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Neuropeptide S (NPS) is a regulatory peptide with potent pharmacological effects. In

rodents, NPS is expressed in a few pontine cell clusters. Its receptor (NPSR1) is, however,

widely distributed in the brain. The anxiolytic and arousal-promoting effects of NPS

make the NPS–NPSR1 system an interesting potential drug target in mood-related

disorders. However, so far possible disease-related mechanisms involving NPS have

only been studied in rodents. To validate the relevance of these animal studies for i.a.

drug development, we have explored the distribution of NPS-expressing neurons in the

human pons using in situ hybridization and stereological methods and we compared the

distribution of NPSmRNA expressing neurons in the human and rat brain. The calculation

revealed a total number of 22,317 ± 2411 NPS mRNA-positive neurons in human,

bilaterally. The majority of cells (84%) were located in the parabrachial area in human:

in the extension of the medial and lateral parabrachial nuclei, in the Kölliker-Fuse nucleus

and around the adjacent lateral lemniscus. In human, in sharp contrast to the rodents,

only very few NPS-positive cells (5%) were found close to the locus coeruleus. In addition,

we identified a smaller cell cluster (11% of all NPS cells) in the pontine central gray

matter both in human and rat, which has not been described previously even in rodents.

We also examined the distribution of NPSR1 mRNA-expressing neurons in the human

pons. These cells were mainly located in the rostral laterodorsal tegmental nucleus, the

cuneiform nucleus, the microcellular tegmental nucleus region and in the periaqueductal

gray. Our results show that both NPS and NPSR1 in the human pons are preferentially

localized in regions of importance for integration of visceral autonomic information and

emotional behavior. The reported interspecies differences must, however, be considered

when looking for targets for new pharmacotherapeutical interventions.

Keywords: Neuropeptide S (NPS), anxiety, arousal, deep brain stimulation (DBS), human brain, parabrachial,
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Introduction

Neuropeptide S (NPS) is a 20 amino acid modulatory
neuropeptide that was identified in 2004 by the orphan receptor
strategy and named after its conserved N-terminus serine residue
(Xu et al., 2004). NPS is found in all vertebrates except fish
(Reinscheid, 2007).

NPS has potent pharmacological effects. Thus, central
administration of NPS in rodents induces hyperlocomotion and
promotes arousal, inhibits food intake (Smith et al., 2006; Peng
et al., 2010) and produces anxiolytic- and panicolytic-like as well
as reward-like effects (Cao et al., 2011; Pulga et al., 2012;Wegener
et al., 2012). Moreover, NPS mediates control of fear expression
and extinction in the amygdala (Jüngling et al., 2008) and
may have an important role in learning and memory processes
(Okamura et al., 2011; Lukas and Neumann, 2012). The unique
behavioral response of animals after intracerebroventricular
(i.c.v.) NPS administration, namely the simultaneous anxiolytic
and arousal-promoting effects, makes the NPS–NPSR1 system an
interesting potential drug target in mood-related disorders and
has initiated research on the role of NPS in appropriate rodent
disease models (Reinscheid and Xu, 2005a,b; Donner et al., 2010;
Domschke et al., 2011).

Despite its powerful pharmacological effects, NPS is one of
the least abundant neuropeptides in the rodent brain with regard
to levels and number of expressing neurons (Liu et al., 2011).
Previous studies in rat and mouse (Clark et al., 2011; Liu et al.,
2011) showed that NPS is expressed by a fewwell-defined pontine
neuronal clusters that project to several distinct rostral forebrain
areas, including the septum, hypothalamus and thalamus. Its G-
protein-coupled receptor, NPSR1 (Reinscheid and Xu, 2005a), is
however widely distributed throughout the brain (Xu et al., 2007;
Clark et al., 2011) and mediates predominantly excitatory signals
(Reinscheid and Xu, 2005a). In agreement, the NPS neurons are
glutamatergic (Liu et al., 2011).

For a long time, rodents have been used to explore
normal brain functions and mechanisms underlying brain
diseases, including mood-related disorders, such as depression-
like behavior and anxiety. However, the chemical neuroanatomy
of the diurnal human may differ from the nocturnal rodents

(Novak et al., 1999; Alam et al., 2011). This is especially true for
neurons expressing certain neuropeptides and/or their receptors.
For instance, galanin is expressed in dorsal raphe (DR) neurons
in rat but not in human, and galanin receptor 3 (GalR3) is highly
expressed in the human locus coeruleus (LC; Le Maitre et al.,

Abbreviations: 4V, fourth ventricle; Aq, aqueduct; BNST, bed nucleus of the

stria terminalis; Cer, cerebellum; CGPn, pontine central gray; CIC, central

colliculus inferior; CnF, cuneiform nucleus; DR, dorsal raphe; DRD, dorsal raphe

dorsal subdivision; DRV, dorsal raphe ventral subdivision; ILL, intermediate

nucleus of the lateral lemniscus; KF, Kölliker-Fuse nucleus; LC, locus coeruleus;

ll, lateral lemniscus; LPBE, external part of the lateral parabrachial nucleus;

mcp, middle cerebellar peduncule; MiTg, microcellular tegmental nucleus; ml,

medial lemniscus; mlf, medial longitudinal fasciculus; MPBE, external part of the

medial parabrachial nucleus; PAG, periaqueductal gray matter; PB, parabrachial;

PBG, prabigeminal nucleus; PDTg, posterodorsal tegmental nucleus; PPTg,

pedunculopontine tegmental nucleus; scp, superior cerebellar peduncule; VLL,

ventral nucleus of the lateral lemniscus; VLPAG, ventrolateral periaqueductal gray;

VPpc, ventroposterior parvicellular nucleus of the thalamus.

