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Imaging connectomics based on graph theory has become an effective and unique

methodological framework for studying structural and functional connectivity patterns

of the developing brain. Normal brain development is characterized by continuous and

significant network evolution throughout infancy, childhood, and adolescence, following

specific maturational patterns. Disruption of these normal changes is associated

with neuropsychiatric developmental disorders, such as autism spectrum disorders

or attention-deficit hyperactivity disorder. In this review, we focused on the recent

progresses regarding typical and atypical development of human brain networks from

birth to early adulthood, using a connectomic approach. Specifically, by the time of birth,

structural networks already exhibit adult-like organization, with global efficient small-world

and modular structures, as well as hub regions and rich-clubs acting as communication

backbones. During development, the structure networks are fine-tuned, with increased

global integration and robustness and decreased local segregation, as well as the

strengthening of the hubs. In parallel, functional networks undergo more dramatic

changes during maturation, with both increased integration and segregation during

development, as brain hubs shift from primary regions to high order functioning regions,

and the organization of modules transitions from a local anatomical emphasis to a more

distributed architecture. These findings suggest that structural networks develop earlier

than functional networks; meanwhile functional networks demonstrate more dramatic

maturational changes with the evolution of structural networks serving as the anatomical

backbone. In this review, we also highlighted topologically disorganized characteristics in

structural and functional brain networks in several major developmental neuropsychiatric

disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and

developmental dyslexia). Collectively, we showed that delineation of the brain network

from a connectomics perspective offers a unique and refreshing view of both normal

development and neuropsychiatric disorders.
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INTRODUCTION

Brain development is characterized by complicated microstructural and macrostructural processes
that span from the appearance of the first neurons to the establishment of the fully functioning adult
brain. Revealing these complicated processes is important to understanding the formation of neural
circuits and brain functions. Previous developmental hypotheses were mostly summarized from
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behavior or neuron perspectives, such as “Hebbian learning”
(Hebb, 1949) or the “orthogenetic principle” (Werner, 1957;
Sameroff, 2010), which are still in need of neurobiological
evidence. With the recent advancement of non-invasive
neuroimaging techniques and their applications to the pediatric
population, comprehensive macroscopic brain structure and
activity can be readily accessed in children in vivo. Studies
employing advanced imaging techniques have revealed that
regional structure and function develop according to specific
principles, with a well-known example being that the regions
responsible for higher-level cognition are the last to fully
mature (Tau and Peterson, 2010; Dennis and Thompson, 2013a;
Dehaene-Lambertz and Spelke, 2015).

Imaging connectomics, which evaluates the inter-regional
structural and functional connectivity patterns among regions,
has opened new avenues toward understanding the organization
and function of the human brain (Sporns et al., 2005;
Biswal et al., 2010; Sporns, 2011). The brain is believed to
support global and local information communication through
an integrative network (Bullmore and Sporns, 2009, 2012). With
the establishment of the NIH Human Connectome Project,
the importance of describing the network and its development
trajectory was recently underscored (Van Essen et al., 2013).
Using graph theory, recent studies on connectomics have
demonstrated a number of nontrivial topological features in
adult human brain networks, including their efficient small-
world architecture, prominent modular structure, and highly
connected and centralized network hubs (He and Evans, 2010;
Stam, 2010; Bullmore and Bassett, 2011; van den Heuvel and
Sporns, 2013; Berchicci et al., 2015). These brain network
properties have been observed to be established as early as
birth and exhibit continuous and dramatic maturational changes
throughout infancy, childhood and even adolescence (Power
et al., 2010; Collin and van den Heuvel, 2013; Dennis and
Thompson, 2013b; Menon, 2013; Vertes and Bullmore, 2014).

With a collection of publications on the structural and
functional network development, several questions emerge.
Do the structural and functional brain networks develop
with different maturation patterns? Are the developmental
patterns different across age-ranges, such as during infancy
and childhood? Do developmental brain disorders exhibit an
abnormal developmental profile in brain networks compared
with normal populations? In this review, we aimed to shed
light on these important questions by collecting information
regarding the recent progress in research on typical and
atypical development of human brain networks from birth
to early adulthood, focusing specifically on studies using
advanced neuroimaging techniques and graph theoretical
approaches. First, we introduce basic concepts about imaging
connectomics, with a particular emphasis on graph-based
network analysis approaches. Second, we discuss the recent
findings on the healthy development of brain connectomes with
different imaging modalities, concerning the developmental
changes of topological properties. Third, we briefly mention
abnormal network development in neuropsychiatric disorders
[e.g., attention-deficit hyperactivity disorder (ADHD), autism
spectrum disorder (ASD), and developmental dyslexia].

Finally, we discuss the limitations and future considerations
of brain network development using imaging connectomics
approaches.

