003; Bai
et al., 2010) based on probabilistic directional features (Ullo et al.,
2013). These features encode the local directionality of the neu-
rites within small patches of the image corresponding to the MEA
electrodes. A feature consists in a histogram with 8 entries, each
representing the probability of the current electrode being con-
nected to each of its adjacent neighbors (both horizontal, vertical,
and diagonal adjacency are considered).

In its general formulation, a GHK allows to estimate the struc-
ture of a graph by computing the amount of heat that propagates
from a source to a destination node. The intuition behind the use
of a GHK for structural connectivity estimation can be explained
by first considering the lattice formed by the regular MEA struc-
ture. A weighted graph can be defined on this lattice where the
electrodes are nodes and edge weights are given by their degree of
connectivity, i.e., by the values of the corresponding probabilistic
directional features (see Figure 2). If we placed a certain amount
of heat on a seed node and let it propagate through the graph, heat
propagation would favor the edges having higher weights, i.e.,
corresponding, in principle, to stronger connections. As a result,
the amount of heat reaching a destination electrode from the seed
could be considered as an estimate of the strength of their con-
nectivity. Repeating this propagation for all seed electrodes, we
can obtain an estimate of the whole-network structural connec-
tivity. Only electrodes having neurons in their recording area are
considered as seeds, as they are the ones substantially contributing
to the electrophysiological activity.

Further details on the structural analysis will be provided in
the following sections.

2.3.1. Probabilistic directional features.
A preprocessing pipeline is first run to detect neuronal nuclei
and reconstruct the electrode array from the image as reported
in Ullo et al. (2012). Specifically, the MEA reconstruction allows
to compute an electrode-based partition of the image, i.e., a par-
tition into small patches corresponding to the electrode areas (see
Figure 3A). The proposed directional features are then extracted
from each patch with the aim of obtaining the probability
of connection between neighboring electrodes as explained by
Figures 3B,C. The features characterize the local configuration
of neurites’ orientations using a directional Von Mises Mixture
(VMM) model fitted to a number of line segments.

Von Mises distributions are widely used to describe directional
statistics on the circle (Mardia and Jupp, 2000) and are defined
by two parameters: mean μ and concentration κ . The larger is
the value of the concentration, the higher is the clustering of the
points around the mode placed at θ = μ.

FIGURE 2 | Heat propagation. A heat source is placed at the seed
electrode and propagated according to the probability of connection
defined by the directional feature. Heat propagation favors directions
with higher probability of connection. The adjacent electrodes
(numbered from 1 to 8) are reached by a different amount of
heat according to the seed feature, as described by the colormap.

In our framework, segments—approximating real neurites—
are detected at each image patch using the Hough Transform.
A different Von Mises distribution is then fitted to each of the
segment endpoints. The goal is to describe the main neurite ori-
entations inside the patch and the corresponding uncertainty in
each of the given directions. Uncertainty is associated to the angles
at which a neurite exits/enters the patch and is due to the approx-
imation of real neurites by line segments (which can be affected
by errors caused by noise, blurring, etc.). To fit the parameters
of the Von Mises (VM) distribution, we compute the angle θA

(θB) as the projection of the segment endpoint A (B) onto the cir-
cle circumscribing the patch, as shown in Figure 3B. The angle
defines the mean μA (μB) of the VM fitted at endpoint A (B)
which represents the most probable angle at which the neurite
enters/exits the patch. To model the uncertainty of this orienta-
tion we compute the distance dA (dB) between endpoint A (B) and
the boundary of the patch. The higher this distance, the higher
the uncertainty of the neurite crossing the boundary exactly at
the estimated angle. Consequently, the concentration parameter
κA (κB) is set as inversely proportional to distance dA (dB).