2013) vs. GalR1 and -2 in rat (O’Donnell et al., 1999). Also,
substance P co-exists with serotonin neurons in the DR of human
but not of rat (Sergeyev et al., 1999). Moreover, nNOS is highly
expressed in the DR of rat but not in human. In contrast, nNOS
is expressed in the human but not rat LC (Le Maitre et al., 2013).
Taken together, the neuroanatomical and neurochemical analysis
of the human brain is essential for identifying targets for drug
development and for understanding mechanisms underlying
disease.

In our present study we generated riboprobes against the
human NPS and NPSR1 and performed sensitive radioactive in
situ hybridization to explore the distribution of neurons that
express the mRNA of NPS and its receptor in the human pons.
Our results show that the distribution of NPS andNPSR1mRNA-
expressing neurons is just partially in agreement between human
and rodents and thus that some distinct interspecies differences
exist.

Materials and Methods

Production of Riboprobes
A 183-bp fragment of the human NPS precursor cDNA (gene
ID: 594857, corresponding to nucleotides 133–315) and a 300-
bp fragment for the human NPS receptor cDNA (gene ID:
387129, corresponding to nucleotides 763–1063) were generated
by PCR from human total brain cDNA and subcloned into
PCR1II-TOPO vector (Invitrogen, Carlsbad, CA) in our lab. The
sequence of the probes was confirmed by restriction digestion
and sequencing (KIGene, Stockholm, Sweden). Linearized
antisense and sense riboprobes were generated using T7 and Sp6
RNA polymerase, respectively.

Riboprobes against rat NPS was generated as described before
(Xu et al., 2007). Briefly, a 184-bp BamHI-NotI fragment of
the rat NPS precursor cDNA (corresponding to nucleotides 92–
276) was generated by PCR and subcloned into pBluescript SK
(Stratagene, La Jolla, CA). Antisense or sense riboprobes were
generated by using T7 or T3 RNA polymerase, respectively.

Sample Collection and Sectioning for In situ

Hybridization
Brains from three subjects without significant neurological
symptoms or substantial neuropathological alterations in
the rostral and caudal brainstem were collected (Clinical
and neuropathological data are summarized in Table 1). All
procedures involving human tissues were in accordance with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards (ethical permissions: Regionala
etikprövningsnämnden i Stockholm, permission number:
2013/474-31/2, Stockholm, Sweden; Ethik-Kommission der
Medizinischen Universität Wien, permission number: 396/2011,
Vienna, Austria).

Whole brainstems were dissected and rapidly frozen in
isopentane pre-cooled in liquid nitrogen, with much care of
sterility and avoiding distortion or any destruction of the
tissue. The brainstem was separated rostrally at the level of
the substantia nigra and nucleus ruber and caudally at the
level of the pontomedullary transition. The remaining brainstem
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TABLE 1 | Clinical-neuropathological data of the applied subjects/brains.

Age Gender Cause of death Clinical neurological

symptoms

Neuropathology Post mortem

delay (PMD)

Brain pH

Case 1 66 Male Myocardial infarction No Histological signs of mild brain edema 6.5 h 6.20

Case 2 76 Female Cardiac failure No Mild astrocytic and neuronal tau pathology (CBD-like)

in the frontal and temporal cortex, basal ganglia and

substantia nigra

12 h 6.25

Case 3 85 Male Myocardial infarction Mild cognitive

impairment

Neurofibrillary degeneration in the hippocampus and

entorhinal cortex (Stage II Braak) without Abeta

plaques (PART)

8 h 6.15

had, in addition to several neocortical areas, hippocampus,
thalamus, basal ganglia, and cerebellum, been examined for
neuropathological alterations using standard neuropathological
methods (Kovacs, 2014). The pH of all the three examined brains
was determined on blocks of frozen tissue of the cerebellum after
thawing as described (Monoranu et al., 2009). As postulated by
Alafuzoff and Winblad (1993) and Ravid et al. (1992), pH is
stable during storage and the values were therefore comparable.
The measured pH in the three cases did not show significant
variation (6.20, 6.25, and 6.15, cases 1–3, respectively). The
frozen brainstems were cut systematically on a cryostat (Microm,
Heidelberg, Germany) extending from the rostral part of the
inferior olivary nucleus to the rostral part of the substantia nigra
(approximately between Obex +15 and Obex +37mm; seven
parallel 20-µm-thick sections in each 500µm).

Adult male Wistar rats were decapitated, and their brains
were quickly frozen on dry ice. A series of 20-µm-sections
were prepared on a cryostat (as above) between Bregma −10.00
and −8.00mm. All animal experiments in the present study
were performed according to the European Communities
Council Directive of 24 November 1986 (86/609/EEC), and
the experiments were approved by the National Scientific
Ethical Committees on Animal Experimentation (Stockholms

norra djurförsöksetiska nämnd, Sweden, permit number: N171-
172/11).

