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Neuronal morphology is diverse among animal species, developmental stages, brain
regions, and cell types. The geometry of individual neurons also varies substantially
even within the same cell class. Moreover, specific histological, imaging, and
reconstruction methodologies can differentially affect morphometric measures. The
quantitative characterization of neuronal arbors is necessary for in-depth understanding
of the structure-function relationship in nervous systems. The large collection of
community-contributed digitally reconstructed neurons available at NeuroMorpho.Org
constitutes a “big data” research opportunity for neuroscience discovery beyond the
approaches typically pursued in single laboratories. To illustrate these potential and related
challenges, we present a database-wide statistical analysis of dendritic arbors enabling the
quantification of major morphological similarities and differences across broadly adopted
metadata categories. Furthermore, we adopt a complementary unsupervised approach
based on clustering and dimensionality reduction to identify the main morphological
parameters leading to the most statistically informative structural classification. We
find that specific combinations of measures related to branching density, overall size,
tortuosity, bifurcation angles, arbor flatness, and topological asymmetry can capture
anatomically and functionally relevant features of dendritic trees. The reported results only
represent a small fraction of the relationships available for data exploration and hypothesis
testing enabled by sharing of digital morphological reconstructions.
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INTRODUCTION
The diversity of neuronal morphologies can have broad and pro-
found functional consequences in the nervous system, which
have only begun to be understood. Dendritic geometry directly
impacts (and mediates) computational processes such as sig-
nal integration, coincidence detection, and logical operations
(London and Häusser, 2005). The location, orientation, and
shape of neural arbors enable (and strongly affect) network
connectivity, providing the anatomical substrate to investigate
structure-function relationship at the circuitry level (Shepherd
and Svoboda, 2005; Briggman and Denk, 2006; Kajiwara et al.,
2008; Weiler et al., 2008; Burgalossi et al., 2011; Ropireddy
and Ascoli, 2011; Brown et al., 2012). These areas of scientific
investigation apply to the morphological differences observed
both within and between neuron types across animal species,
developmental stages, and brain regions (Figure 1).

Three-dimensional digital reconstructions of axonal and den-
dritic arbors, combined with neuroinformatics tools and com-
putational approaches, allow considerable opportunities for
data processing, analysis, and modeling at both cellular- and
systems-level (Parekh and Ascoli, 2013). The open availability
of these reconstructions in databases such as NeuroMorpho.Org
(Figure 2) enables re-analysis of shared data (Ascoli, 2007). As

of version 5.6, the repository contained over 10,000 reconstruc-
tions contributed by 120 laboratories from 21 species, 85 brain
regions and 123 cell types, representing more than 240,000 hours
of manual tracing. NeuroMorpho.Org users can browse the data
by animal species, brain region, cell type, and contributing lab.
The “search by” option can be used to select and combine spe-
cific metadata criteria (Figure 2, left panel top) from a drop-down
menu of categories such as developmental stage, experimental
condition, and reconstruction method. The morphometry search
functionality (Figure 2, left panel bottom) allows users to find
neurons matching any combination of more than 20 morphomet-
ric criteria. From the resulting summary list of neurons (Figure 2,
middle panel), individual pages for each reconstruction can be
retrieved, thus displaying related metadata, a link to the associated
publication, and the pre-computed morphometrics (Figure 2,
right panel). Each reconstruction is downloadable as the stan-
dardized version along with the original contributed version. The
log files detailing the changes made during the standardization
process are available for download as well. From the individual
neuron pages, users can also launch an animation file and an
interactive 3D viewer.

Quantitative morphometry of neuronal reconstructions is
often used for shape analysis (Uylings and van Pelt, 2002;

Frontiers in Neuroanatomy www.frontiersin.org December 2014 | Volume 8 | Article 138 | 1

NEUROANATOMY

http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/about
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/journal/10.3389/fnana.2014.00138/abstract
http://community.frontiersin.org/people/u/51276
http://community.frontiersin.org/people/u/177919
http://community.frontiersin.org/people/u/48011
http://community.frontiersin.org/people/u/1471
mailto:ascoli@gmu.edu
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Polavaram et al. Statistical mining of NeuroMorpho.Org reconstructions

FIGURE 1 | Sample of NeuroMorpho.Org reconstructions representing

the anatomical diversity of dendritic and axonal trees. Each image is
labeled (clockwise from its right side) with the somatic brain region,
neuron types, total arbor length, and arbor width. Somata: red; axons:

gray; (basal) dendrites: green; apical dendrites: magenta. NeuroMorpho.Org
IDs of these neurons from left to right: 06787, 04183, 04457, 06312,
05713, 04477, 00779, 06216, 00777, 05491, 00888, 06904, 06141, 06295,
07707, 07763, 00690, 00606.
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FIGURE 2 | Search and download features available in

NeuroMorpho.Org. Users can query the database via a number of
functionalities to obtain desired reconstructions. The example provided here
shows two such options. Reconstructions can be identified by selecting
specific metadata across different categories such as species, brain region,
cell type, staining method, and original file format (left panel, top).
Alternatively, reconstructions can be selected by a morphometric search (left

panel, bottom), wherein users can restrict the search to a specific arbor type
(for example, apical dendrites) and define quantitative criteria to restrict
particular measures (such as length or number of bifurcations) to ranges of
interest. The resulting reconstructions can be displayed (among other
options) with a summary of associated metadata (middle panel). The
complete metadata and morphometric details are included within each
individual neuron page (right panel).

Van Ooyen et al., 2002; Rocchi et al., 2007), also in conjunction
with biologically-inspired computational simulations (Ascoli
et al., 2001; Van Ooyen, 2011). For example, statistical distribu-
tion of morphological features are used in stochastic growth algo-
rithms for generating virtual trees (Van Pelt et al., 1997; Donohue
and Ascoli, 2008; Koene et al., 2009; Evans and Polavaram, 2013;
Memelli et al., 2013). Moreover, statistical analyses of neuronal
reconstructions facilitate and support theoretical investigations.
These studies for instance provided evidence for optimal wiring
principles of neuronal arbors (Wen and Chklovskii, 2008) and
their power law distributions, which may relate to synaptic input
sampling (Lee and Stevens, 2007; Snider et al., 2010; Teeter and
Stevens, 2011; Cuntz et al., 2012).

This study uses the L-Measure software tool (Scorcioni et al.,
2008) to extract morphometric data from neuronal arbors for

large scale statistical analyses of available data. L-Measure com-
putes simple statistics of morphometric features as well as their
frequency distribution and inter-dependence (e.g., how arbor
length varies with path distance from the soma). This tool has
been used in a broad range of applications, including mul-
tidimensional analysis of neuronal shape (Costa et al., 2010;
Zawadzki et al., 2012) and comparative studies of sensory neu-
rons in the fly (Ting et al., 2014) and of respiratory neurons in
the pre-Bötzinger complex (Koizumi et al., 2013). In conjunction
with L-Neuron (Ascoli and Krichmar, 2000), L-Measure has also
been employed to generate and validate a large-scale model of the
dentate gyrus with half a million neurons (Schneider et al., 2012).
L-Measure has also enabled analysis of non-neuronal arbors such
as arterial vasculature (Wright et al., 2013), and was integrated
into other digital reconstruction and analysis systems, such as the
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Farsight toolkit (http://farsight-toolkit.org) and Vaa3D (https://
code.google.com/p/vaa3d).