BRAIN CONNECTOME AND GRAPH
THEORY

Brain Connectome Construction
In graph theory, a network can mathematically be modeled
as a graph with a set of discrete elements (nodes or vertices)
and their mutual relationships (edges or links), which can
be summarized in the form of a connection matrix. In the
context of brain networks, nodes usually represent imaging
voxels, regions of interest, or sensors, whereas links represent
structural, morphological or functional connections, depending
on the imaging modality considered (Bullmore and Sporns, 2009,
2012; He and Evans, 2010). In particular, structural connectivity
can be obtained by reconstructing diffusion MRI (dMRI)-traced
white matter projections (Mori and van Zijl, 2002; Hagmann
et al., 2007; Gong et al., 2009) or through computing the
covariance of brain morphological features among regions (e.g.,
gray matter volume or cortical thickness) derived from structural
MRI (sMRI) data (Lerch et al., 2006; He et al., 2007). Functional
connectivity can be measured by examining synchronous
neural activity over the distributed brain areas with functional
MRI (fMRI), electroencephalography/magnetoencephalography
(EEG/MEG), or functional near-infrared spectroscopy (fNIRS;
Friston, 1994; Micheloyannis et al., 2006; Niu and He, 2014).
Once network nodes and connections are defined, a brain
network can be obtained and further classified as directed or
undirected, based on whether the edges have a sense of direction,
and as unweighted (binary) or weighted, based on whether the
edges in the graph have strength information. The present review
focuses on the undirected binary or weighted brain networks.
Notably, to avoid confusion, we used structural connectivity
networks to refer to those constructed with white matter
tracts and structural covariance networks for the morphological
covariance based ones. Below, we briefly introduce several key
graph theory metrics for network descriptions. For more details,
see (Rubinov and Sporns, 2010; Stam, 2010; Bullmore and
Bassett, 2011).

Segregated and Integrated Network
Measures
Segregation and integration represent crucial information
processing patterns of the brain, which ensure functional
specialization and efficient global communication (Rubinov and
Sporns, 2010; Sporns, 2013). Specifically, topological segregation
(or local clustering) in the brain’s information processing refers to
the neuronal processing carried out among groups of regions or
within modules (i.e., sets of nodes that are highly inter-connected
but with relatively fewer connections to the others in different
modules; Figure 1A). Clustering coefficients and modularity are
two related metrics that quantify the features of topological
segregation in brain networks. Mathematically, the clustering
coefficient is defined by the fraction of the node’s neighbors that
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TABLE 1 | Overview of studies about structural network development.

Study Modality Subject n: ages Network

type

Node numbers Connectivity metrics

Infancy Yap et al., 2011 DTI 39 sub (longitudinal): 2

wk, 1 y, 2 y

S B 78 (AAL template) Deterministic tractography

Tymofiyeva et al., 2012 DTI 17 sub: 6 mo S B 40 Deterministic tractography

Tymofiyeva et al., 2012 DTI 8 sub: 31.14-39.71 wk

8 sub: 1–14 d;

10 sub: 181–211 d;

7 sub: 24–31 y

S B 100 Deterministic tractography

Ball et al., 2014 DTI 28 infants: 25–33 PMA

63 infants: 38–44 PMA

S B 100 Deterministic tractography

van den Heuvel et al.,

2015

DWI

fMRI

27 infants: 27/1.6 PMA

27 infants: 30.8/0.7 PMA

42 adults: 29/8.0 y

S W 56 Deterministic tractography;

Pearson’s correlation

Fan et al., 2011 sMRI 28 infants (longitudinal):

6.1 ± 2.8 wk, 59.3 ± 3.0

wk, 100.7 ± 6.8 wk;

27 adult controls: 24 ± 3 y

S B 90 (AAL template) Pearson’s correlation of the

regional gray matter volume

Childhood and

adolescence

Hagmann et al., 2010 DTI

fMRI

30 sub for anatomical

networks: 18 mo–18 y;

14 sub for functional

networks: 2–18 y

S W

S W

66

241

Deterministic tractography;

Pearson’s correlation

Echtermeyer et al., 2011 DTI 9 sub: 12–14 y;

20 sub: 15–17 y;

16 sub: 18–20 y;

8 sub: 21–23 y

S W 414, 813, 1615 Deterministic tractography

Dennis et al., 2013a HARDI 47 sub: 12.3 ± 0.18 y;

55 sub: 16.2 ± 0.37 y;

336 sub: 23.6 ± 2.2 y

S B 68 Deterministic tractography

Dennis et al., 2013b HARDI 439 sub: 12–30 y S W 70 (Desikan –Killiany atlas) Deterministic tractography

Chen et al., 2013 DTI 36 sub: 6.0–9.7 y

36 sub: 9.8–12.7 y;

36 sub: 12.9–17.5 y;

36 sub: 17.6–21.8 y;

36 sub: 21.9–29.6 y

S W 78 (AAL template) Deterministic tractography

Grayson et al., 2014 HARDI

fMRI

15 sub: 7–11 y;

14 sub: 24–35 y

S W

S W

219 Deterministic tractography;

Pearson’s correlation

Lim et al., 2015 DTI 121 sub: 4–40 y S W 82 (Freesurfer parcellation) Deterministic tractography

Huang et al., 2015 DTI 25 neotates: 37–43 wk;

13 toddlers: 1.79–3.12 y;

25 preadolescents:

10.7–13.5 y;

18 adults: 25–44 y

S W 80 (AAL template) Probabilistic tractography

Zhao et al., 2015 DTI 113 sub: 9–85 y S W 1024 Deterministic tractography

Baker et al., 2015 HARDI 31 sub (longitudinal):

15.58–17.94 y,

17.89–19.96 y

S W 80 (Freesurfer parcellation) Probabilistic tractography;

Koenis et al., 2015 DTI 183 sub (longitudinal):

9.9 ± 1.4 y; 12.9 ± 1.4 y

S W 90 (AAL template) Deterministic tractography

Wierenga et al., 2015 DTI 85 sub: 7.0–22.6 y;

38 sub: 7.4–22.9 y

S W 68 (Desikan–Killiany

template)

Deterministic tractography

(Continued)
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TABLE 1 | Continued