In situ Hybridization Procedure in Human and Rat
Tissue
Human and rat brainstem sections were fixed for 10min in cold
4% (wt/vol) paraformaldehyde in 0.1M PBS, pH= 7.4, for 5min
in 1x PBS; followed by 5min in diethyl pyrocarbonate-treated
water; 5min in 0.1M HCl; 2× 3min in 1x PBS; 20min in 0.25%
acetic anhydride in 0.1M triethanolamine; and 2 × 3min in 1x
PBS. Then, sections were dehydrated in 70–80–99.5% ethanol,
each for 2min. Sections were air dried and then were incubated
in prehybridization cocktail [50% (vol/vol) deionized formamide
(pH 5.0), 50mM Tris· HCl (pH 7.6), 25mM EDTA (pH 8.0),
20mM NaCl, 0.25 mg/mL yeast tRNA, and 2.5x Denhardt’s
solution] for 4–6 h at 55◦C followed by hybridization in a
humidified chamber overnight (14–16 h) at 55◦C. Radiolabeled
probes were prepared by in vitro transcription using the
MAXIScript Sp6/T7 kit (Applied Biosystems, Carlsbad, CA) and
[α35 S]UTP (NEG039H, Perkin Elmer, Waltham, MA). The
labeled probes were separated from unincorporated nucleotides

using NucAway spin columns (Ambion, Carlsbad, CA). The
labeled probes were diluted to a final concentration of 1.0 × 106
cpm/200µL in a solution containing 50% (vol/vol) deionized
formamide (pH 5.0), 0.3M NaCl, 20mM DTT, 0.5 mg/mL
yeast tRNA, 0.1 mg/mL poly-A-RNA, 10% (vol/vol) dextran
sulfate, and 1x Denhardt’s solution (hybridization cocktail). After
hybridization, sections were washed 2 × 30min in 1x SSC at
55◦C, 1 h in 50% (vol/vol) formamide/0.5x SSC at 55◦C, 15min
in 1x SSC at 55◦C, 1 h in “RNase A” buffer at 37◦C, 2 × 15min
in 1x SSC at 55◦C, and then dehydrated in a graded series of
alcohol (2min in each), and finally were air dried. The slides
were first exposed against KODAK BioMaxMR Film then dipped
in KODAK NTB emulsion (Kodak, Rochester, NY; diluted 1:1
with water), exposed for 7 days, 8 weeks, or 12 weeks (rat NPS,
human NPS, human NPSR1, respectively) and finally developed
in Kodak D19 developer, fixed in Kodak Unifix, and mounted
in glycerol-PB. A serial of hybridized sections and a serial of
adjacent sections were stained for cresyl violet.

Mapping of NPS and NPSR1 mRNA-expressing
Cells in the Human Brainstem
NPS antisense probe-labeled sections with or without cresyl
violet counterstaining and parallel adjacent sections only stained
with cresyl violet, collected at a distance of 500µm between
Obex +15 and Obex +37mm, were examined using a Nikon
Eclipse E600 microscope equipped with a Heim Fiberoptic
darkfield apparatus/Nikon Universal Condensor C-CU lighfield
apparatus and an ORCA-ER digital camera using Hamamatsu
Photonics Wasabi 150 software. The detailed anatomical
mapping was performed based on a human atlas (Paxinos et al.,
2012).

Estimation of the Total Number of NPS Neurons
in the Human Pons
NPS mRNA-expressing neurons were counted in NPS antisense
probe-labeled and cresyl violet counterstained sections with
500µmbetween each section. The labeled and examined sections
started before the beginning of the NPS cell clusters and finished
after the clusters. All sections with labeled cells for a particular
cluster were included in the quantification (11–15, 11–14, and
20–22 sections, periventricular, pericoerulear and parabrachial
(PB) cells, respectively). In a certain section all labeled neurons
were counted. The total number of NPS mRNA-expressing
neurons in a particular cluster was determined based on the
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principle of the optical fractionator (Gundersen, 1986; West,
1993) by the formula: N = 6Q− ∗ (1/ssf), where N, total cells;
6Q−, counted cells; ssf, section sampling factor.

Rats and Intracerebroventricular Colchichine
Injections
The experiments were performed on adult maleWistar rats (body
weight 300–350 g) at Karolinska Institutet Stockholm, Sweden.
Three rats received an i.c.v. injection of the mitosis inhibitor
(and axoplasmic transport-blocker) colchicine (Dahlström, 1969)
under Hypnorm/Midazolam anesthesia (contains Midazolam
6.25mg/kg, fentanyl citrate 0.4mg/kg, and fluanisone 12.5mg/kg
i.p). Colchicine was dissolved in 0.9% NaCl to a final
concentration of 100µg in 10µl. The drug was slowly infused
into the left cerebral ventricle using a Hamilton syringe with a
26G needle attached. Injection coordinates were: AP = 1.0mm
from bregma, L = 1.6mm from midline, and V = 4.5mm deep
to the surface of the brain, according to published atlas for rat
(Paxinos and Watson, 2007). The syringe was left in the brain
for 5min after injection to prevent back-flow of the colchicine.
Twenty-four hours later, the rats were perfused and processed
for immunohistochemistry. Before and after operations, the rats
were maintained under standard conditions on a 12-h day/night
cycle (lights on 07:00) with water and food available ad libitum.

Immunohistochemistry and Fluorescent
Microscopy
Colchichine-treated rats were deeply anesthetized using sodium
pentobarbital (60mg/kg i.p.; Apoteket, Stockholm, Sweden).
They were perfused via the ascending aorta with 60mL of
Tyrode’s buffer (37◦C), followed by 60mL of a mixture of
4% paraformaldehyde (PFA) and 0.2% picric acid diluted in
0.16M phosphate buffer (PB; pH 6.9; 37◦C, to keep the blood
vessels diluted) and 300mL of the same fixative at 4◦C. The
brains were dissected out and postfixed in the same fixative
for 120min at 4◦C, and finally immersed in 10% sucrose
diluted in phosphate-buffered saline (PBS; pH 7.4) containing
0.01% sodium azide (Sigma-Aldrich, St. Louis, MO) and 0.02%
Bacitracin (Sigma-Aldrich; 4◦C) for 48 h. The brains were snap-
frozen with CO2, and sectioned at 20µm in a cryostat (Microm,
Heidelberg, Germany) between Bregma −10.00 and −8.00mm.
The sections were thenmounted on SuperFrost Plus slides (VWR
international, Leuven, Belgium).