With the first successes in high-throughput automatic digi-
tal neuronal tracing (Chiang et al., 2011) and overall increasing
volumes of published and shared reconstructions (Halavi et al.,
2012), “big data” opportunities for knowledge mining are start-
ing to emerge. On the one hand, this increasing availability of
shared data may foster remarkable discoveries. On the other,
the heterogeneous source of data and disparate experimental
conditions also pose non-trivial challenges to database-wide anal-
yses. As a step toward large database analysis, here we utilize
exploratory data analysis to quantify morphological similarities
and differences across broadly diverse dendritic arbors. In the
process, we recognize several critical limitations when pooling
together widely non-uniform data sets. Consequently, we propose
selection criteria and methodological choices aimed to maxi-
mize the potential biological relevance of the results. With such a
research design, dimensionality reduction and unsupervised clus-
tering reveal tentative morphological relationships between spe-
cific neuron types involving branching density, topology, size, and
tortuosity. At the same time, we identify the most delicate factors
in both data and metadata that must be considered to optimize
the impact of future large-scale morphological investigations.

METHODS
SELECTION OF DATASETS AND MORPHOMETRIC FEATURES FOR
ANALYSIS
The entire pool of 10,004 reconstructions downloaded from
NeuroMorpho.Org v5.6 was screened for a pre-determined set
of inclusion criteria to improve interpretability of the results.
Specifically, in order to be considered for analysis, digital neuron
reconstructions had to (a) belong to the “control” experimen-
tal condition; (b) contain at least four dendritic bifurcations;
(c) include branch-path information and not just bifurcation
connectivity; and (d) have non-zero depth range (eliminating
two-dimensional tracings). The 7,143 reconstructions matching
these characteristics were analyzed by their NeuroMorpho.Org
metadata assignments to specific animal species, brain region,
and cell type. Subsequently, for the purpose of cluster analysis
chi-square testing (see below), groups of fewer than 40 neurons
in any metadata combination of species, brain region, cell type,
and lab of origin were excluded to ensure sufficient statistical
power (Yates et al., 1999). This further selection reduced the num-
ber of reconstructions to 5,099, divided into 45 unique metadata
groups.

Because of the major differences between axonal and dendritic
morphology, and the remarkable abundance of reconstructed
dendrites relative to axons, only dendritic arbors were included in
this study. Focusing on a more consistent and comparable dataset
allows addressing more biologically relevant questions. Moreover,
this choice reduces the errors due to incomplete reconstructions,
which are considerably more severe for projection axons than for
dendrites.

L-Measure allows extraction of approximately 100 distinct fea-
tures from each neuron (see http://cng.gmu.edu:8080/Lm for
full listing and detailed definitions). Of these, all measures
related to branch diameter were excluded due to their strong

dependence on imaging resolution, optical magnification, and
other experimental details causing excessive inter-laboratory vari-
ability (Scorcioni et al., 2004). All other features were subjected
to cross-correlation analysis, and those with correlation greater
than 80% were sequentially eliminated one at a time (re-running
the cross-correlation at each step) as they were considered highly
redundant with the rest of the features. This selection left 27
features (Table 1) that were used for the remainder of the anal-
ysis. Dendritic arbor size measures consisted of total length,
number of tips, height, width, and depth. Bifurcation measures
included average partition asymmetry as well as amplitude, tilt,
and torque angles measured locally with the adjacent tracing
points or remotely with the preceding and following bifurcations
or terminations. Branch measures consisted of length, tortuos-
ity, and fractal dimension. Lastly, local measures included branch
order, terminal degree, path distance from soma, and helicity.

Table 1 | Coefficients of variation of all L-Measure derived

morphometric features.

Morphometric features CV for Dendrites

Hierarchy groups Cluster groups

I. WHOLE TREE/NEURON SIZE

Summed total arbor length 1.38 0.57

Number of arbor tips 1.65 1.82

Total arbor width 0.68 0.43

Total arbor height 0.65 0.51

Total arbor depth 1.12 0.65

II. BIFURCATION MEASURES

Avg. partition asymmetry 0.27 0.26

Avg. local amplitude angle 0.17 0.17

Max. local amplitude angle 0.19 0.18

Avg. remote amplitude angle 0.21 0.18

Max. remote amplitude angle 0.24 0.23

Avg. local tilt angle 0.14 0.13

Max. local tilt angle 0.08 0.08

Avg. remote tilt angle 0.09 0.08

Max. remote tilt angle 0.05 0.05

Avg. local torque angle 0.17 0.16

Max. local torque angle 0.11 0.11

Avg. remote torque angle 0.18 0.17

Max. remote torque angle 0.10 0.10

III. BRANCH MEASURES

Avg. tortuosity 0.08 0.07

Avg. fractal dimension 0.03 0.02

Max. fractal dimension 0.15 0.14

Avg. branch path length 0.59 0.41

Max. branch path length 0.81 0.53

IV. COMPARTMENT MEASURES

Max. branch order 0.85 0.85

Avg. terminal degree 0.71 0.68

Max. path distance from soma 0.76 0.57

Max. branch helicity 0.19 0.16

A detailed description of each metric is provided at http:// cng.gmu.edu:8080/

Lm/ help/ index.htm.
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PRINCIPAL COMPONENT ANALYSIS (PCA) AND CLUSTER ANALYSIS
In order to reduce the dimensionality of the morphometric space
for unsupervised clustering, PCA was run on the feature dataset
using the “prcomp” routine in R (v. 2.15.1). This transforma-
tion rotates all extracted measures (27 features for 5,099 arbors)
such that the first dimensions in the new space capture the most
variance (in decreasing order). Prior to PCA, all features were
normalized by their respective standard deviations, and the fea-
tures with absolute skewness greater than unity (17/27) were
log-transformed. Negatively skewed distributions were inverted
and distributions with negative values were shifted prior to log-
transformation. These steps ensure an approximately normal
distribution of the input features, as assumed by PCA and sub-
sequent clustering. The resulting first 17 components, accounting
for 95% of the variance, were retained for cluster analysis.

Next, the dendritic arbors were clustered based on their prin-
cipal morphometric components to seek a shape-based classifi-
cation independent of a priori metadata grouping. We selected a
model-based approach, in which mixtures of Gaussians are found
that together have maximal likelihood to fit the data. A cluster is
the collection of arbors that are most likely to come from the same
multivariate Gaussian (referred to as a cluster model). We used
the R “MCLUST” package (Farley and Raftery, 2006) for estimat-
ing optimal model parameters and selecting the most likely model
type given the dataset. The model types include spherical, ellip-
soidal (with a diagonal covariance matrix), and ellipsoidal with
orientation (indicating correlation between dimensions). This
flexibility makes model-based clustering a more suitable choice
than other popular methods (e.g., K-means) for analysis of het-
erogeneous data sets collated from different experiments, labs,
and conditions. Not only are clusters not limited to fit spherically
symmetric distributions, but also each cluster is allowed to have
its own distinct variance, shape, and orientation.