Study Modality Subject n: ages Network

type

Node numbers Connectivity metrics

Khundrakpam et al.,

2013

sMRI 51 sub: 8.5–11.3 y;

51 sub: 11.4–14.7 y;

51 sub: 14.8–18.3 y

S B 78 (AAL template) Pearson’s correlation of the

regional cortical thickness

Alexander-Bloch et al.,

2013

sMRI

fMRI

108 sub for anatomical

network: 11.1–20.0 y;

S W 360 Pearson’s correlation of the

regional cortical thickness and

the change rate of regional

cortical thickness; Wavelet

correlation

108 sub (longitudianl) for

maturaltional network:

S W

9.0–22.8 y; 32 sub for

functional network:

15.21–33.7 y

S W

Nie et al., 2013 sMRI 445 sub

(longitudinal):3–20 y

S B 78 (AAL template) Pearson’s correlation of the

regional cortical thickness and

cortical folding

Sub, subjects; d, days; wk, weeks; mo, months; y, years; PMA, postmenstrual age; S, symmetric; W, weighted; B, binary; AAL, automatic anatomical labeling.

are also neighbors of each other (Watts and Strogatz, 1998), while
the modularity is determined by a single statistic of reflecting the
modular structures of a network (Newman, 2006; Blondel et al.,
2008). By contrast, integration refers to the efficiency of global
information communication or the ability to integrate distributed
information in the network, which is usually measured by the
characteristic path length of a network, i.e., the average shortest
path length between nodes (Figure 1B; Watts and Strogatz,
1998). Here, a path is a unique sequence of edges that connects
two nodes with each other, and its length is given by the number
of steps (in a binary graph) or the sum of the edge lengths (in a
weighted graph), with the shortest one referred to as the shortest
path length. Notably, in a complementary form, Latora and
Marchiori (2001) also defined the local efficiency of each node,
which is similar but not equivalent to its clustering coefficient or
fault tolerance, and global efficiency that is inversely proportional
to the characteristic path length of the network, thus allowing
computation of a finite value for graphs with disconnected nodes.

Based on perspectives of information segregation and
integration, networks can be divided into different types,
including regular, small-world and random networks. Notably,
a small-world structure characterizes an optimized balance
between segregation and integration, which is essential for high
synchronizability and fast information transmission in a complex
network (Watts and Strogatz, 1998; Latora and Marchiori,
2001). A small-world network has both high global and local
information transformation capacity, which is characterized as
a shorter characteristic path length than a regular network
and a greater clustering coefficient than a random network.
Quantitatively, a small-world network is examined with the
measurements of the normalized characteristic path length,
defined as the ratio of the characteristic path length of the
brain network to that of matched random networks, and the
normalized clustering coefficient, defined as the ratio of the
clustering coefficient of the network to that of matched random
networks (Watts and Strogatz, 1998). Typically, for small-world
networks, the ratio between the normalized characteristic path

length and the normalized clustering coefficient should be >>1
(Humphries and Prescott, 2005; Achard et al., 2006).

Hubs and Rich-Clubs
In brain networks, nodal regions that are positioned to make
strong contributions to global network communication can be
identified as network hubs using numerous different graph
measures (van den Heuvel and Sporns, 2013). The simplest graph
measure used for identifying hubs is degree centrality, which
evaluates the number of connections attached to a given node
(Figure 1C). Another measurement is betweenness centrality,
defined as how many of the shortest paths between all other
node pairs in the network pass through a given node, which
reflects the ability of information transformation (Freedman,
1977). Nodal efficiency is also a frequently used measurement,
which scales the average shortest path length between the given
node and all the other nodes in the network (Achard and
Bullmore, 2007). Importantly, these high-degree or high-central
hubs strongly tend to be densely interconnected and form a rich-
club structure in the brain organization (Figure 1C; van den
Heuvel and Sporns, 2011). These hubs and rich-clubs are found
to play important roles in global information transformation
at the expense of relatively higher wiring, running costs, and
vulnerability (Bullmore and Sporns, 2012; van den Heuvel et al.,
2012; Liang et al., 2013; Tomasi et al., 2013).

TYPICAL DEVELOPMENT OF HEALTHY
BRAIN CONNECTOMES

Here, we focused on the development of the human brain
connectome during the first two decades of life, in which
dramatic brain structure changes happen and complex cognitive
functions emerge (Giedd and Rapoport, 2010; Tau and Peterson,
2010). By searching PubMed (http://www.ncbi.nlm.nih.gov/
pubmed) using the keywords “graph theory,” “small world,”
“connectome” and “development” or “maturation,” we selected
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FIGURE 1 | Summary of the main measures with graph theoretical analysis. (A) Metrics regarding the segregation of a network. Local clustering describes the

tendency of nodes to form local triangles, providing insight into the local organization of the network. There are four modules in the graph in which connections within

modules are much denser than connections between them. (B) Metrics about the integration of a network. The shortest path length describes the minimum number

of steps needed to travel between two nodes (dots in yellow) and provides insight into the capacity of the network to communicate between remote regions. (C) The

existence of a small set of high-degree nodes with a central position in the network may suggest the existence of hub nodes. High-level connectivity (lines in red)

between hub nodes (dots in red) may suggest the existence of a central so-called rich club within the overall network structure.

articles that used graph theory to analyze the brain networks
based on MRI, fNIRS and EEG/MEG data. In total, we included
43 papers and discussed the development patterns of topological
properties of brain connectomes (Tables 1, 2). According to
the literature we reviewed, we found that the development of
structural and functional brain connectomes followed distinct
changing patterns from infancy to childhood and adolescence
periods. Thus, we separately discussed the brain’s structural
and functional development, with each section proceeding
chronologically from infancy (approximately 0–2 years old) to
childhood and adolescence (approximately 2–10 years old).