For immunostaining, sections were washed in PBS and
incubated overnight at room temperature with rabbit polyclonal
antiserum against NPS (Abcam, cat no: ab18252) at the
dilution of 1:10.000 in 0.01M PBS containing 0.3% TritonX-
100, 0.02% bacitracin and 0.01% sodium-azide. To visualize
the immunoreactivity, the sections were processed using a
commercial kit (PerkinElmer Life Science, Boston, MA) based
on tyramide signal amplification (TSA; Adams, 1992). Briefly,
the sections were washed in TNT buffer (0.1M Tris-HCl, pH
7.5; 0.15M NaCl; 0.05% Tween 20) for 15min, incubated with
TNB buffer (0.1M Tris-HCl, pH 7.5; 0.15M NaCl; 0.5% Dupont
Blocking Reagent, PerkinElmer) for 30min at RT and incubated
with an antirabbit IgG-HRP polymer conjugate (Invitrogen,
Frederick, MD, USA) diluted 1:2 in TNB buffer for 30min. The

sections were washed in TNT buffer and incubated in a tyramide-
fluorescein (FITC) conjugate (PerkinElmer) diluted 1:100 in
amplification diluent for 15min at RT. The NPS antiserum and
its specificity were characterized extensively before (Clark et al.,
2011). In agreement, no staining was detected in our sections
when the primary antibody was pre-incubated overnight with
10−6M or 10−5M rat NPS peptide (Bachem, H6164; data not
shown). After the immunoreactions, sections were coverslipped
using 2.5% DABCO in glycerol (Sigma). The sections were
examined using a Nikon Eclipse E600 fluorescence microscope
with objective lenses 4x, 10x, 20x, and 63x (Nikon, Tokyo, Japan)
equipped with appropriate filters and an ORCA-ER, C4742-80
digital camera (Hamamatsu Photonics K.K., System Division,
Hamamatsu City, Japan), using Hamamatsu Photonics Wasabi
150 software. The distribution of NPS expressing neurons was
determined based on a rat brain atlas (Paxinos and Watson,
2007).

Results

Distribution of NPS mRNA-expressing Neurons in
the Human Brainstem
In order to determine the distribution of NPS mRNA-
expressing neuronal populations in the human brainstem, we first
produced riboprobes against human NPS (Figure 1). Then, we
systematically cut three human brainstems approximately at the
level of LC - DR which, based on previous rodent studies (Xu
et al., 2007; Clark et al., 2011), is the expected localization of the
NPS-expressing neurons.

A serial of coronal brainstem sections hybridized with
35S-labeled hNPS riboprobes was first exposed to a KODAK film
for an approximate estimation of the distribution of the labeled
cells. A strong signal with a limited extension was detected in
the proximity of the superior cerebellar peduncle—PB region
(Figure 2).

Subsequently, the distribution of NPS mRNA-expressing cells
was determined in more detail on sections dipped in KODAK
NTB emulsion. After an 8 week exposure, the radioactive NPS
signal was strong, and positive cells were easily recognized
both with darkfield and lightfield microscopy in section
counterstained with cresyl violet (Figure 3). The distribution
of NPS mRNA-expressing cells was the same in all the three
examined brainstems.

The NPS mRNA-expressing neurons are localized in pons,
between Obex +20 and Obex +32mm and distributed in
three distinct areas/clusters. (i) The “peri-ventricular cluster”:
sparse cells in the central gray matter (CGPn) adjacent to
the posterodorsal tegmental nucleus (PDTg) and ventral to
the fourth ventricle (Figures 4A–C); (ii) the “peri-coerulear
neurons”: very few labeled cells localized dorsally, adjacent to
the LC. These cells sometimes intermingle with the LC group,
but the pigmented LC noradrenergic neurons were never labeled
(Figures 4D–F,H,I); (iii) the “PB cluster”: most of the pontine
NPS-expressing neurons belong to this cell group, which starts at
Obex +22mm and ends at around Obex +32mm. Many labeled
cells were found ventral to the superior cerebellar peduncule
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FIGURE 1 | Purification of PCR fragments of hNPS and hNPSR1 on

agarose gel. Purified PCR fragments of human NPS and NPSR1 were run on

1% agarose gel to confirm size and purity. These fragments were subcloned

into TOPO-TA vector (Life Technologies) and, after verification of the sequence,

RNA probes were generated. The lanes represent the O’GeneRuler 1 kb Plus

DNA Ladder (Fermentas; left), the 183bp PCR product of human NPS (middle,

indicated with “1”) and the 300bp fragment of human NPSR1 (right, indicated

with “2”).

(scp), in the external part of the medial and lateral PB nuclei
(EMPB, ELPB, respectively) and sometimes in the Kölliker-
Fuse KF) nucleus (Figures 4D, 5A–C). At Obex +26mm, the
PB cluster split into two sub-clusters surrounding the lateral
lemniscus (ll). Thus, one cell group is localized ventral-lateral to
the scp but medial to the lateral lemniscus, while the other one is
lying on the lateral side of the lateral lemniscus (Figures 5D–F).
From approximately Obex +28mm, some labeled cells were
detected in the ventral and intermediate nuclei of the lateral
lemniscus (VLL, ILL, respectively; Figures 5G–I).