For a patch with n segments, 2n VM distributions will be fit-
ted to the data and used to define the VMM model. As the Hough
Transform assigns each segment a vote depending on its evidence
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FIGURE 3 | Preprocessing and feature extraction. (A) The Micro
Electrode Array reconstruction is used to partition the image into
small patches corresponding to the electrode areas. (B) A Von
Mises Mixture (VMM) model is fitted to a set of segments

detected on the patch to describe the uncertainty of local neurite
orientation. (C) The VMM is then discretized to obtain the
feature, i.e., an histogram describing the probability of connection
with adjacent electrodes.

on the image, votes are used to define mixture proportions. As a
results, segments having stronger evidence will be assigned higher
weight in the mixture model. An example of VMM model is
shown in Figure 3C.

Finally, the obtained probability distribution is discretized in
the 8 neighboring directions. This is done by computing the area
under the probability density function of the VMM model in 8
different sectors of the circle, as shown in Figure 3C. This results
in a histogram in which each entry represents the probability of
the current electrode being connected to its neighbors.

2.3.2. Graph heat kernel
The heat kernel specifies how the information flows across a net-
work or a manifold in time. Generally speaking, the goal of the
heat kernel is to reduce the dimensionality of high-dimensional

data lying on sub-manifolds, so it is related to the concept of
spectral clustering (Luxburg, 2007). Similarly, it can be used to
geometrically characterize the structure of a graph residing on a
manifold by defining its pattern of geodesic distances (Bai et al.,
2010).

Given a weighted graph G = (V, E, W), where V is the set
of nodes, E ⊆ V × V is the set of edges, and W the matrix
of edge weights, the heat diffusion on G is defined by the
heat equation:

(
LG + ∂

∂t

)
ht = 0; (1)

where ht is the heat distribution at time t and LG is the Graph
Laplacian operator (Belkin and Niyogi, 2003). In particular, LG =
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D − A, where A is the symmetric adjacency matrix defined on
graph G, and D is the diagonal degree matrix whose diagonal
elements are given by D(x, y) = ∑

y∈V A(x, y).
As the time derivative of the kernel is determined by the

graph Laplacian, the solution of the heat equation is obtained by
exponentiating the Laplacian eigensystem over time. According
to spectral graph theory, the heat kernel has the following
eigendecomposition (Bai et al., 2010):

ht(x, y) =
|V |∑

i = 0

e−λitφi(x)φi(y), (2)

where ht(x, y) is the heat kernel element for nodes x and y, and
λi and φi are the ith eigenvalue and eigenvector of the Graph
Laplacian, respectively.

The heat kernel ht(x, y) is the solution of the heat equation
with heat source placed at point x at time t = 0, and represents
the amount of heat at point y after time t.

The heat kernel solution is generally computed in two
steps: (1) the manifold is approximated by the adjacency
graph A computed from data points and incorporating neigh-
borhood information, and (2) the weighted graph Laplacian
is used to estimate the real manifold, optimally preserv-
ing such neighborhood information (Belkin and Niyogi,
2003).

In our application, the weighted adjacency matrix A is
obtained from the probabilistic directional features, by defining
each element A(x, y) as the histogram value for the edge connect-
ing electrode x to electrode y (defining their probability of being
connected by a neurite). Due to the way features are defined, his-
togram values are not symmetric in the two directions, so the
matrix A needs to be symmetrized, as requested by the GHK for-
mulation. This is done by summing the probability contributions
in the two edge directions.

The output of the heat kernel is a |V | × |V | adjacency matrix
(4096 × 4096 in our case) indicating the electrode connectiv-
ity in terms of amount of heat propagated after time t from
a seed electrode. Matrix weights are normalized (divided by
the maximum value in the matrix) to obtain the final struc-
tural connectivity map. As a matter of fact, this matrix is quite
sparse, as only electrodes having neurons in their recording
area are taken into consideration as nodes. This allows to limit
the connectivity estimation to actual neurons lying on elec-
trodes that can contribute to the electrical activity recorded by
the HD-MEA.