Development of Structural Brain
Connectomes
Structural Connectivity Networks
Recent advances in dMRI and tractography methods enable
us to noninvasively study human brain structural networks.
Specifically, through mapping the local diffusivity of water
molecules in brain tissues, dMRI tractography allows us to
map structural connectivity by traced white-matter fibers with
deterministicor probabilistic tractography methods (Mori et al.,
1999; Mori and van Zijl, 2002; Behrens et al., 2007). Whole-brain
structural connectivity networks are then constructed by linking
distinct regions with detected fiber tracts (Hagmann et al., 2007;
Gong et al., 2009).

Infancy
Using dMRI data, many studies have demonstrated that the
adult-like topological organization of structural brain networks,
such as the small-world, modular, hub, and rich-club structures,
is well established by the time of birth (Figures 2A,C; Yap
et al., 2011; Tymofiyeva et al., 2012, 2013; Ball et al., 2014;
Huang et al., 2015; van den Heuvel et al., 2015). During the
first few years of development, the topological structure of
the brain structural connectivity networks were reported to
exhibit increased global integration with decreased characteristic
path length in approximately 6-month-old infants compared
with term neonates (Tymofiyeva et al., 2013), increased global

efficiency in 2-years-old toddlers compared with term neonates
(Huang et al., 2015), as well as increased fiber length in 1-year-
old infants compared with 2-week-old neonates (Yap et al., 2011).
In contrast, decreased network segregation properties were
reported, with a decreased clustering coefficient and modularity
during the first half year (Tymofiyeva et al., 2013), as well as
a decreased normalized clustering coefficient and modularity
and increased number of modules and connectors in 2-year-
old toddlers compared with term neonates (Huang et al., 2015).
Moreover, although the degree distribution was found to follow
a truncated power law across this period (Yap et al., 2011), which
makes the network resilient to attacks, the network robustness to
both random and targeted attack was reported to increase with
age (Figure 2D; Huang et al., 2015), referring to the continuous
refining of brain networks. Behavior al studies found that in half-
year-old infants, the characteristic path length of brain structural
networks inversely correlates with the neuromotor outcomes
(Tymofiyeva et al., 2012).

Regionally, brain hubs were also found to be well-established
by the time of birth (Figure 2C). Specifically, the hubs in
neonates, calculated with both degree centrality and nodal
efficiency, were found to be located in the medial superior
parietal lobule and cuneus, which were adult-like, and in lateral
regions including the rolandic operculum, Heschl’s gyrus and
sensorimotor regions, which were infant-specific (Gong et al.,
2009; Yap et al., 2011; Huang et al., 2015; van den Heuvel et al.,
2015). With development, the nodal efficiency of the medial
hubs and fronto-medial regions was found to be significantly
increased, whereas that of the regions located laterally decreased
with age, until the hub locations in toddlers were highly similar
to those in adults (Huang et al., 2015).

Gender differences in babies’ brain networks were not
detected until they were 2 years old, with females exhibiting
higher global efficiency and lower local efficiency than males
(Yap et al., 2011). Network asymmetry was already detected
in neonates’ brains, with an overall higher nodal betweenness
in the right brain than the left brain, and this increased with
age (Yap et al., 2011). Notably, this study reported increased
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TABLE 2 | Overview of studies about functional network development.

Study Modality Subject n: ages Network

type

Node numbers Connectivity metrics

Infancy Fransson et al., 2011 fMRI 18 infants: 39 wk and 2 days;

18 sub: 22–41 y

S B Voxel-wise Pearson’s correlation

Gao et al., 2011 fMRI 51 neonates: 23 ± 12 d;

50 sub: 13 ± 1 mo;

46 sub:24 ± 1 mo

S B 90 (AAL template) Pearson’s correlation

Gao et al., 2014 fMRI 178 sub: 1mo;

132 sub: 12 mo;

100 sub: 24 mo

S W Voxel-wise Pearson’s correlation

Pruett et al., 2015 fMRI 64 sub: 6 mo;

64 sub:12 mo

S W 230 Pearson’s correlation

Homae et al., 2010 fNIRS 15 sub: 2–11 d;

21 sub: 102–123 d;

16 sub: 180–206 d

S W 47 Pearson’s correlation

Childhood and

adolescence

Fair et al., 2007 fMRI 49 sub: 7–9 y;

43 sub: 10–15 y;

47 sub: 21–31 y

S W 39 Pearson’s correlation

Fair et al., 2009 fMRI 66 sub: 7–9 y;

53 sub: 10–15 y;

91 sub: 19–31 y

S WB 34 Pearson’s correlation

Supekar et al., 2009 fMRI 23 sub: 7–9 y;

22 sub: 19–22 y

S WB 90 (AAL template) Wavelet correlation

Dosenbach et al., 2010 fMRI 238 sub: 7–30 y S W 160 Pearson’s correlation

Uddin et al., 2011 fMRI

DTI

23 children: 7–9 y;

22 adults: 19–22 y

S W

D W

S W

9 Partial correlation; Granger

causality analyses;

Diffusion MRI deterministic

tractography

Zuo et al., 2012 fMRI 1003 sub: ∼15–40 y S W Voxel-wise Pearson’s correlation

Wang et al., 2012 fMRI 137 sub: 8–79 y S W 116 (AAL template) Pearson’s correlation