MCLUST implements Expectation Maximization (EM) to
select models using the Bayesian information criterion (BIC). The
BIC computes the log likelihood of the cluster model, but includes
a penalty for the number of parameters weighted by the log of the
dataset size. Thus, goodness of fit is balanced against model sim-
plicity according to the following equation, whereby the largest
value determines the best model:

BIC = −2 · ln̂L + k · ln (n) (1)

Here, ̂L is the maximized likelihood computed on the marginal
likelihood P(y|Mi) of the candidate model Mi given the observed
data y (y1, . . . yn); k is the number of free parameters to be
estimated; and n is the number of data points.

The specification of MCLUST model types and parameters is
coded by three letters in each of three positions. The three posi-
tions represent the model size, shape, and orientation variables,
respectively. Letter “E” indicates that the parameters are equiv-
alent across all clusters, “V” signifies variable parameter values,
and “I” denotes that the corresponding parameter is not appli-
cable. For example, “EII” indicates spherical Gaussians (no shape
or orientation) with equal size among clusters, which corresponds
to the traditional K-means method. Similarly, the “VVV” model
type indicates varying size, shape, and orientation parameters.

This latter model was determined by EM to be optimal for the
data analyzed here despite its greater BIC cost implied by the
larger number of free parameters. Thus, EM provides information
theory-derived evidence that the performance of simple uniform
spherical (K-means-like) clustering is sub-optimal for the data
used in this study.

Cluster distances from the center of coordinates were mea-
sured by Z score to account for relative variance. Pairwise cluster
distances were computed as the distances between the corre-
sponding centers normalized by the cluster scatters, which are
defined as averaged distance of the cluster points from the respec-
tive cluster center (Dunn, 1973). The associations among clusters
and metadata groups were assessed using the chi-square test of
independence, using the (marginal) frequencies of group and
cluster occurrences to calculate the expected association matrix,
and computing the Bonferroni-corrected p-values of the observed
co-occurrences from the standardized residuals.

RESULTS
VARIABILITY OF DENDRITIC MORPHOLOGY AND COMPARISON BY
METADATA
To quantify the heterogeneity of the data, we computed the coef-
ficient of variation (CV) for each of the 27 measured features
over the entire set of 7,143 neurons as well as over the subset
of 5,099 neurons used in cluster analysis (Table 1). Tortuosity,
fractal dimension, and tilt angle are the least variable features,
with a CV of less than 10%. In contrast, size measures are the
most variable, with a CV close to or greater than unity. This
apparent distinction between “local” (branch-level) vs. “global”
(neuron-level) features may reflect both the effect of biological
constraints (e.g., varying dimensions of different species from
insects to human) and experimental conditions (slice vs. whole-
animal preparations). Most other metrics display intermediate
CV values.

Dendritic morphologies were then compared across species,
cell types, and brain regions. The corresponding metadata infor-
mation for each reconstruction in NeuroMorpho.Org was orga-
nized hierarchically (Figure 3), forming groups with a sufficient
number of neurons to enable statistical comparison of the results
(at least 55 for species, 300 for brain regions, and 100 for cell
types). Groups with fewer reconstructions were combined into
“others” together with the reconstructions missing the detailed
metadata information at the corresponding level of the hierarchy
(marked as “not reported” in NeuroMorpho.Org).

The “leaf” nodes in each of the three metadata hierarchies
(12 for species, 14 for brain regions, and 10 for cell types) were
compared with a selection of representative morphometric fea-
tures (Figure 4). In a limited set of cases, individual groups could
be distinguished from the rest or from each other. For example,
blowfly and cat reconstructions stood out against the neurons of
all other species for their large topological asymmetry and Z span,
respectively. The dendritic arbors of magnopyramidal cells tended
to have extensive total length but low fractal dimension, whereas
granule cells displayed opposite characteristics. At the same time,
most groups show extensive overlap of their morphometric vari-
ance, preventing firm statistical conclusions. Part of the reason
for such broad distributions is likely due to the non-uniform
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FIGURE 3 | NeuroMorpho.Org v5.6 data is categorized along three

major metadata dimensions, namely species, brain regions, and cell

types. Reconstructions are hierarchically organized in each of these
dimensions. Every node in the hierarchy is labeled by the number of
associated reconstructions. The line lengths are proportional to the size

of the child nodes relative to their parent nodes. (A) In the species
hierarchy nodes with fewer than 55 reconstructions are grouped
together with the “not reported” data under “Others.” In the brain
regions (B) and cell type (C) hierarchies the grouping thresholds are
300 and 100, respectively.

nature of archive-wide data sets pooled together across different
experiments and laboratories. It is also clear that these metadata
dimensions are not mutually independent because of evolution-
ary constraints (e.g., bony fishes lack a neocortex) and the finite
sample of reconstructions (e.g., all monostratified ganglion cells
came from the mouse retina). More generally, while popular in
comparative anatomy, such a pairwise approach lacks the ability
to reveal multivariate effects that are unavoidable given the non-
random association between metadata groups and experimental
conditions.

EXTRACTING PRIMARY MORPHOLOGICAL FEATURES BY PCA AND
CLUSTER MODELS
In order to overcome the above limitations, we adopted
an unsupervised clustering approach following dimensional-
ity reduction with PCA. The first step is to reduce the ini-
tial parameter space to fewer orthogonal dimensions capturing
most of the data variability. In mathematical terms, PCA identi-
fies the linearly independent combinations of variables ordered
by the amount of variance they explain. From the (27) orig-
inal morphometric features, the first 17 dimensions of PCA

covered 95% of the data variance and were used for cluster
analysis.

The first 6 of these principal components were responsi-
ble for three quarters of the variance and displayed distinctive
compositions of their primary morphometric features (Table 2).
Identifying the heaviest contributors in the linear combination
of morphometric features of each principal component (“load-
ings”) is useful to aid subsequent interpretation of the results.
The first component (PC1) is positively loaded on bifurcation
angles and negatively on branch path length, reflecting high
branching density. The morphometric features most descriptive
of PC2 and PC3 are respectively overall size and branch tortu-
osity. Together, the first three components capture the majority
of the data variance. The simplest morphological descriptors of
PC4, PC5, and PC6 are arbor flatness (related to torque angle),
fractal dimension (or “space filling”), and topological asymmetry
(the average normalized sub-tree partition at bifurcation points),
respectively.

In order to produce the most informative statistical model,
unsupervised clustering selects the optimal number of clusters as
well as their parameters, by maximizing the BIC. These data were
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FIGURE 4 | Inter-group differences of representative morphometric

features within each main metadata dimension. Crosshairs represent
medians and quartile ranges of each group corresponding to the leaf nodes
in the hierarchies shown in Figure 3. Dotted lines indicate “other” groups
with merged data. (A) Differences in arbor depth and topological
asymmetry among species. (B) Differences in arbor width and average
bifurcation angle among brain regions. (C) Differences in fractal dimension
and total arbor length among cell types.

best fit to six clusters with varying size, shape, and orientation
(Figure 5). The numerical difference between this model and the
variant with constant cluster shape, however, was minimal (and
is undetectable in Figure 5A). The same model type, moreover,
performed nearly as well with five or seven clusters as indicated
by the absence of a clear peak in the BIC plot. We experimented
with these alternative model variant and numbers of clusters and
found no substantial differences in findings. At the same time,
the data were not adequately described by traditional spherical
clusters, even if with unequal sizes (Figure 5A).