In the GHK framework, heat propagation is regulated by the
time parameter t. Figure 4 shows the influence of this parame-
ter on the final estimate. It can be observed that, when t grows, a
larger portion of the graph is explored, resulting in the overlap of
multiple feature contributions (in addition to the initial seed fea-
ture). While this makes it more likely to introduce false positives,
it also allows to discover new branches in the network connectiv-
ity and to compensate for imprecise and noisy local contributions.
Hence, setting the value of t is a trade-off that strongly depends on
the size of the considered domain (in our case the 64 × 64 matrix
of electrodes).

2.4. FUNCTIONAL CONNECTIVITY ANALYSIS FROM SPIKING ACTIVITY
A cross-correlation based approach for functional connectiv-
ity estimation applied to electrophysiological recordings of in
vitro populations has been recently validated on the HD-MEA
recording system in Maccione et al. (2012). Cross-correlations
are computed between pairs of electrode signals to obtain a first
rough estimate of functional connectivity. For each pair of elec-
trodes (x, y) (with at least one spike to ensure presence of activity)
the following cross-correlation function (cross-correlogram) is
evaluated among their spike trains:

Cxy(τ ) = 1√
NxNy

Nx∑
s = 1

τ + (	τ /2)∑
ti = τ−(	τ /2)

x(ts) y(ts + ti) (3)

with Nx (Ny) being the number of spikes in train x (y), ts the
spike occurrence time in train x and 	τ the time window in which
synchronous spikes in train y are counted. 	τ is set at 0.5 ms.

The resulting normalized cross-correlations are then post-
processed using a filtering strategy to remove false positives
not compatible with biological prior. In particular, the maxi-
mum propagation velocity for in vitro biological preparations
(400 mm/s, Bonifazi et al., 2005) is used to discard physiologi-
cally implausible links, i.e., links having correlation peak latency
below this value. Such a physiological filter also accounts for
delayed spikes in post-synaptic cells. Cross-correlations are then
thresholded to retain only statistically significant links. To this
aim, the cross-correlation of jittered spike trains [by ±5 ms, thus
maintaining the same Inter Spike Interval (ISI) distributions]
is computed as null model and a significance threshold Cs is
defined using a non-parametric statistical test at p-value p = 0.05.
This shuffling procedure, also called dithering (Grün and Rotter,
2010), is repeated 100 times on each randomly-selected pair of
channels. The probability of the jittering was set as uniform in
the ±5 ms time interval.

The thresholded functional graph, weighted by the cross-
correlation values, relies entirely on the recorded electrophys-
iology, discarding the valuable information coming from the
structural modality.

2.5. COMBINING STRUCTURAL AND FUNCTIONAL INFORMATION
We build on the hypothesis that functional co-activation com-
monly relies on anatomical connections to refine the esti-
mate of Functional Connectivity (FC) from our Structural
Connectivity (SC) prior. In order to coherently combine struc-
tural and functional information, the refinement process starts
from the unthresholded cross-correlation values obtained after
spatio-temporal filtering.

As a first step, we observe that the functional connectivity
estimates are unaware of the actual neuronal distribution on
the array of electrodes. Due to noise affecting the spike detec-
tion and/or strong dendritic arborization (whose activity can
be, in some cases, detected by the MEA), electrodes with no
neuron in their recording area are sometimes included in the
graph. As the proposed structural analysis is capable to retrieve
a unique correspondence between neurons and electrodes, the
first refinement stage consists in discarding such nodes from
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FIGURE 4 | Influence of time on heat propagation. The heat propagation
time directly influences the estimated connectivity. (A) The input image and
seed electrode. (B) The corresponding probabilistic directional feature. Higher
histogram values in bins #1 and #5 reflect the structure of neurites in the
patch (spreading horizontally). (C) Result of the GHK propagation at time

t = 1. Electrodes are colored based on the amount of heat propagated from
the seed. After time t = 1 the seed feature mainly contributes to the
propagation, so electrodes 1 and 5 have warmer colors. (D–E) Results at
t = 10, 25. Although the pattern of propagation partially preserves the initial
layout, more contributions come from neighboring features.

the FC graph. Additionally, neuronal correlations have been
shown to decay with physical distance (Vincent et al., 2013).
Nevertheless, cross-correlation measures do not strictly reflect
this behavior—due to noise and random co-activations—and
the resulting FC graphs frequently present a substantial num-
ber of long-range links that are improbable, given the underlying
network topology. Thresholding strategies, used to select a sub-
set of somehow relevant links, are typically based on purely
empirical observations due to the absence of any ground truth
information.