Quantitative Evaluation of the NPS
mRNA-expressing Neurons in the Human
Brainstem
Based on stereological methods, the total number of NPSmRNA-
expressing cells was estimated to approximately 22 thousands
bilaterally (22,317 ± 2411, altogether in both sides). The vast
majority (84%) of labeled cells were located in the PB cluster
(Figure 6). It is of note that we observed some inter-individual

variability in the number of cells (estimated number of NPS
mRNA-expressing neurons in the peri-ventricular cluster: 3650,
2150, 1750, cases 1–3, respectively; peri-coerulear cells: 1050, 450,
1700, cases 1–3, respectively; parabrachial cluster: 21,000, 15,050,
20,150, cases 1–3, respectively). Despite this variability, the
proportional distribution of NPS cells was apparently different in
human subjects, compared to the situation previously described
in rodents (Liu et al., 2011). The most prominent difference was
that the human peri-coerulear area showed only a few scattered
NPS cells in human (ca 5% of all counted neurons), while the
peri-coerulear NPS neurons form a prominent cluster in rodents
(ca 30% of all counted neurons in mouse; Liu et al., 2011).

NPS Expressing Neurons in the Rat Brainstem
Next, we examined, for a direct comparison, the distribution of
NPS expressing neurons in adult Wistar rat both with in situ
hybridization (transcript) and immunohistochemistry (peptide).
In addition to the previously described NPS-expressing cell
groups, we found a small cell cluster of NPS neurons medially,
adjacent to the posterodorsal tegmental nucleus, just around
the midline of the fourth ventricle at Bregma −9.8 to −9.6mm
(the “peri-ventricular cluster”; Figures 7A,B). In agreement with
previous studies in rat (Xu et al., 2007), we noted mRNA
expression also in (i) a compact cell cluster ventro-lateral to
the LC with high numbers of NPS neurons (the “peri-coerulear
cluster”; Figures 8A,B); (ii) a cell cluster in the lateral PB nucleus
with low numbers of NPS mRNA-positive neurons (the “PB
cluster”; Figures 8D,E); and (iii) a cluster lateral to the external
part of lateral PB nucleus and dorso-lateral to the KF nucleus
with high NPS expression (the “KF cluster”; Figures 8G,H).
NPS protein expression in all four cell clusters was confirmed
by immunohistochemistry using antibodies to NPS and shown
in sections from colchichine-treated rats (Figures 7C, 8C,F,I).
Notably, the prominent peri-coerulear NPS cell cluster in rat
is virtually missing in human (cf. Figures 8A–C and Figure 4G

with Figures 4D–F,H,I).

NPSR1 mRNA-expressing Neurons in the Human
Brainstem
Finally, we examined the distribution of the NPS receptor
mRNA-expressing neurons in the pons between Obex +15
and Obex +37mm (Figures 9A,B). Weak labeling of sparse
cells was noted in the pontine central gray matter (CGPn),
around the LC, ventral to the superior cerebellar penduncle
in the medial PB—KF—lateral lemniscus region, and in the
caudal part of the laterodorsal tegmental nucleus (LDTg–LDTgV;
data not shown). In contrast, strong labeling was found in
the rostral LDTg, in the cuneiform nucleus (Figures 9C,D),
and medial to the parabigeminal nucleus (PBG) in the
spinothalamic tract – microcellular tegmental nucleus (MiTg)
region (Figures 9A,B,F,G,I,J). Also, numerous NPSR1 mRNA-
expressing cells were noted in all divisions of the periaqueductal
gray (dorsomedial, lateral, ventrolateral, raphe cap), especially
in the ventrolateral part (VLPAG; Figures 9A,B,E,H). However,
there was no NPSR1 mRNA-expression detected in the dorsal or
medial raphe nuclei (data not shown).
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FIGURE 2 | NPS mRNA-positive neurons at different rostro-caudal levels of human pons (X-ray film). A series of coronal brainstem sections, from Obex +24

to Obex +31, hybridized with 35S-labeled hNPS riboprobes and exposed to KODAK X-ray film. A very limited but distinct signal is detected bilaterally in the proximity

of the superior cerebellar peduncule/parabrachial region (arrows). Two subclusters of labeled cells are seen around Obex +27mm. Scale bar: 10mm.

Discussion

In the present study we explore the distribution of neurons

in the human pons expressing the mRNA of NPS and its

receptor. We show that there is a certain agreement but

also distinct interspecies differences regarding the distribution

of NPS- or NPSR1 mRNA-expressing neurons between the
human and rodent brainstem. We focused our studies on
the human pons as the NPS-expressing neurons were found
in this brainstem region in rat and mouse, the two species,
where the anatomy of the NPS system has been studied
so far.
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FIGURE 3 | NPS mRNA-positive neurons in human pons (emulsion-dipped). (A,B) Labeled neurons (arrows) are seen in the periventricular cell cluster in the

same section (A, brightfield, cresyl violet; B, darkfield). (C) High magnification showing one NPS mRNA-positive neuron (cresyl violet, brightfield). (D,E) Low power

overview of the central pontine gray matter showing a few cells (arrow) in the periventricular NPS cell cluster (D, darkfield); (E) shows the same section (cresyl violet,

brightfield). The posterodorsal tegmantal nucleus (PDTg) is surrounded by dashed line in (D,E). (F,G) Low power overview of the parabrachial area showing many

labeled neurons (arrows) of the parabrachial cell cluster (F, darkfield); (G) shows same section (cresyl violet; brightfield). Scale bars: 100µm (A), applies to (A,B);

25µm (C); 500µm (D), applies to (D,E); 1000µm (F), applies to (F,G).