Since six clusters correspond to the maximum value for
both top model types, we selected this number as the most
suitable for exploratory analysis. Such a choice, nevertheless,
should not be taken to reflect a ground truth that only six

Table 2 | Primary morphometric loading (with absolute values of 0.25

or higher) of the first six principal components of the dendritic arbors

used in cluster analysis.

Principal Component Morphometric features Loading

PC1 (27% of cumulative
variance): branching density

Max. remote amplitude angle 0.29
Avg. remote amplitude angle 0.27

Max. local amplitude angle 0.26

Avg. terminal degree 0.25

Max. branch order 0.25

Avg. branch path length −0.28

Avg. remote tilt angle −0.26

PC2 (43% of cumulative
variance): size

Summed total arbor length 0.4
Total arbor height 0.36

Max. path distance from soma 0.34

Total arbor width 0.33

PC3 (58% of cumulative
variance): branch tortuosity

Avg. tortuosity 0.42
Avg. fractal dimension 0.34

Avg. local tilt angle −0.34

PC4 (64% of cumulative
variance): arbor flatness

Avg. remote torque angle 0.63
Avg. local torque angle 0.62

PC5 (70% of cumulative
variance): fractal dimension and
tilt angles

Max. fractal dimension 0.37

Avg. fractal dimension 0.35

Avg. remote tilt angle 0.35

Avg. tortuosity 0.25

Max. remote tilt angle −0.32

Avg. remote amplitude angle −0.36

PC6 (75% of cumulative
variance): partition asymmetry
and depth

Avg. partition asymmetry 0.41

Total arbor depth 0.35

“true” classes exist within the data. This selection simply max-
imizes the inter-similarity of co-clustered classes relative to
classes in other clusters given the scope, size, quality, and
composition of the available dataset. To determine if further
differences exist between classes that associate with the same
cluster, it would be appropriate to run the same analysis on
a subset of the data (sub-clustering). This additional analysis,
however, requires larger datasets to meet the selection crite-
ria based on a minimum number of reconstructions in each
dataset.

The two-dimensional data projection on the first and second
components illustrates the relative discrimination of clusters by
branching density and arbor size (Figure 5B). Cluster ranking
by variance-normalized distance from the center of coordinates
(Figure 5C) allows for focused analysis on clusters farther from
the origin (a–d), and thus morphologically distinctive, relative
to those closer (e and f ) to the origin. The six clusters contain
respectively 585 (a), 1488 (b), 762 (c), 555 (d), 818 (e), and 891 (f )
reconstructions. Pairwise distances (Figure 5D) reveal that one
and the same cluster (b) is both the farthest from (a) and closest
to (e) than to other clusters.
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FIGURE 5 | Unsupervised cluster analysis of dendritic morphology. (A)

Maximization of BIC reveals marginal performance of spherical clustering
with equal (EII) or unequal size (VII) alike relative to the models allowing
ellipsoidal clusters. Among those, those accounting for unequal orientation
(EEV, VEV, and VVV) performed better, especially with unequal size (VEV and
VVV). The highest BIC value was attained at 6 clusters with varying size,

shapes and orientation (VVV). (B) Scatter plot of color-coded cluster
assignments (a through f ) projected on the first two principal components.
The ovals represent best fitting cluster parameters. (C) Cluster ranking by Z
score distance from the origin of coordinates. (D) Pairwise inter-cluster
distances normalized by the corresponding scatters. Farthest distances are in
green and nearest are in red.

STATISTICAL ASSOCIATIONS BETWEEN CLUSTERS AND METADATA
COMBINATIONS
Unsupervised cluster models segregate neuronal reconstructions
solely based on morphological features. This classification is
thus complementary to, and independent of, the metadata asso-
ciated with each reconstruction. The correspondence between
the six morphological clusters and the 45 unique metadata
groups characterized by species, brain region, neuron type, and
lab of origin can shed light on the most important morpho-
metric signatures of each metadata group. The 45-by-6 chi-
square contingency matrix (Table 3) reports the probabilities
that the observed over-representation and under-representations
of associations between morphological clusters and metadata
groups would be due to chance if the observed numerical
compositions of each cluster and group were independent of
each other. For example (first data row in Table 3), pyramidal
neurons from mouse primary somatosensory cortex in Smit–
Rigter’s archive are significantly over-represented in cluster a
(p < 0.0002 = 10−3.73) and significantly under-represented in
cluster b (p < 0.001 = 10−3.05). In contrast, the proportion of
these same neurons in cluster d is within the range expected

from the sizes of this metadata group and morphological
cluster.

Interestingly, each and every metadata group is over-
represented in, and thus associated with, one of the six mor-
phological clusters. The majority (38/45) are associated with
exactly one cluster, and all of the remaining (7/45) are each split
between just two clusters. Most possible metadata/cluster pairs
deviated significantly from the random distribution expected
from the “null hypothesis”: 53 out of 270 were significantly over-
represented and 87 out of 270 significantly under-represented.
This overall partition of metadata groups in distinct clusters
constitutes a remarkable outcome for a fully unsupervised clas-
sification method. Certain metadata groups are over-represented
in one morphological cluster and under-represented in all
other clusters, such as ganglion cells from mouse retina in
Masland’s archive (cluster a) and pyramidal cells from human
prefrontal cortex in Jacobs’ archive (cluster b). Other meta-
data groups are over-represented in one morphological clus-
ter, but otherwise scattered throughout all other clusters per
the respective numerical abundance, such as pyramidal cells
from monkey frontal lobe in Luebke’s archive (cluster d)
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Table 3 | Matrix of positive (green) and negative (red) associations between metadata groups (rows) and morphological clusters (columns).