We take advantage of the relationship between functional cor-
relation and structural distance, to define the second step of our
refinement strategy, called reweighting.

Specifically, the FC values (i.e., normalized cross-correlation
peaks) associated to the functional graph are reweighted based
on the distance of the corresponding nodes. This measure—
called structural distance—is the euclidean distance computed
along the shortest path connecting the nodes on the structural
graph. In principle, we want our algorithm to penalize func-
tional links according to this value. To this aim, a functional
link connecting electrodes x and y with cross-correlation peak
defined as:

CP(x, y) = max
τ

Cxy(τ ), (4)

is reweighted according to the following formula:

W(x, y) = C̃P(x, y)(1 + dxy) (5)

with dxy being the structural distance and C̃P(x, y) being the
cross-correlation peak normalized in the interval [0, 1]. As the
distance dxy is also normalized in the same interval [0, 1], the
resulting weights W reflect our initial hypothesis.

Finally, a threshold of statistical significance for the estimated
functional links is determined by applying the reweighting pro-
cess to the null model introduced in Section 2.4. A statistical
significance test at p-value p = 0.05 is then used to define a sig-
nificance threshold Ws. As will be discussed in Section 3, results
of the refined and thresholded FC graphs show that, by incor-
porating the structural information as prior, it is possible to
provide estimates of functional connectivity more coherent with
the network topology.

2.6. CLASSIFICATION OF FUNCTIONAL CONNECTIONS
After the reweighting and thresholding of the initial FC graph,
a subset of the original functional links is discarded. We want
to investigate if the two classes of discarded and retained con-
nections are characterized by distinguishable functional features.
First of all, this would allow to show that the structural prior
is not only imposing an a priori constraint on the functional
connectivity but it is effectively selecting links that behave differ-
ently from a functional point of view. Second, this investigation
could give some insights on how to effectively detect functional
links purely from the analysis of the electrophysiological activ-
ity. Former studies (e.g., Ostojic et al., 2009) are informative on
how the cross-correlation function is affected by variations of the
network background activity, the synaptic strengths and the local
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network connectivity. In line with these studies, we compute a set
of features of the cross-correlogram (i.e., cross-correlation peak,
time lag of the peak, spread of the cross-correlation function)
that might be informative on the occurrence of actual functional
connections. For each discarded/retained link, functional features
are computed from the analysis of the original spike trains. As
they are not affected by our structural prior, this allows to high-
light any intrinsic property of the functional activity capable of
revealing real co-activations. The sets of discarded/retained links
are then regarded as two classes and a linear Support Vector
Machine (SVM) (Duda et al., 2000) is trained/tested on these data
to quantify the discriminative power of different combinations of
features. The functional features considered in this study are the
following:

1. cross-correlation peak (CP)
2. counts/occurrences of the cross-correlation peak (CO)
3. cross-correlation time lag (Cτ )
4. entropy of the cross-correlation function (CH)
5. firing rates of the correlated electrodes (MFRx, MFRy).

Features CP and CO are related to the strength of a given func-
tional link, whereas the time lag of the peak (Cτ ) will likely
be proportional to the closeness of the correlated nodes. The
spread of the cross-correlation function can be informative of
the nature of a given link: broad functions would likely corre-
spond to unreliable and noisy cross-correlations. As previously
shown in Maccione et al. (2012), this feature is also related to
the link length. Here, instead of resorting to a gaussian fit of the
cross-correlation functions (Maccione et al., 2012), the spread is
measured in terms of the more general entropy measure (CH)
quantified as