Comparative Analysis of the Distribution of
NPS-expressing Neurons in the Pons
NPS is a potent neuromodulator in rodents (see for review:
Reinscheid and Xu, 2005b), but still the total number of
NPS neurons is only about 500 in the mouse brain with an
average of 146 and 368 neurons in the peri-coerulear and
KF cell clusters, respectively (Liu et al., 2011). In addition,
a small NPS-expressing cell group was also described in
the lateral PB nucleus, but only in rat (Xu et al., 2007).
These data indicate that NPS is one of the least abundant
neuropeptides with regard number of neurons in the rodent

brain. Similarly, also in the human pons our stereological
estimation shows a fairly low number of neurons, that is around
20–25.000 bilaterally, compared to noradrenergic LC neurons
(ca. 50,000; Sharma et al., 2010) or hypothalamic orexinergic
neurons (50–80,000; Thannickal et al., 2000). Notably, in
the first description of the rat NPS-system, low levels of
NPS transcript was observed in a few scattered cells in the

amygdala and dorsomedial hypothalamic nucleus based on in situ

hybridization in rats (Xu et al., 2004). However, we could not
reproducibly detect these neurons (unpublished observation).
Nevertheless, the existence of other NPS-expressing neuronal
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FIGURE 4 | Distribution of NPS mRNA-positive neurons in human and rat pons. (A,D) Schematic drawings from the atlas by Paxinos et al. (2012), indicating

distribution of NPS mRNA-positive cell bodies (red dots) at two different levels (Obex +23 and +24). All schematic drawings are presented in higher magnification in

the Supplementary Material. Boxed area in (A,D) show (B,E), respectively. (B, C,E,F) NPS mRNA-positive neurons belonging to the periventricular cluster in the

central pontine gray matter adjacent to the posterodorsal tegmental nucleus (B,C), and to the sparse pericoerulear cells dorsally, adjacent to the locus coeruleus (E,F;

the numerous, pigmented and autofluorescent locus coeruleus neurons are indicated with asterisks and the NPS mRNA-positive neurons indicated with arrows, both

in F). Boxed area in (B,E) show (C,F), respectively. (G–I) Comparison of peri-coerulear NPS mRNA-postive neurons in the rat (G) and human (H,I). The boxed area in

(H) is shown in (I). Note the compact cluster of neurons with high mRNA-expression level of NPS in rat (G, arrow), contrasting the very few scattered neurons around

the locus coeruleus in human (I, arrow). The locus coeruleus is surrounded by dashed line in (G,H); the human noradrenergic locus coeruleus neurons appear as

autofluorescent pigmented cells, indicated with stars in (I). (A,D) are reproduced from Paxinos et al. (2012), with permission. Scale bars: 200µm (C), (F–H); 500µm

(B,E); 50µm (I).

populations in the human brain, outside the pons, cannot be
excluded.

Based on our in situ hybridization and stereological studies,
the vast majority (84%) of NPS mRNA-expressing cells in the
human brainstem are located in the PB region, namely, in
the external part of the medial and lateral PB nuclei (EMPB,
ELPB), in the KF nucleus and around the adjacent lateral
lemniscus. This is in agreement with recent microarray data of
the Allen Brain Atlas, showing high NPS mRNA-expression level

in human punch samples from the medial/lateral PB-LC area
(http://human.brain-map.org/microarray/search/).

The PB-KF complex is a cytoarchitecturally highly organized
structure both in human and rodents, even if not all PB
subdivisions in rat have corresponding primate homologs
(Fulwiler and Saper, 1984; Jia et al., 2005; Paxinos et al.,
2009). PB-KF is a relay for visceral afferent information from
the brainstem to the forebrain and serves as an integrator of
visceral autonomic information and the forebrain regulatory
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FIGURE 5 | Distribution of NPS mRNA-positive neurons in human pons. (A,D,G) Schematic drawings from the atlas by Paxinos et al. (2012), indicating

distribution of NPS mRNA-positive cell bodies (red dots) at three different levels (Obex +25, +28, +30). All schematic drawings are presented in higher magnification

in the Supplementary Material. Boxed area in (A,D,G) show (B,E,H), respectively. (B,C,E,F,H,I) Parabrachial cluster harbors numerous NPS mRNA-positive neurons.

Note that the NPS neurons are distributed in the external medial/lateral parabrachial nuclei—Kölliker Fuse nucleus—lateral lemniscus region. The boxed area in (B),

(E,H) show (C), (F,I), respectively. (A,D,G) are reproduced from Paxinos et al. (2012) with permission. Scale bars: 500µm (H), applies to (B,E,H); 200µm (I), applies

to (C,F,I).

mechanisms of the central autonomic systems (Block and Estes,
1990; de Lacalle and Saper, 2000). It is involved in pneumotaxic,
respiratory and cardiovascular control (Block and Estes, 1990) as
well as in themodulation of arousal (Fuller et al., 2011). This “PB”
NPS cell cluster in human likely corresponds to the “KF cluster”
in rat, which is distributed lateral to the external part of lateral
PB nucleus and dorso-lateral to the KF nucleus. This neuron
cluster is found in both rat and mouse with modest anatomical
differences (Liu et al., 2011). In mouse these neurons were found
to be glutamatergic, they are innervated by orexinergic fibers, and
approximately 50% of them co-express galanin (Liu et al., 2011).

Further studies are required to determine the neurochemical
profile of NPS neurons in human.