Metadata group (species, type, lab) a b c d e f

Mouse S1 pyramidal (Smit–Rigter) 3.73 −3.05 NS 25.31 NS NS

Rat retinal ganglion (Rodger) 58.05 −4.47 NS NS NS NS

Blowfly visual lobe tangential (Borst) 93.95 −3.52 NS NS NS NS

Mouse retinal ganglion (Chalupa) 212.99 −15.11 NS −3.31 −6.15 −1.52

Mouse retinal ganglion (Masland) 304.69 −23.3 −9.06 −5.8 −9.99 −9.6

Human S1 pyramidal (Jacobs) −1.84 31.11 −2.6 NS NS −2.57

Human parietal lobe pyramidal (Jacobs) NS 32.41 −2.21 NS NS −2.49

Human temporal lobe pyramidal (Jacobs) NS 39.85 −1.76 NS NS −2.59

Human M1 pyramidal (Jacobs) −4.94 61.98 −7.3 NS NS −6.02

Human V1 pyramidal (Jacobs) −6.93 81.1 −9.97 −4.45 NS −9.14

Human prefrontal pyramidal (Jacobs) −14.12 196.33 −19.1 −7.79 −4.08 −18.98

Rat prefrontal pyramidal (De Koninck) NS −5.52 11.26 NS NS NS

Rat S1 pyramidal (Meyer) NS −5.33 25.2 NS NS NS

Rat frontal lobe pyramidal (Kawaguchi) NS −2.19 30.36 NS NS NS

Rat S1 pyramidal (Staiger) NS −2.57 32.87 NS NS NS

Rat S1 pyramidal (Markram) NS −5.74 38.27 NS NS NS

Mouse neocortex pyramidal (Yuste) NS −5.52 47.63 NS NS NS

Mouse S1 pyramidal (Krieger) NS −4.76 82.58 NS NS −1.58

Mouse V1 pyramidal (Yuste) NS −5.42 85.76 NS −1.57 NS

Mouse S1 pyramidal (Yuste) −3.75 −15.5 98.82 −1.96 −4.27 NS

Monkey frontal lobe pyramidal (Luebke) NS NS NS 8.28 NS NS

Rat DG granule (Claiborne) NS −1.66 NS 41.01 NS NS

Monkey temp. sulcus pyramidal (Wearne_Hof) NS NS NS 64.5 NS NS

Elephant neocortex pyramidal (Jacobs) NS −2.23 NS 67.98 NS NS

Monkey prefrontal pyramidal (Lewis) −2.57 −13.46 −4.27 169.52 −4.83 NS

Human inferior frontal gyrus pyramidal (Lewis) −2.84 −9.65 −4.47 253.7 −5.01 −5.18

Rat S1 interneuron (Helmstaeder) NS −1.85 NS NS 3.96 NS

Human ant. long insular gyrus pyr. (Jacobs) −4.34 18.18 −6.49 NS 6.57 −7.07

Human middle short insul. gyrus pyr. (Jacobs) −4.28 18.1 −6.41 NS 8.52 −6.97

Rat M1 basket (Kawaguchi) NS −3.52 NS NS 11.51 NS

Human post. short insular gyrus pyr. (Jacobs) −4.31 11.27 −6.45 NS 13.61 −7.02

Rat S1 pyramidal (Svoboda) NS NS NS NS 17.32 NS

Rat S1 basket (Markram) NS NS NS NS 18.41 NS

Rat brainstem motoneuron (Cameron) NS −2.28 NS NS 35.45 NS

Mouse M1 pyramidal (DeFelipe) NS −4.94 NS NS 49.32 NS

Mouse basal ganglia med. spiny (Kellendonk) NS −6.66 NS NS 75.01 NS

Mouse S1 basket (Yuste) NS −2.38 7.9 NS NS 4.61

Fish retinal ganglion (Stevens) 17.87 −3.62 NS NS NS 6.3

Rat CA3 interneuron (Jaffe) NS −3.09 NS NS 1.58 11.2

Mouse S1 interneuron (Yuste) −1.95 −11.53 24.29 −2.22 NS 15.12

Salamander retinal ganglion (Miller) NS −4.28 NS NS NS 34.77

Rat basal forebrain large aspiny (Smith) NS −5.9 NS NS NS 64.41

Rat basal forebrain medium spiny (Smith) −1.46 −8.47 NS NS NS 81.6

Mouse S1 pyramidal (Brumberg) −1.54 −10.28 NS −1.83 NS 97.16

Rat olfactory bulb pyramidal (Brunjes) −4.47 −17.11 NS −4.11 −3.92 125.81

The Bonferroni adjusted p-values obtained by the chi-square test of independence are converted for ease of comparison into log10 values, inverting the sign for

overrepresented (green) cells. The color gradient shows the interaction strength. Non-significant (p > 0.05) associations are indicated with NS.

and motoneurons from rat brainstem in Cameron’s archive
(cluster e).

Several observations can be made that transcend individual
archive identities. All rodent retinal ganglion cell groups are asso-
ciated with cluster a, whereas fish and salamander retinal ganglion

cells groups are associated with cluster f. The relative cluster posi-
tions in the first two principal components and the corresponding
morphological loadings (Figure 5B and Table 2) suggest that the
retinal ganglion cells are larger and with denser branching in
rodents than in non-mammals. Neocortex pyramidal cell groups
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are distributed across all clusters, with preference mostly based on
species (most notably, human in b, rodents in c, and monkey in d).
All rodent non-cortical and non-pyramidal cell groups are found
in cluster f (along with salamander and fish retinal ganglion cells).
Such metadata heterogeneity, together with this cluster’s mini-
mal distance from the morphological center (Figure 5C) suggests
a putative “catch-all” role for cluster f, which makes it broadly
representative of the whole dataset.

In several cases, the split of a metadata group into two mor-
phological clusters reflects previously reported relations. For
example, three groups of pyramidal neurons from the (ante-
rior, middle, and posterior) human insular gyrus in the Jacobs’
archive divided between clusters b and e according to structural
differences related to the subject’s gender (Anderson et al., 2009).
Similarly, mouse primary somatosensory pyramidal cells are over-
represented in both clusters a and d, consistent with the reported
differences between young and adult animals (Smit-Rigter et al.,
2012). The grouping of neurons from younger mice with retinal
ganglion cells (in cluster a) and from the older mice with pyra-
midal cells of larger mammals, such as monkey, elephant, and
human (in cluster d), could be expected since the former groups
are characterized by the shortest branch path length and the lat-
ter groups by the largest. The scattered clustering of pyramidal
neurons, however, does not necessarily reflect existing biologi-
cal relations, but might rather result from the combination of
the choice of analysis algorithms, selection of parameters, and
experimental differences.

The other splits of metadata groups between two clusters
(Table 3) similarly revealed differences likely due to experimental
procedures, such as staining protocol or slicing direction, which
were not recognized in the original reports (Anderson et al.,
1995; Soloway et al., 2002; Goldberg et al., 2003; MacLean et al.,
2005; Nikolenko et al., 2007; Woodruff et al., 2009). For exam-
ple, the separate clustering of different mouse S1 pyramidal cell
datasets can be explained by the differences between intracellular
biocytin injection (e.g., Yuste’s archive) and bulk Golgi staining
(e.g., Brumberg’s archive). While the mechanisms underlying the
different visualization by these techniques are not yet fully under-
stood (Thomson and Armstrong, 2011), the histological labeling
information is available as metadata in NeuroMorpho.Org, thus
aiding interpretation.

A complementary way to examine the associations between
morphological clusters and metadata groups is to systematically
analyze the composition of each cluster in terms of its associated
groups, broken down by fraction of group, fraction of cluster, and
neuron count (Table 4). For example (first data row in Table 4),
33% of the mouse S1 pyramidal cells from the Smit–Rigter archive
are in cluster a, accounting for only 3% of this cluster (17 out
of 560 neurons). The sums of cluster fractions in Table 4 corre-
spond to the proportion of neurons in each cluster (e.g., 97% for
cluster a) made up by the cluster’s associated metadata groups
(green entries in Table 3). The remaining portions of the clusters
are composed of neurons falling outside of their associated clus-
ter. Notably, the blowfly tangential cell group is associated with
cluster a. Moreover, clusters b and c are exclusively associated
with human pyramidal cell (in which only basal dendrites are
reconstructed) and rodent neocortex cell groups respectively.