CH = −
∑

Cn(τ ) log2 Cn(τ ) (6)

with Cn(τ ) = C(τ )/
∑

τ C(τ ).
We also included the mean firing rates (MFRx, MFRy) that are
typically used to quantify first order statistics of cell culture
dynamics. In principle, the firing rates cannot be regarded as
effective predictors of any correlated activity, however, at higher
firing rates the probability of coincident events (i.e., correlated
activities) increases. In addition, since CO is related to CP by
the geometric mean of MFRx and MFRy (by the relation CO =
CP T

√
MFRx · MFRy, with T being the length of the recording

session), this further motivates the investigation of the inter-
play between all the features determining the cross-correlation
function.

To evaluate the performance of the classifier, we adopt a cross
validation (CV) procedure. The original dataset is split into two
complementary subsets used, respectively, for training and testing
the classifier. Specifically, a standard 10-fold CV is carried out that
consists in subdividing the original dataset into ten subsets, the
training is performed on 9/10 of them and the accuracy (i.e., per-
formance) of the linear SVM classifier is evaluated on the tenth.
This procedure is repeated ten times by alternating the tested sub-
set. The performance of the linear SVM is then quantified as the

mean and standard deviation of the accuracies obtained by the
10-fold CV procedure.

3. RESULTS AND DISCUSSION
3.1. FUNCTIONAL CONNECTIVITY ESTIMATION FROM STRUCTURAL

PRIOR
The proposed approach was applied to the analysis of the two
HD-MEA datasets described in Section 2.2. The structural con-
nectivity of the network was first estimated by running the GHK
algorithm for each seed electrode, i.e., for each electrode hav-
ing at least one neuron in its recording area. Propagation time
was chosen experimentally and set to t = 25, taking into account
the extent of the domain, i.e., the 64 × 64 initial lattice defined
on the MEA structure. The value provides a good trade-off
between the capability of the system of exploring the graph and
the introduction of spurious connections due to the extended
contribution of neighboring features. For further details on the
study of the time parameter the reader is referred to Ullo et al.
(2013). The estimated SC graphs are shown in Figure 5B and both
reflect the strong degree of connectivity of the networks (5570
and 7808 SC links were estimated for Chip-253 and Chip-250,
respectively).

Functional connectivity graphs were computed for the two
neuronal cultures using the cross-correlation algorithm, followed
by spatio-temporal filtering and thresholding, as described in
Section 2.4. The resulting FC maps are provided in Figure 6A
where functional links are color-coded based on the value of the
cross-correlation peak. Both graphs—even after selecting only the
statistically significant connections—present a substantial num-
ber of long-range links. According to what is suggested in Section
2.5, electrodes without any neuron in their recording area were
first removed from the functional graphs. This allowed to reduce
the number of functional links by 22% in the case of Chip-253
and by 37% for Chip-250.

The proposed reweighting method was then applied to inves-
tigate which of the remaining functional links actually relied on
a structural path. It should be noted that the use of the shortest
path between pairs of electrodes is a choice that favors shorter
structural connections which are more likely to be direct or,
in general, morphologically plausible. Although this does not
guarantee that the chosen path is the one actually active, we
assume that—statistically—minimal paths are the most proba-
ble ones (Vincent et al., 2013). Figure 7A shows the distribution
of functional weights with and without the graph refinement. A
substantial decrease in the number of functional connections can
be observed as a result of incorporating the structural informa-
tion into the initial FC estimates. To better highlight this effect,
weight vs. distance scatter plots are also provided in Figure 7B.
The plots are referred to the initial functional links obtained after
spatio-temporal filtering and after removing the electrodes with-
out neurons. Points are color-coded using a heat colormap based
on the link’s cross-correlation. It can be observed that higher
correlations correspond to shorter paths and that an increase
in the structural distance weakens the corresponding functional
correlation. The red line represents the significance threshold Cs

obtained from the statistical test. Although applying this thresh-
old would allow to discard 37.1% of connections for Chip-250
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FIGURE 5 | Structural connectivity graphs. (A) Original fluorescence images of two neuronal networks (Chip-250 and Chip-253). (B) Resulting structural
connectivity graphs estimated with the GHK framework. The networks present high degree of connectivity (5570 SC links for Chip-253 and 7808 links for Chip-250).