Hwang et al., 2013 fMRI 28 children: 10–12 y;

41 adolescents: 13–17 y;

30 adults: 18–20 y

S BW Voxel-wise,

160 (Dosenbach)

Pearson’s correlation

Wu et al., 2013 fMRI 60 sub: 5.7–18.4 y S B 90 (AAL template) Pearson’s correlation

Cao et al., 2014b fMRI 126 sub: 7–85 y S W 1024, 106 (Dosenbach),

131 (Yeo)

Pearson’s correlation

Betzel et al., 2014 fMRI

DTI

126 sub: 7–85 y S W

S W

114 (Yeo) Pearson’s correlation;

Diffusion MRI deterministic

tractography

Sato et al., 2014 fMRI 447 sub: 7–15 y S W 325 (AT325 atlas) Pearson’s correlation

Sato et al., 2015 fMRI 447 sub: 7–15 y S W 28 Pearson’s correlation

Qin et al., 2015 fMRI 183 sub: 7–30 y S W 116 (AAL template) Pearson’s correlation

Gu et al., 2015a fMRI 780 sub: 8–22 y S W 264 (Power) Wavelet correlation

Boersma et al., 2011 EEG 227 sub: 5–7 y S W 14 Synchronization likelihood

Miskovic et al., 2015 EEG 61 sub: 7 y;

53 sub: 8 y;

52 sub: 9 y;

56 sub: 10 y;

47 sub: 11 y

S W 33 Phase lag index

Sub: subjects; d: days; wk: weeks; mo: months; y: years; S: symmetric; D: directed; W: weighted; B: binary; AAL: automatic anatomical labeling.
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local segregation and consistent global integration during early
development, which was not consistent with the above-discussed
papers (Tymofiyeva et al., 2013; Huang et al., 2015). Specifically,
Yap et al. (2011) found that 2-week-old neonates’ brain networks
exhibit lower local efficiency but similar global efficiency
compared with that of 1-year-olds and 2-year-olds, indicating the
needs for further studies with larger sample sizes.

Childhood and adolescence
After the first few years, increased integration and decreased
segregation were generally found to continue until adulthood
(Hagmann et al., 2010; Chen et al., 2013; Dennis et al., 2013b;
Huang et al., 2015). Specifically, from 2 years of age to adulthood,
human brain structural networks experience the continued
increases in global efficiency, nodal strength, number of modules
and connectors and decreased local clustering and modularity
(Hagmann et al., 2010; Uddin et al., 2011; Chen et al., 2013;
Dennis et al., 2013b; Huang et al., 2015; Koenis et al., 2015;
Wierenga et al., 2015; Zhao et al., 2015). The numbers of
streamlines of fiber tracts, which were short, within modules
and within hemispheres, were found to significantly decrease
with development (Lim et al., 2015). Moreover, these types
of topological changes were found to be highly heritable and
significantly correlated with IQ (Koenis et al., 2015).

The location of hubs was found to be relatively consistent
across this period, with subtle changes taking places (Figure 2C;
Hagmann et al., 2010; Chen et al., 2013; Huang et al., 2015).
Specifically, relatively strong developmental changes in the intra-
lobe connections within the frontal and parietal lobes compared
to changes in the temporal and occipital lobes and between
subcortical structures were observed (Wierenga et al., 2015).
Furthermore, the regions located within the default mode
network were found to mature later than other regions (Chen
et al., 2013; Zhao et al., 2015). The rich-club organization,
which consisted of densely interconnected hubs and comprised
the postero-medial core with extensions into the temporo-
parietal junction and fronto-medial cortices, was also found to
be established in the brains of children and remained stable
with development (Hagmann et al., 2010; Chen et al., 2013;
Dennis et al., 2013a; Grayson et al., 2014), with subtle connection
changes, including decreased correlation within the subcortical
hub and increased connections between the frontal and temporal
as well the frontal and subcortical hubs (Figure 2B; Dennis
et al., 2013b; Baker et al., 2015). Network motifs, a specific
connectivity pattern, were found to change across ages, but they
were significantly affected by template resolution (Echtermeyer
et al., 2011). Meanwhile, anatomical measurement of fiber length
was found to significantly increase during development (Zhao
et al., 2015), with a robust distribution relative to the spatial
resolution (Echtermeyer et al., 2011).

Gender differences during this period were reported, which
included the earlier streamline losses (Lim et al., 2015)
and significantly higher small-worldness and normalized local
clustering in females than in males (Dennis et al., 2013b). Brain
asymmetry was also found, including inverse development curves
between the left and right hemispheres with respect to global
efficiency, local clustering, and modularity (Dennis et al., 2013b).

Notably, there were also some inconsistent findings, which are
mainly reflected in increased local efficiency during development
(Chen et al., 2013; Koenis et al., 2015; Wierenga et al., 2015).
Given that both decreased (Lim et al., 2015) and increased
fiber streamline counts (Chen et al., 2013) and increased mean
fractional anisotropy (Koenis et al., 2015), as well as decreased
average apparent diffusion coefficients, diffusivity, and radial
diffusivity, were found during development (Hagmann et al.,
2010; Wierenga et al., 2015), we inferred that different weighting
methods may explain these different results. In an analysis of
dMRI data from the same group, Koenis et al. (2015) found
that fractional anisotropy weighted networks showed increased
local efficiency, whereas fiber number weighted networks showed
decreased local efficiency with development.