PAIRWISE MORPHOMETRIC COMPARISONS OF NEURON GROUPS
IDENTIFIED BY CLUSTER ANALYSIS
Exploratory inspection of neuronal clusters in the 6-dimensional
space of principal morphometric components together with the
association between clusters and metadata groups (Tables 3, 4)
suggested closer inspection of specific morphological features in
selected pairs of neuronal groups defined by their species, brain
region, and cell type. The first example pertains to rodent reti-
nal ganglion cells (Figure 6), which are characterized by high
branching density and related morphological features (e.g., wide
bifurcation angles). These neurons, pooled from mice and rats
in four different archives, constitute 80% of cluster a, the farthest
away from the center (Figure 5C and Table 4). At the opposite end
along the first principal components is cluster b, entirely made of
human pyramidal basal dendrites. Visual inspection (Figure 6B)
reveals the distinctive shapes of rodent ganglion cells and human
basal dendrites. Statistical analysis of the two main morphological
loadings of PC1 (bifurcation amplitude and branch path length)
confirmed the considerable difference between these two neuron
groups, even when including those found in clusters other than a
and b (Figure 6C).

The second most prominent group in cluster a is constituted
by blowfly tangential sensory neurons. These neurons share with
the rodent ganglion cells not only comparable branching den-
sity properties captured by PC1 (low branch path length and
high bifurcation angle), but also similar distributions on PC2
through PC5 and all corresponding morphological features load-
ing on those dimensions. These include measures of size (e.g.,
total dendritic length and spanned volume), of space filling (frac-
tal dimension and tortuosity), and of arbor planarity (torque and
tilt angles). Such tight alignment on the first five principal com-
ponents along with the morphological co-clustering suggests a
structural basis for the functional commonalities between blowfly
tangential cells and retinal ganglion cells, both of which process
motion-sensitive visual information (Kong et al., 2005; Cuntz
et al., 2008).

Nevertheless, rotation on the sixth principal component
exposed a surprising and nearly perfect separation between reti-
nal ganglion cells and blowfly tangential cell (Figure 6A). Since
the main morphological feature loading on PC6 is topologi-
cal asymmetry (the average partition of terminal degree over
all bifurcations), we compared the distribution of this mea-
sure between the two neuron classes (Figure 6D). This analysis
demonstrated that blowfly tangential neurons have much more
asymmetric bifurcations than ganglion cells (and most typical
neurons). Interestingly, the data projection over the first and sixth
principal components (Figure 6A) also suggested a linear rela-
tionship between topological asymmetry and branching density
in rodent retinal ganglion cells but not in other groups. The
Pearson correlation coefficients for branching density and asym-
metry index (R = −0.50) and for bifurcation amplitude remote
and asymmetry (R = 0.51) are both statistically highly significant
(p < 10−10).

Rotating the data along the first and third principal com-
ponents (related to branching density and tortuosity, respec-
tively) revealed another distinct relationship across pyramidal
cells from different species, brain regions, and developmental
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Table 4 | Composition of the six morphological clusters in terms of their over-represented metadata groups.

Cluster Metadata group Fraction of group Fraction of cluster Counts

a Mouse S1 pyramidal (Smit–Rigter) 0.33 0.03 17

Fish retinal ganglion (Stevens) 0.51 0.05 29

Rat retinal ganglion (Rodger) 0.76 0.09 50

Mouse retinal ganglion (Chalupa) 0.85 0.26 151

Mouse retinal ganglion (Masland) 0.99 0.44 257

Blowfly visual lobe tangential (Borst) 1 0.1 56

Total 0.97 560

b Human posterior short insular gyrus pyramidal (Jacobs) 0.53 0.07 106

Human anterior long insular gyrus pyramidal (Jacobs) 0.59 0.08 118

Human middle short insular gyrus pyramidal (Jacobs) 0.59 0.08 117

Human S1 pyramidal (Jacobs) 0.79 0.06 95

Human V1 pyramidal (Jacobs) 0.8 0.15 226

Human M1 pyramidal (Jacobs) 0.8 0.12 176

Human parietal lobe pyramidal (Jacobs) 0.86 0.06 84

Human prefrontal pyramidal (Jacobs) 0.88 0.29 434

Human temporal lobe pyramidal (Jacobs) 0.91 0.06 91

Total 0.97 1447

c Rat prefrontal pyramidal (De Koninck) 0.43 0.05 39

Mouse S1 interneuron (Yuste) 0.47 0.09 66

Mouse S1 basket (Yuste) 0.5 0.03 22

Rat S1 pyramidal (Meyer) 0.6 0.06 45

Rat S1 pyramidal (Markram) 0.66 0.07 57

Mouse S1 pyramidal (Yuste) 0.71 0.17 128

Mouse neocortex pyramidal (Yuste) 0.75 0.08 58

Rat S1 pyramidal (Staiger) 0.8 0.05 37

Rat frontal lobe pyramidal (Kawaguchi) 0.81 0.04 34

Mouse V1 pyramidal (Yuste) 0.96 0.1 73

Mouse S1 pyramidal (Krieger) 0.99 0.09 68

Total 0.83 627

d Monkey frontal lobe pyramidal (Luebke) 0.43 0.03 18

Monkey S1 pyramidal (Smit–Rigter) 0.59 0.05 30

Rat DG granule (Claiborne) 0.77 0.06 33

Monkey prefrontal pyramidal (Lewis) 0.79 0.23 126

Elephant neocortex pyramidal (Jacobs) 0.9 0.08 44

Monkey temporal sulcus pyramidal (Wearne_Hof) 0.93 0.07 40

Human inferior frontal gyrus pyramidal (Lewis) 0.96 0.26 146

Total 0.78 437

e Human anterior long insular gyrus pyramidal (Jacobs) 0.32 0.08 63

Human middle short insular gyrus pyramidal (Jacobs) 0.33 0.08 66

Rat CA3 interneuron (Jaffe) 0.34 0.02 20

Human posterior short insular gyrus pyramidal (Jacobs) 0.37 0.09 74

Rat S1 interneuron (Helmstaeder) 0.4 0.03 23

Rat M1 basket (Kawaguchi) 0.54 0.04 30

Rat S1 pyramidal (Svoboda) 0.58 0.05 38

Rat S1 basket (Markram) 0.65 0.04 33

Mouse M1 pyramidal (DeFelipe) 0.74 0.08 67

Mouse basal ganglia medium spiny (Kellendonk) 0.83 0.1 85

Rat brainstem motoneuron (Cameron) 0.88 0.05 38

Total 0.66 537

(Continued)
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Table 4 | Continued

Cluster Metadata group Fraction of group Fraction of cluster Counts

f Mouse S1 interneuron (Yuste) 0.45 0.07 63

Fish retinal ganglion (Stevens) 0.47 0.03 27

Mouse S1 basket (Yuste) 0.48 0.02 21

Rat CA3 interneuron (Jaffe) 0.55 0.04 32

Salamander retinal ganglion (Miller) 0.78 0.06 50

Rat olfactory bulb pyramidal (Brunjes) 0.8 0.18 164

Mouse S1 pyramidal (Brumberg) 0.88 0.13 112

Rat basal forebrain medium spiny (Smith) 0.88 0.11 95

Rat basal forebrain large aspiny (Smith) 0.9 0.08 73

Total 0.72 637

Associations between metadata groups and morphological clusters are quantified as fraction of the group, fraction of the cluster, and absolute neuron count of

group/cluster intersection. Within cluster, groups are arranged in ascending order of the group fraction.