and 68.3% for Chip-253, the result still presents many long-range
functional links.
Unfortunately, after the statistical significance test, there is no easy
or intuitive way for neuroscientists to make a further distinction
between relevant and spurious connections. More conservative
estimates of functional connectivity are sometimes provided by
ranking the estimated links according to their cross-correlation
values and selecting the strongest K (e.g., K = 100, Maccione
et al., 2012). However, the problem of determining a satisfac-
tory value for K still remains. Ideally, we would like to threshold
the FC graph in order to privilege short-range connections while
penalizing long-range ones. At the same time, we want to allow
the selection of links with substantial correlation even on long
distances.

The proposed reweighting formula allows to meet these
requirements, as shown by the scatter plots of Figure 7C. Points
are plotted according to their new weight but they maintain the
initial color of Figure 7B. This allows to highlight how the signif-
icance threshold applied to the reweighted graph can effectively
discard functional links that are too distant, even when they have
significant correlation. Figure 6B shows the refined functional

graphs for the two networks under study obtained after applying
the significance threshold Ws. Results present an overall decrease
in the number of FC links by 86.5% for Chip-253 and 83.7%
for Chip-250 with respect to the initial cross-correlation esti-
mates. As opposed to the functional connectivity graph shown
in Figure 6A, the introduced strategy automatically selects func-
tional connections that are more coherent with the structural
topology of the network. This can be more evidently observed in
the case of Chip-253, where the culture presents a clear clustering
into two subnetworks that are almost completely separated from
each other. Nevertheless, the initial estimate of the FC graph—
relying only on the electrophysiological signals—included a mas-
sive amount of links connecting the two subnetworks. Thanks to
the reweighting process we are capable of filtering such FC links,
retaining only the ones being coherent with the structural prior
or showing a substantially strong correlation. The introduced
reweighting formula allows to penalize correlation with distance
while modulating the contribution of the structural prior, based
on the amount of evidence on the functional co-activation.
Thanks to the proposed formulation, lower correlations are
more strongly penalized with distance—thus imposing stronger
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FIGURE 6 | Functional connectivity graphs. (A) Functional connectivity
graphs estimated computing cross-correlations on the pairwise
electrophysiological signals and applying spatio-temporal filters and a
significance threshold based on dithering. Functional links are color-coded

based on the value of their correlation peak. (B) The same graphs obtained
after removing electrodes without any neuron and reweighting based on the
structural distance. The refined FC graph shows a better coherence with the
network topology.

structural prior—whereas higher correlations are less influenced
by the neuronal displacement as the functional evidence prevails.
This provides a more conservative estimate of functional connec-
tivity, as compared to other weighting functions. For instance,
in case of a negative exponential function [i.e., CP(x, y)e−dxy ],
at a given distance, higher correlations would be more penalized
than smaller ones. This would imply a substantial influence of the
structural prior, even in presence of strong evidence of functional
co-activation. On the contrary, with our approach structural
and functional information are combined preserving the con-
tribution of clear functional observations without imposing a
too strong structural prior. Table 2 summarizes the quantitative
results on the structural and functional analysis of the considered
datasets.

3.2. RELEVANT FEATURES FOR FUNCTIONAL ANALYSIS
We want to investigate if the functional features of dis-
carded/retained FC links can suggest new hypotheses on the way
neurons functionally interact. To this purpose, we want to assess
and compare the relevance of commonly used functional fea-
tures for the classification of FC links belonging to the two classes
(discarded or retained links, according to the structural prior).