Comparative anatomical studies have shown that the
connections of the EMPB and ELPB nuclei are highly conserved
and exhibit a large homology between human and rat (de Lacalle
and Saper, 2000). Namely, the LPBE nucleus is a relay nucleus
of visceral information from the nucleus tractus solitarii to
forebrain limbic structures, e.g., the central nucleus of amygdala
and the bed nucleus of the stria terminalis (BNST). The EMPB
nucleus provides topographic projections to the contralateral
ventroposterior parvicellular nucleus of the thalamus (VPpc),
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which projects to the insular cortex. Thus, the EMPB relays the
entire spectrum of visceral sensation to conscious appreciation
(de Lacalle and Saper, 2000). Recently, the pivotal role of
glutamatergic projections from the ELPB nucleus, as a relay
for arousal signal to the forebrain in obstructive sleep apnea
syndrome (OSAS), was described (Chamberlin, 2013; Yokota
et al., 2015). Despite this, no significant association of NPS
gene polymorphisms with OSAS or OSAS variables could be
demonstrated (Sanchez-De-La-Torre et al., 2011). However, and
interestingly, the NPSR1 gene was originally described as an
asthma susceptibility gene (Laitinen et al., 2004), and significant
SNP and haplotype associations of NPSR1 gene with asthma was
established in several independent populations (Pietras et al.,
2011).

FIGURE 6 | Quantitative evaluation of NPS mRNA-positive neurons in

the human pons. Stereological methods show that the by far highest number

of NPS cells is located in the parabrachial region. Data expressed by mean

±S.E.M; N = 3.

The KF nucleus is a fundamental component of the central
respiratory circuitry, postnatally coordinating the pulmonary
motor responses to the blood oscillations of pO2, pCO2, and
pH. But it also has a pivotal role prenatally by inhibiting
the respiratory reflex (Lavezzi et al., 2004). In victims of
sudden infant death syndrome the KF nucleus shows clear
signs of developmental immaturity and low levels of BDNF
immunostaining (Lavezzi et al., 2014). Ohm and Braak earlier
showed that the gray matter around the ventral edge of
the superior cerebellar pedunculus is especially vulnerable in
Alzheimer’s pathology: it exhibits severe neuronal loss and
abundant tau pathology (Ohm and Braak, 1988). Further
systematical analysis is required to determine the vulnerability
of the NPS neurons in the PB region in neurodegenerative
conditions.

Surprisingly, the NPS-expressing cell cluster adjacent to the
LC, which is prominent in the rat and mouse (Xu et al., 2007;
Liu et al., 2011), is virtually missing in human, only representing
a few scattered neurons (4–5% of all NPS cells). In rodents,
NPS neurons in the peri-coerulear cluster are glutamatergic,
they are surrounded by a dense network of orexinergic and
galaninergic fibers (Liu et al., 2011), they are stress-reactive
(Liu et al., 2011; Jüngling et al., 2012) and involved in the
regulation of arousal (our unpublished data). The relevance
and reason of the apparent lack of a prominent peri-coerulear
NPS neuron cluster in human, in contrast to mice and rats, is
currently unknown. To examine the distribution of NPS mRNA-
expressing neurons in diurnal rodents (e.g., degu, Lee, 2004) or
in nocturnal vs. diurnal non-human primates (e.g., owl monkey
(O’Keefe et al., 1998) vs. rhesus monkey) may be a subject of
further studies. Importantly, we were able to perform systematic
neuropathologic evaluation of the cases involved in our study
(see Table 1). In cases 1 and 3 the rostral and caudal part of
the brainstem did not show any signs of neurodegenerative or
vascular pathology. It must, however, be noted that in case 2
we observed an incidental cortico-subcortical tauopathy in an

FIGURE 7 | Comparison of the distribution of NPS mRNA-positive with NPS-immunoreactive neurons in the rat brainstem 1—the periventricular

cluster. (A) Schematic drawing from the atlas by Paxinos and Watson (2007), indicating distribution of NPS-positive cell bodies (arrows and red dots) around the

fourth ventricle. All schematic drawings are presented in higher magnification in the Supplementary Material. (B) shows distribution of the transcript and (C) of the

peptide immunoreactivity at approximately the same level. Note the similar distribution of the NPS neurons in the periventricular cluster visualized with in situ

hybridization (NPS mRNA) and immunohistochemistry (NPS peptide). The section in (C) is from a colchichine-treated rat. (A) is reproduced from Paxinos and Watson

(2007), with permission. Scale bar: 200µm (C), applies to (B,C).
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FIGURE 8 | Comparison of the distribution of NPS mRNA-positive with NPS-immunoreactive neurons in the rat brainstem 2. (A,D,G) Schematic drawings

from the atlas by Paxinos and Watson (2007), indicating distribution of NPS-positive cell bodies (arrows and red dots) at three different levels. (B,E,H) show

distribution of the transcript and (C,F,I) of the peptide immunoreactivity at approximately the same levels. All schematic drawings are presented in higher magnification

in the Supplementary Material. The present figure shows the following NPS-expressing neuronal groups: (i) the peri-coerulear region (A–C), (ii) the lateral parabrachial

nucleus (D–F), and (iii) adjacent to the Kölliker-Fuse nucleus (G–I). Note the similar distribution of the NPS neurons in all three clusters visualized with in situ

hybridization (NPS mRNA) and immunohistochemistry (NPS peptide). Sections in (C,F,I) are from colchichine-treated rats. (A,D,G) are reproduced from Paxinos and

Watson (2007), with permission. Scale bar: 200µm (I), applies to (B,C,E,F,H,I).

individual without any neurological symptoms. In this case we
did see scattered tau positive neurons in the substantia nigra
but not in the periaqueductal and ventral tegmentum region
of the mesencephalon or lower pons or medulla oblongata.
Interestingly, this case showed the lowest NPS cell counts in
the peri-coerulear (and also in the PB) region. It must be
emphasized, however, that the proportional distribution of NPS
neurons in the peri-coerulear region was similarly low in all of
the examined human cases, compared with rodents (Liu et al.,
2011).