Taken together, these findings indicate that structural
connectivity networks already exhibit adult-like organization
at the time of birth and then experience continued increased
integration and robustness with development, indicating the
refining of brain circuits. Throughout this period, hub locations
were relatively consistent in the postero-medial core, with
extensions into the temporo-parietal junction and fronto-medial
cortices, with fine-tuning in the strengthening of the frontal and
temporal hubs, as well as weakening of the subcortical hubs and
lateral non-hub regions in the cortex. Notably, increased FA was
found to be significantly correlated with the changes in network
properties, indicating that the development of network structure
is associated with microstructural modifications of white matter,
such as synaptogenesis and synaptic and axonal pruning, as
well as myelination (Tau and Peterson, 2010; Huang et al.,
2015). However, discrepancies between different studies also
exist, which may be due to differences in network construction
approaches and limited sample sizes.

Structural Covariance Networks
Structural covariance networks are established based on
coordinated variations in brain morphology (e.g., gray-matter
volume and thickness), which are established by structural MRI,
as measures of structural association between regions (Lerch
et al., 2006; He et al., 2007).

Infancy
There is only one work conducted by Fan et al. (2011), exploring
the structural covariance network development during infancy.
They found that the economic small world andmodular structure
were also established in the structural covariance networks
of 1-month-old infants. During early development, from 1
month to 3 years old, network integration consistently enhanced
with increased global efficiency, whereas network segregation
properties showed inverted U-shape curves, with the modularity
and local efficiency of 2-year-olds being higher than those of the
brain networks of younger and older participants.

Childhood and adolescence
Khundrakpam et al. (2013) explored the development of
structural covariance networks from early childhood to
adulthood. Complex topological structure changes were
detected: from 4 years to 11 years, network integration
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FIGURE 2 | Development of white-matter connectomes. (A) Structural connectivity matrices of the neonates, toddlers, pre-adolescents, and adults

group-averaged connectome. Adapted from Huang et al. (2015). (B) Late adolescent developmental changes in structural connectivity, with the thickness of each

connection weighted by its associated one-tailed t-test statistic (FWE corrected, p < 0.05). Edge color represents connection type: non-hub to non-hub (yellow), hub

to non-hub (orange), and hub to hub (red), with larger nodes corresponding to hub regions. Node color represents the assignment of each region of interest to one of

five broad anatomical divisions: frontal (cyan), parietal (lime), temporal (magenta), occipital (orange-red), or subcortical (blue). The center panel illustrates the

anatomical distribution of developmental decreases (lower triangular matrix) and increases (upper triangular matrix) in connectivity based on the classification of edges

according to the anatomical divisions they interconnected. The values in these matrices represent relative proportions, calculated as the ratio between the frequency

of edges linking each pair of divisions and the total number of edges belonging to the two categories. Adapted from Baker et al. (2015). (C) Distributions of hub

regions in different age groups based on nodal efficiency centrality. PCG, precentral gyrus; PCUN, precuneus; CUN, cuneus; DCG, dorsal cingulate gyrus; INS,

insular; ACG, anterior cingulate gyrus; SOG, superior occipital gyrus; ORBinf, inferior frontal gyrus; ROL, rolandic operculum; HES, Heschl’s gyrus. Adapted from

Huang et al. (2015). (D) Topological robustness of the structural networks in each group. The graphs show the AUC of the largest connected component (LCC) as a

function of the removed node number by targeted attacks. The brain networks in the preadolescents (red line) were approximately as robust as those in toddlers (blue

line) in response to both target failures. However, the neonates (green line) displayed remarkably reduced stability against both targeted attack and random failure

compared with the other two groups. Adapted from Huang et al. (2015).

continuously enhanced characterized by increased global
efficiency and numbers of connectors, whereas segregation
decreased, characterized by decreased local clustering; from
11 years to 15 years, contrasting development curves were
found, including decreased global efficiency and numbers
of connectors with increased local efficiency; thereafter, the
networks became stable until adulthood. However, a longitudinal
study of a large sample with 3- to 29-year-old subjects, which
employed two correlation calculation methods, the correlation
of cortical thickness and cortical curvedness, to construct the
brain networks, reported inconsistent findings (Nie et al., 2013).
Specifically, the global efficiencies of both types of networks
were found to decrease from 3 years old to 7 years old and then
increase until approximately 9 years old and then become stable.
In contrast, the local efficiency increased from 3 to 7 years old and
then decreased with age. The peak age for both developmental
curves was ∼7 years old, when brain cortical thickness reaches
its highest value and cortical folding becomes stable.

Although the network reorganized during the developmental
period, the location of hubs was relatively consistent comprising
the medial posterior parietal and frontal core and some temporal
regions with subtle changes from the language-related regions
to the frontal lobes (Fan et al., 2011; Khundrakpam et al., 2013;
Nie et al., 2013). Regional analysis also found that the primary
regions matured earlier and were well developed by 5 years
old, followed by the paralimbic and association regions, which

developed mainly during early to late childhood (∼5–11 years
old; Khundrakpam et al., 2013).

Recently, one work employed the similarity in maturational
curves of cortical thickness between regions in participants
ranging from 6 to 12 years old to construct brain structural
networks (Alexander-Bloch et al., 2013). They found that the
topological properties of these maturational networks exhibit
similar topological properties to the structural covariance
networks. Furthermore, both the maturational and structural
covariance networks could predict the functional networks
well. These findings indicate that maturational trajectories may
underlie the properties of structural covariance networks, as well
as functional networks.