Some of these functional features are directly computed from
the cross-correlation function. The cross-correlation peak CP,
its time lag Cτ and the spread CH are reported in Figure 8A.
Then, as indicated in Section 2.6, CO is computed from CP,
MFRx, and MFRy. To gain some insights on the potential dis-
criminative power of each feature, we first compared their distri-
butions across the two classes of discarded/retained connections.
Results are shown in the box plots of Figure 8B. As intuitively
expected, the distribution of correlation peaks CP is significantly
different from one class to the other, as this feature is directly
involved in the FC graph estimation. The features CH and Cτ

show smaller values in the retained dataset, indicating that the
reweighting procedure was effective in selecting cross-correlation
functions with reduced spreads and time lags. The latter result
shows that the retained features actually correspond to more
reliable (i.e., lower entropy) and more physiological (i.e., the
peak is closer to the integration time of synaptic events) func-
tional links. Then, subsets of the considered features were used
to train and test the SVM classifier. The corresponding ranked
accuracies (mean ± std on 10-fold cross-validation) are reported
in Figure 8C and confirm that CP is the most significant fea-
ture (x-axis: 1–4). Interestingly, Figure 8C shows that when CP
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FIGURE 7 | (A) Distribution of functional weights before and after
reweighting. (B) Weight vs. distance plot before reweighting. Points are
color-coded with a heat colormap based on the correlation value. The
significance threshold Cs is computed using a statistical test with p-value

p = 0.05. (C) Weight vs. distance plot after reweighting. Thanks to the
structural prior, the new significance threshold Ws allows to select functional
connections that are more coherent with the structural topology of the
network.

Table 2 | Quantitative structural/functional information.

Chip-253 Chip-250

Structure
Neurons 1312 1152

SC links 5570 7808

Function
FC links (initial estimate) 4085 16290

FC links (above threshold Cs) 1294 9788

Discarded FC links (above threshold Cs w.r.t. initial estimate) 2791 (68.3%) 6052 (37.1%)

Structure + Function

FC links (neurons only) 3187 10296

FC links (neurons only, above threshold Cs) 1041 6258

FC links (final estimate: reweighted, above threshold Ws) 553 2654

Discarded FC links (reweighted w.r.t. initial estimate) 3532 (86.5%) 13636 (83.7%)
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FIGURE 8 | Classification features and results. (A) Cross-correlation
features used in the classification process. The peak of cross-correlation CP ,
its peak time Cτ and the corresponding spread CH are considered. (B) Box
plots of the feature distributions in the discarded and retained link classes.

The retained class shows significantly higher CP and lower CH . (C) The
classification accuracy in Chip-250 and Chip-253 shows a similar ranking, from
1 (highest) to 17 (lowest), as function of the considered features. The used
combinations of features are encoded in gray below the plot.

is removed from the tested features (x-axis: 5 on) a reasonable
level of accuracy can still be achieved by the linear SVM. This
holds true for different combinations of features (Figure 8C, x-
axis: 5–7 for Chip-250; x-axis: 5–9 for Chip-253) indicating that
other features are also informative for discriminating retained
from filtered links. Specifically, the mean firing rates (MFRx,

MFRy) can be alternatively combined with the CO, CH , and Cτ

features still yielding a good discriminative power. Finally, the
computed accuracies reach a plateau (Figure 8C, x-axis: 8–17
for Chip-250; x-axis: 11–17 for Chip-253) that corresponds to
the noise level of the classifier (i.e., the chance of a random
classification). Indeed, based on Table 2, the noise level (ACCη)
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was computed analytically2 and matched with the corresponding
plateaus (Chip-250: ACCη = 74.2%; Chip-253: ACCη = 82.6%).
The plateau region is characterized by single as well as subgroups
of features (e.g., CO, Cτ , {MFRx, MFRy} and CH) that are inef-
fective for discriminating the retained from the discarded links.
In conclusion, apart from CP, we found that different combi-
nations of features can also be effective in discriminating the
retained from the discarded links thus motivating the develop-
ment of alternative algorithms that incorporate this informa-
tion to improve the detection of structurally-coherent functional
connectivity maps.