FIGURE 6 | Similarities and differences of rodent retinal ganglion cells

with other neurons within and across clusters. (A) All rodent retinal
ganglion cells together with blowfly tangential cells (cluster a) show highest
branching density along PC1 compared to others metadata groups. The
human basal pyramidal cell cluster (b) is highlighted for comparison. PC6
separates the tangential and ganglion cells, showing sub-cluster differences.
The retinal cells also show a pattern of increasing partition asymmetry with
increasing branching density. (B) Sample images of retinal ganglion cells

(top), blowfly tangential cells (middle), and human basal pyramidal cells
(bottom). NeuroMorpho.Org IDs of these neurons from left to right: 06464,
05352, 05405, 06652, 01895, 06640, 03723, 03724, 03722. (C) Rodent
ganglion cells have larger amplitude angles compared to human basal
pyramidal cells (and most other cell classes). (D) Rodent ganglion cells also
display shorter branch length, corresponding to higher branching density.
(E) The blowfly neurons, while sharing similar branch path length and
amplitude angles with the retinal cells, have higher topological asymmetry.
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stages (Figure 7). Specifically, neocortical pyramidal cells from
rodents (clusters c) and primates (cluster d) display a trend
of increasing branch tortuosity with increasing branch density
(Figure 7A). Visual examination of morphologies selected from
the corresponding clusters in the PC1-PC3 scatter plot demon-
strates a correspondence in the increase of branch density and
branch tortuosity (Figure 7B). The least tortuous trees, and many
of the primate neurons, are noted to be incomplete reconstruc-
tions, in which only dendrites proximal to the soma are traced. In
contrast, the dendrites of rodent neocortical pyramidal neurons
tend to be fully reconstructed in both apical and basal arbors.

CRITICAL ASSESSMENT OF POTENTIAL CONFOUNDS
In the course of the iterative process of data inspection, hypoth-
esis formulation, research design, and quantitative analysis, we
encountered numerous challenges pertaining to data valida-
tion, curation, and standardization across labs. After a prelim-
inary exploration of the entire content of NeuroMorpho.org,
we decided to include in our study only approximately half of
the available neurons. Specifically, we chose to avoid multi-lab
analysis of axons, because of the extreme dependence of axonal
morphology on experimental conditions. In our early analysis
attempt that did not segregate axons from dendrites, biological
findings became practically impossible to disentangle from major
artifacts. This selection effectively defines a standard of minimal
requirements for effectively comparing neural arbors.

Moreover, we excluded measures related to branch diameter
(branch power ratios, surface areas, occupied volume, etc.) due
to their strong sensitivity on the inter-laboratory variety of label-
ing or staining, imaging resolution or optical magnification, and
other experimental details affecting tracing conditions (Scorcioni
et al., 2004). Furthermore, most reconstructed cells originate
from preparations in acute brain slices (in vitro). In the primary

somatosensory region of rat neocortex (S1), this common prepa-
ration may result in trimming off more than 50% of the dendritic
arbor (Oberlaender et al., 2012). These slicing artifacts impact
larger brains to a greater extent, as reflected by the fact that human
cells are only represented by basal dendrites. In addition to species
differences, trimming effects also depend on animal age, slicing
thickness and orientation, and the depth of electrode penetration
in the tissue. For these reasons, when mining the cluster analy-
sis results, we paid particular attention to only report findings as
“biological” (Figures 6, 7) that were not based on size or any mor-
phometrics significantly affected by trimming artifacts. Instead,
we identified correlations based on measures such as branching
density, tortuosity, and branch angles, all of which have been
previously found to be consistent between in vitro and in vivo
preparations (Pyapali et al., 1998).

On the one hand, this judicious design allowed the indepen-
dent reproduction of findings reported in prior publications.
These included several cases of “split metadata groups” into
two morphological clusters, which reflected structural differences
related to the subject’s gender (Anderson et al., 2009) or devel-
opmental stage (Smit-Rigter et al., 2012). On the other hand,
experimental artifacts still contributed to clustering, and other
splits of metadata groups between two clusters (Table 3) revealed
differences likely due to staining protocol or slicing direction,
which were not recognized or discussed in the original reports
(Anderson et al., 1995; Soloway et al., 2002; Goldberg et al.,
2003; MacLean et al., 2005; Nikolenko et al., 2007; Woodruff
et al., 2009). Thus, database-wide analyses can reveal potential
confounds not easily pinpointed in individual studies.

One of the most common artifacts of tissue processing is
shrinkage, and this factor is also highly variable among labs.
Shrinkage differentially affects the slice planar and perpendic-
ular dimensions (the latter typically producing a larger effect).

FIGURE 7 | Rodent and primate cortical pyramidal cells show a distinct

linear relationship between PC1 and PC3. (A) The majority (71%) of cluster
c consists of rodent cortical pyramidal cells, whereas a similar proportion of
cluster d (72%) corresponds to primate pyramidal cells, which tend to be only
partially reconstructed. (B) Sample images of incomplete primate pyramidal

cells in the top row (1–4) and rodent cortical pyramidal cells in the bottom
(5–8). The numbers indicate their corresponding position in the cluster plot
illustrating the progressive increase in branching density and tortuosity in
both clusters. The NeuroMorpho.Org IDs of these neurons from left to right:
01821, 01526, 01627, 01623, 09630, 09474, 02569, 00266.
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Thinner slices tend to shrink more and so do preparations from
younger animals. The duration of the experimental procedure
may also impact shrinkage, as do the bathing and embedding
media. Shrinkage can be measured in all dimensions and it can
therefore be compensated for by multiplying the resulting posi-
tion coordinates by an appropriate correction factor. However,
this post-processing operation also exacerbates noise due to light
diffraction and other experimental errors. These sources of errors
tend to be larger in the direction corresponding to the depth
of the slice (“Z”), which is usually estimated through a piezo-
controller in the motorized stage. Moreover, shrinkage typically
varies both within and between sections, and an accurate cali-
bration therefore requires multiple repeated measurements that
add to the already demanding labor intensity of digital recon-
struction. For these reasons, shrinkage is not always measured,
reported or corrected for. This variability across published stud-
ies further worsens the numerous sources of differences due to
experimental processing.