Finally, we found a smaller cluster of human NPS mRNA-
expressing neurons in the pontine central gray matter
(CGPn) adjacent to the posterodorsal tegmental nucleus

(PDTg) at around Obex +21 to +23mm. We termed it as
“peri-ventricular cluster.” It constitutes around 11% of all
NPS cells in the human pons. The PDTg nucleus contains
AChE immunopositive neurons (Huang et al., 1992), and the
surrounding neuropil includes a dense network of substance
P immunoreactive fibers. Importantly, we found this NPS
cell cluster also in rat at around Bregma −9.8 to −9.6mm,
both by in situ hybridization (transcript) and immunostaining
after colchichine-treat (peptide). Thus, here we describe a
novel cell cluster of NPS-expressing neurons in rat, which
exists also in the human brain. The neurochemical and
functional characterization of these neurons require further
studies.
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FIGURE 9 | Distribution of NPSR1 mRNA-positive neurons in the human pons. (A,B) Cresyl violet staining at Obex +35mm (A) and schematic drawing from

the same level showing distribution of transcript-positive cells (red dots; B). All schematic drawings are presented in higher magnification in the Supplementary

Material. Boxed areas in (A,B) indicated with “E,” “F,” and “G” show (E,F,G), respectively. (C,D) NPSR1 neurons in the cuneiform nucleus in the same, cresyl violet

stained section shown in bright- (C) and darkfield (D). (E–J) Darkfield micrographs showing NPSR1 neurons in the ventrolateral periaqueductal gray (E,H) and the

cuneiform nucleus—microcellular tegmental nucleus—spinothalamic tract region (F,G,I,J). Boxes in (E,F,G) show (H,I,J), respectively. (B) is reproduced from the atlas

of Paxinos et al. (2012), with permission. Scale bars: 1000µm (A); 50µm (C), applies to (C,D); 300µm (E), applies to (E–G); 100µm (H), applies to (H–J).

NPSR1 mRNA-expressing Neurons in the Human
Pons
Next, we examined the distribution of NPSR1 mRNA in the
human pons. A few weakly labeled neurons were found in
those regions, where the NPS peptide mRNA-expressing neurons
localize (pontine central gray matter, PB—lateral lemniscus
region). The majority of NPSR1 mRNA-expressing cells in the
pons, however, distribute (i) in the periaqueductal gray and (ii)
in the rostral pedunculopontine nucleus—cuneiform nucleus—
microcellular tegmental nucleus region.

Similarly to the PB region, the periaqueductal gray (PAG) is
also a cytoarchitecturally and neurochemically highly complex

intergrative area, both in human and rodent brain (Behbehani,

1995; Fu et al., 2010). It is involved in the emotional regulation
(e.g., in circuitries underlying fear, depression and anxiety), but

also in autonomic control and pain (Behbehani, 1995; Satpute
et al., 2013). Its ventrolateral subdivision (VLPAG), where the
NPSR1 mRNA-expressing neurons are especially abundant, is
critical for the expression of passive coping responses to non-
immediate “distal” danger (Johnson et al., 2004), but neurons
in the vlPAG contribute to the regulation of REM sleep as well
(Luppi et al., 2012). The NPSR1 mRNA-expression in the PAG is
detected also in rodents (Xu et al., 2007; Clark et al., 2011). In fact,
the anxiolytic effect of NPS is well established in different animal
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models (Xu et al., 2004; Jüngling et al., 2008; Pulga et al., 2012;
Wegener et al., 2012).

The pedunculopontine tegmental nucleus (PPTg) contains
primary cholinergic but also GABAeric and glutamatergic
neurons. Its functions are multiple, including the regulation
of REM sleep, stimulus-reward learning and visual orientation
(Wang and Morales, 2009). In addition, the PPTg nucleus
and cuneiform nucleus are both important components of the
mesencephalic locomotor region, facilitating muscle tone during
the initiation of locomotion (Alam et al., 2011). This region is a
promising target of deep brain stimulation in Parkinson’s disease
(Alam et al., 2011; Xiang et al., 2013).

Interestingly, in the rat, the NPSR1 mRNA-expression is high
in the oral part of the pontine reticular nucleus and in the
median raphe (Xu et al., 2007; Clark et al., 2011), but we did
not find labeled cells in these regions in the human, suggesting
interspecies differences also in the distribution of NPSR1 between
human and rat.

Conclusion

In the present study we show that the vast majority (84%) of
NPSmRNA-expressing neurons in the human pons is distributed
in the PB—lateral lemniscus region. The total number of NPS
mRNA-expressing neurons in the human pons is around 20–
25.000 bilaterally, which supports the notion that NPS is, just
like in rodents, a rare neuropeptide also in the human brain
with regard to the number of expressing neurons. In addition,
here we describe a smaller cell cluster of NPS expressing neurons
in the pontine central gray matter both in human and rat,
which has not been identified previously even in rodents. In
human, this latter cluster contains approximately the 11% of

all pontine NPS cells. Both NPS and NPSR1 in the human
pons are preferentially localized in integrative relay regions
(PB complex in case of NPS, and periaqueductal gray in case
of NPSR1), which represent interfaces between visceral and
forebrain autonomic centers for higher order processes, such as
emotional behavior. Also, the PB/KF complex, where most of
the NPS neurons are localized, was recently recognized as a key
brain area in the pathophysiology of obstructive sleep apnea and
sudden infant death syndrome (Lavezzi et al., 2014; Yokota et al.,
2015). The distribution of NPS- and NPSR1 mRNA-expressing
neurons exhibits just partial agreement between rodents and
human. Perhaps the most remarkable interspecies difference is
that the NPS-expressing cell cluster adjacent to the LC, which is
prominent in the rat and mouse, is virtually missing in human or
represented only by a few scattered neurons. This and the other
reported differences must be considered in the research for new
pharmacotherapeutical interventions.
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