In summary, during development the global topological
properties of structural covariance networks undergo
complicated changes, which still need further exploration.
In contrast, the regional findings were relatively consistent in
the hub locations, which were similar to the hubs in structural
connectivity networks. The developmental order from primary
to high functioning regions was also detected. Notably, the
structural covariance connections were previously reported to
partly reflect underlying fiber connections but contain exclusive
information (Gong et al., 2012). Specifically, graph theoretic
analysis reveals that the thickness correlation network has a more
randomized overall topology than the structural connectivity
network, whereas the regional characteristics in these two
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networks are statistically correlated, which may be in agreement
with the findings during development.

Development of Functional Brain
Connectomes
The functional network in the human brain in vivo can
be constructed from EEG/MEG, fNIRS, and fMRI data by
calculating the temporal correlation between the fluctuations in
measured electric, magnetic and blood oxygen level-dependent
signal. Specifically, the resting-state functional imaging data
measures the endogenous or spontaneous brain activity of
subjects who are not performing any specific tasks, which is very
suitable for the study of development (Biswal et al., 1995; Stam,
2010; Niu and He, 2013).

Infancy
Studies that employed resting-state fMRI (rsfMRI) have found
that typical organizational principles, such as the existence of
hubs and small-world structure, were already present by the time
of birth (Fransson et al., 2011; Gao et al., 2011). In the first 2 years
of life, both the functional network integration and segregation
properties were found to significantly increase with age from
birth to 1 year of age (Gao et al., 2011). Thereafter, the network
efficiency became stable. The robustness of the networks linearly
increased with age (Gao et al., 2011). Global and local efficiency
in the specific functional network of the sensorimotor system
significantly increased from 1 year of age to 2 years of age, which
was also reported with MEG data (Berchicci et al., 2015).

Hub regions were also detected in newborn infants. Fransson
et al. (2011) found that the functional hub regions in the brains of
neonates born ∼1 week before were located in primary regions,
including sensorimotor cortex, caudate, supplementary motor
area, superior temporal cortex, occipital cortex, and lateral and
medial prefrontal cortex (Figure 3A). Gao et al. (2011) studied
hub evolution during the early development. Specifically, they
also detected that the regions located in the lateral frontal
cortex, caudate, and occipital cortex acted as hubs in newborn
neonates. With development, bilateral supplementary motor
areas were noted among the hubs in 1-year-old infants. In 2-
year-olds, the hub regions moved toward to areas involved in
high order cognitive functions, such as the medial superior
frontal gyrus (Gao et al., 2011). Notably, they found that the
bilateral insula consistently performed as hubs for all three age
groups. Moreover, during the first 2 years, the hub regions
showed increases in their long-range connections to possess an
increasingly more efficient strategy. Inter-subject variability was
found to be relatively lower in primary functional areas but
higher in association areas during the first 2 years (Gao et al.,
2014). Although inter-subject variability in infants was similar
to that in adults, specific patterns were still present in infants.
Specifically, the medial prefrontal/anterior cingulated, auditory,
subcortical and insula regions exhibited lower variability in
infants than in adults, which may indicate “skill learning”
development (Gao et al., 2014).

Consistent with increasingly efficient communication,
connectional analysis found that during the first 6 months,
the connections of the temporal, parietal and occipital cortex

significantly increased with age, with the clusters comprising
homolog regions formed (Homae et al., 2010). Meanwhile,
the homotopic connections of the frontal regions decreased
with age, whereas the connections of the prontoposterior
regions decreased until ∼3 months of age but then increased
(Homae et al., 2010). Another study found that the thalamus-
sensorimotor and thalamus-salience connectivities were found
already formed in neonates, whereas the thalamus-medial visual
and thalamus-default mode network connectivity emerged at
1 year of age (Alcauter et al., 2014). Moreover, classification
analysis revealed that the functional connectivity could provide
critical information to accurately identify infants at high-risk
for autism versus infants at low-risk, both in 6-month-old and
12-month-old infants (Pruett et al., 2015).

Childhood and adolescence
After early development, brain functional networks still showed
increased segregation with increased local clustering or local
efficiency, within-module connectivity, and network hierarchy
after 5 years of age (Supekar et al., 2009; Dosenbach et al.,
2010; Boersma et al., 2011; Wu et al., 2013; Betzel et al.,
2014; Cao et al., 2014b). Notably, increased global efficiency
(Miskovic et al., 2015) and long distance connections (Fair
et al., 2007, 2009; Supekar et al., 2009; Dosenbach et al., 2010;
Cao et al., 2014b), as well as the organization of modules,
shifted from a local anatomical emphasis in children to a more
distributed architecture in young adults (Figure 3B; Fair et al.,
2009), indicating an increased global integration process. Taken
together, these findings indicated that the functional specification
and integration in the brain increased during development. One
recent study conducted a modular analysis of the subjects from 8
to 22 years old and found that different systems with diverse roles
in whole-brain networks showed different change trajectories
with development (Gu et al., 2015a). Specifically, sensorimotor
systems and higher order cognitive systems (cognitive control,
salience, memory, and attention systems), tending to be cohesive
provincial and incohesive connector systems, respectively, all
became increasingly segregated from other systems during
development. Subcortical and cerebellar systems, tending to be
incohesive provincial systems, became increasingly differentiated
during development. Uniquely, the default mode system, tending
to be a cohesive connector system, was shown to be both
increasingly cohesive and increasingly associated with other
systems during development.