In light of the above consideration, we specifically looked for
potential shrinkage-related confounds in the clustering results.
Out of 56 unique combinations of clusters, metadata groups,
and corresponding published articles, only 14 reported shrinkage
estimates or mentioned shrinkage altogether. Of those, a mere 5
applied the corresponding correction to the data. Unsurprisingly
given the limited sample, we found no statistically signifi-
cant association between both corrected or uncorrected values
and clustering. Next, we examined slicing thickness, which was
reported in 49 (out of 56) cases (with median 200 µm). Values
varied broadly from 80 to 400 µm, with 85% of them falling
between 120 and 350 µm. No statistical association was found
between clustering and these values. The lack of explicit shrink-
age information prevents firm conclusions and leaves open the
possibility that some of the findings we report may be ultimately
due to slicing artifacts. However, the low coefficient of variation
of measurements typically sensitive to shrinkage, especially tor-
tuosity and fractal dimension (Table 1), suggests that the noise
related to shrinkage (as opposed to that affecting size measures)
may affect most of the analyzed data to a similar degree.

Fully assessing the potential usefulness of the reported results
will require additional investigation. For example, morpholog-
ically detailed electrophysiological simulations might be use-
ful to explore how the observed relations between datasets
(Figure 6) or between morphological variables (Figure 7) could
affect input/output relationship of individual neurons (e.g.,
Scorcioni et al., 2004; Komendantov and Ascoli, 2009). Similarly,
the effect of these morphological relations on potential network
connectivity could be studied by embedding the digital recon-
structions in an appropriate three-dimensional model of the
surrounding neural tissue (e.g., Chiang et al., 2011; Ropireddy
and Ascoli, 2011). The continuous expansion of the available pool
of neuronal reconstructions will also enable the future validation
and refinement of these results with additional or independent
datasets.

DISCUSSION
This work illustrates how shared morphological data can lead to
new observations of potential neurobiological interest by enabling

statistical quantification of commonalities and differences among
neuron groups. However, our results also demonstrate the chal-
lenges of working with large-scale datasets from heterogeneous
sources, even after extensive effort in metadata curation and man-
agement as well as in data standardization and selection. Direct
analysis of selected morphometric features among large neuron
groups organized by the main metadata dimensions of species,
brain region, and cell type failed to reveal meaningful patterns
beyond the well-known variability of neuronal shape. At the same
time, systematic pairwise examination of all 45 neuronal groups
with distinct species, brain region, cell type, and lab of origin
for each of the 27 main morphological features would produce
more than 50,000 comparisons, raising questions of scientific
interpretation and statistical significance.

To overcome these issues, we adopted principal component
analysis to identify the most discriminant morphological fea-
tures throughout the dataset, and model-based cluster analysis to
segregate neuron groups solely on the basis of the morphomet-
ric characteristics. This approach allowed rigorous examination
of the statistical associations between clusters and metadata and
inspection of the most informative morphological measurements
on the basis of their principal component loadings. The results
revealed morphological differences between specific cell types
and animal species that were robust to lab provenance while
retaining considerable sensitivity to developmental stages and fine
regional location as well as to the original experimental condi-
tions. For example, neocortical pyramidal cells from rodents and
primates alike display a trend of increasing branch tortuosity with
increasing branch density (Figure 7A). This distinct relationship,
holding across different species, brain regions, and developmen-
tal stages, appears robust to slicing artifacts as demonstrated
by the co-alignment of both partially reconstructed and fully
reconstructed neurons (Figure 7B).

The primary features of dendritic morphology corresponded
to branching density, size, space filling, and bifurcation asymme-
try. Of these features, size is likely to be the most dramatically
impacted by differential trimming artifacts from brains of varying
size. Nevertheless, the most interesting biological findings were
based on branch- or bifurcation-level observations. Rodent reti-
nal ganglion cells stood out for their extreme branching density,
and clustered together with other neuron types involved in pri-
mary sensory processing as well as with developing pyramidal
cells from the somatosensory cortex of 6–9 day-old rat. Moreover,
the results also highlighted species differences within the same
cell types by differentiating retinal cells of rodent from those
of fish and amphibians. Specifically, ganglion cells have denser
branching and wider bifurcation angles in rodents than in non-
mammalian vertebrates (Figures 5B, 6, Table 2). This observa-
tion is based on pooling of mice and rats data from four different
labs in one cluster, and of fish and salamander from two different
labs in the other, and we failed to find any methodological reasons
that could explain these morphological differences.

Blowfly tangential sensory neurons are similar to the rodent
ganglion cells in many morphological features (e.g., low branch
path length, comparable fractal dimension, tortuosity, and arbor
planarity), possibly providing a geometric correlate for their sim-
ilar function in processing motion-sensitive visual information
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(Kong et al., 2005; Cuntz et al., 2008). Nevertheless, retinal
ganglion cells and blowfly tangential cells can also be neatly dis-
tinguished due to the much more asymmetric bifurcations of
the latter neurons (Figure 6A) relative to those of the former
(and of most typical neurons). Interestingly, cluster analysis also
suggested a linear relationship between topological asymmetry
and branching density in rodent retinal ganglion cells but not
in other groups, pointing to a previously unrecognized peculiar
morphological signature of this class only.

The branching density of mature cortical pyramidal cells,
in contrast, was at the opposite end relative to ganglion cells
(also demonstrating the effect of developmental changes) and
displayed a distinctive correlation with branch tortuosity. Adult
neocortex pyramidal cells represent the largest population in
NeuroMorpho.Org and come from a broad range of animals,
anatomical subregions, layers, and experimental conditions,
enabling certain morphological differentiations (e.g., rodent S1
vs. primate M1). Non-cortical neurons, including striatal, olfac-
tory, and others, were distinguished for the smaller size and larger
variability of their dendritic arbors.

Several recent investigations have adopted similar analysis
designs and strategies for dimensionality reduction, mainly for
the purpose of exploratory neuron type classification (e.g., Kong
et al., 2005; McGarry et al., 2010; Santana et al., 2013). Alternative
approaches to develop automated machine-learning classifiers for
identifying neuron types also promise to be effective for large data
sets. The present exploratory study used multivariate morpho-
metric analysis to identify the most informative morphological
features that distinguish between neuron groups organized by
their metadata. We predict that statistical morphometric mining
will also prove to be useful for developing quantitative hypothe-
ses and for designing computational models of dendritic growth.
At the same time, we discussed the considerable challenge of pool-
ing together data from disparate experimental conditions, and the
resulting analysis limitations.

Generation of standardized morphological data across labo-
ratories and research designs could yield much more powerful
large-scale data mining. In particular, we are convinced that bet-
ter clustering would result from more consistent data collection.
Systematic reliability assessment of experimental protocols can
maximize morphological reproducibility and minimize tracing
artifacts (e.g., Dercksen et al., 2014). Any such improvements
would also help refine cluster analysis by reducing variability.
Unfortunately, the arguably “ideal” experimental choices (in vivo
labeling, reconstructions at the resolution limit of light, system-
atic measurement and compensation of tissue shrinkage, serial
tracing across histological sections, etc.) also correspond to the
most labor-intensive conditions for manual or semi-manual mor-
phological reconstructions. This tension between quality, sample
size, and research cost underscores the need and desirability
of fully automated and broadly applicable tracing technologies
(Brown et al., 2011; Donohue and Ascoli, 2011).
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