3.3. GENERAL DISCUSSION AND PERSPECTIVES
The study of the relationship between structure and function
at the mesoscale, taking advantage of multielectrode arrays and
fluorescence microscopy, has to face two important issues: (i) a
limited optical resolution for the structural description, and (ii)
the need for resolving single neurons from extracellular record-
ings on the functional aspect. Knowing this limitation in reso-
lution, a central concept in our approach is to take advantage
from the combination of partial descriptions of structure and
function to generate a refined estimate of the network activity.
Furthermore, to place our study in the best conditions to properly
validate the proposed ideas, we adopt low-density cell cultures
and high-density MEAs. As a matter of fact, this combination
allows to typically record one single-unit from each electrode
of the 4096-array (this holds for about 90% of the electrodes).
This settings allows to minimize the shared variance given by
the potential recording of many neurons from a single electrode.
On the other side, the issue of cross-talk that might be given
by the recording of the same neuron from many nearby elec-
trodes is minimized by the low-density culture condition and by
the electrode density of the CMOS-MEA that provides a small
inter-electrode separation of 21 μm. Finally, we deliberately use
low-density cell cultures as they enable to validate the proposed
framework allowing to identify single neurons and estimate their
connectivity within large neuronal networks. However, in prin-
ciple, the basic concepts of the presented methodology might
also be applied to denser cell cultures, to ex vivo brain tissue
preparations or even to in vivo experimental studies on subsets
of neural populations expressing fluorescent markers. This would
be feasible upon the adoption of sufficiently high-resolution
microscopy and recording techniques. For instance, having higher
plating densities would imply a much larger number of struc-
tural connections. In this case, the problem complexity would
lie in a correct and reliable encoding of the local neuritic archi-
tecture. As the proposed local directional features are capable
to deal with complex structures showing many crossing and
branching neurites, despite the increase in the computational
load, it would be possible to apply the same feature-based anal-
ysis. The heat kernel propagation could then be used to esti-
mate the structural connectivity even in such denser neuronal
preparations.

2ACCη = max(nDIS, nRET)/(nDIS + nRET) with nDIS/nRET correspond-
ing to the cardinalities of the discarded/retained data sets.

4. CONCLUSIONS
Although functional analysis at the mesoscale is typically car-
ried out with coarse or absent structural information, thanks to
the HD-MEA technology and to the proposed structural analy-
sis, it was possible to move a step forward relating network-scale
functional and structural data at cellular resolution.

In this paper, we presented a computational framework
capable of estimating structural and functional connectivity
graphs from immunofluorescence images and electrophysiolog-
ical recordings of in vitro neuronal networks cultured on HD-
MEAs. As functional correlation and structural distance have
been shown to be related both theoretically and in different exper-
imental conditions (Hirase et al., 2001; Shlens et al., 2006; Kriener
et al., 2009; Vincent et al., 2013), we introduced a reweight-
ing strategy that allows to refine correlation-based measures of
functional connectivity using the acquired structural prior. Such
refined estimates were then used to investigate the role of different
functional features in actual neuronal interactions. Our analysis
showed that the combination of structure and function allows
to obtain reliable functional connectivity graphs that are more
coherent with the network topology and, as a consequence, with
the known distance-dependent neuronal behavior. The classifica-
tion results also allowed to reveal how different combinations of
features can be more informative than others when targeting the
detection of correlated functional activities.

Thanks to the cellular resolution offered by the HD-MEA tech-
nology, the proposed approach allowed, for the first time, to
obtain a full characterization of the structural and functional con-
nectivity at the mesoscale with a granularity of the single cell.
This first attempt in combining structure and function at this
level paves the way toward a deeper understanding of the low-
level functions of complex circuits from which higher-level brain
behaviors emerge.

Further investigation will target the analysis of more advanced
reweighting techniques, based on a probabilistic modeling of the
relationship between cross-correlation and structural distance or
other relevant features of the structural graph. Complementary
future work will address the analysis of dissociated networks with
selective immunofluorescence staining to separate the contribu-
tions of inhibitory and excitatory subnetworks and study their
structure-function interplay.
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