Hub distributions after 5 years old were found to be stable
until adulthood located at the insula, superior visual cortex,
postcentral gyrus, thalamus, caudate, and default mode network
(DMN), comprising the precunues/posterior cingulated cortex,
angular cortex, superior frontal gyrus, parahippocampal, medial
prefrontal cortex, and middle temporal gyrus (Zuo et al., 2012;
Hwang et al., 2013; Wu et al., 2013; Cao et al., 2014b).
Notably, these hubs intensely interconnected to form the rich-
club organization. With development, the normalized rich-
club coefficients, i.e., the connectivity between the hub regions,
significantly increased (Figure 3C; Fair et al., 2008; Uddin et al.,
2011; Cao et al., 2014b; Grayson et al., 2014), indicating enhanced
communication between hubs. The regional properties of the
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FIGURE 3 | Development of functional connectomes. (A) Distribution of hub regions in the functional networks of infants and adults based on degree centrality. In

infants, the majority of cortical hubs were located in the homomodal cortex, mostly in the auditory, visual, and sensorimotor areas, and to a lesser extent in the PFC.

Prominent locations for hubs in adults included the precuneus/posterior cingulate cortex, medial PFC, anterior cingulate cortex, bilateral parietal lobule, and bilateral

insula. Adapted from Fransson et al. (2011). (B) The figure showed the dynamic development of the default network, and cerebellar network using spring embedding.

The figure highlights the segregation of local, anatomically clustered regions, and the integration of functional networks over development. Nodes are color coded by

their adult network profile (core of the nodes) and by their anatomical location (node outlines). Connections with r > 0.1 were considered connected. Adapted from Fair

et al. (2009). (C) The functional rich-club organizations in children and adults. Although many regions overlap (red arrows, for example), there are bilateral regions that

appear only in adults (blue arrows, for example). Adapted from Grayson et al. (2014). (D) Modularity and SC–FC correlation. Cortical SC and FC matrices averaged

over the younger (<4 years) and older (>13 years) age group. Structural modules are delineated by the superimposed white grid. Eleven modules (M1–M6 in the right

hemisphere, M7–M11 in the left hemisphere) were identified, and the two sets of SC and FC matrices are displayed such that modules correspondence across age is

maximized. Although modules are highly conserved (normalized mutual information = 0.82), there is a notable increase in SC–FC correspondence from younger to

older brains. There is an increasing statistically significant relationship between SC and FC across age (R = 0.74, p < 0.005). Adapted from Hagmann et al. (2010).

frontal brain regions, superior temporal gyrus, and angular gyrus
were found to increase with age, whereas those of the regions
related to motor, somatosensory, auditory, and visual functions,
as well as the bilateral precuneus and subcortical regions
decreased with age (Supekar et al., 2009; Dosenbach et al., 2010;
Wang et al., 2012; Zuo et al., 2012; Hwang et al., 2013; Wu et al.,
2013; Cao et al., 2014b; Sato et al., 2014, 2015). These findings
suggested that the regions for high order cognitive functions
matured late compared with the primary regions. Moreover,
the functional connectivity information could be used to
accurately predict brain maturity (Dosenbach et al., 2010; Wang
et al., 2012). Interestingly, recent neuroscience studies suggested
that resting-state FC may be dynamic and exhibit significant
spontaneous fluctuation (Kang et al., 2011; Hutchison et al.,
2013). The spontaneous fluctuations of resting-state functional

connectivity, which significantly increased with age, could be
used to accurately predict brain age (Qin et al., 2015). Notably,
the correlations between structural and functional connectivity
showed an increasing trend with age (Figure 3D; Hagmann et al.,
2010; van den Heuvel et al., 2015). In particular, the functional
connectivity without direct structural connections was primarily
strengthened with development (Betzel et al., 2014).

Gender effects explorations found that girls exhibited higher
local clustering than boys (Boersma et al., 2011; Wu et al.,
2013), whereas boys showed higher global efficiency than girls
(Wu et al., 2013). Regional differences in gender were found
in the DMN, language, sensorimotor, and the visual systems,
which may indicate cognitive differences between females and
males in visuospatial, language and emotion processing (Zuo
et al., 2012; Wu et al., 2013). IQ was found to be significantly
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correlated with regional properties in the frontal, parietal and
temporal lobes (Wu et al., 2013; Santarnecchi et al., 2014), which
was consistent with the parieto-frontal integration theory of the
integrative roles of these regions. However, inconsistent findings
were also reported, including stable (Wu et al., 2013) or decreased
global efficiency (Boersma et al., 2011; Cao et al., 2014b)
and decreased modularity (Cao et al., 2014b; Miskovic et al.,
2015) during development. Notably, functional networks were
relatively sensitive to the choice of template, ways of computing
correlations and methods for determining the threshold of the
network (Wang et al., 2009a; Liang et al., 2012). All of these
factors may account for the inconsistent findings. Further studies
are still urgently needed to elucidate this problem.

In summary, the functional networks experienced more
dramatic reorganization during development than the structural
ones. Both increased information integration and segregation
continuously progressed since birth. The hub locations were
moved from the primary regions to those involving high-order
cognitive functions as the organization of modules shifted from
a local anatomical emphasis to a more distributed architecture.
Moreover, the physiological bases including blood supply and
glucose metabolism of functional network properties in both
infants and adults and modulation in response to task demands
were also detected (Chugani, 1998; Liang et al., 2013; Tomasi
et al., 2013). Therefore, we inferred that functional networks
matured with both the underlying structural networks and
environment-driving training to meet cognitive challenges at
different stages of life.

ATYPICAL DEVELOPMENT OF BRAIN
CONNECTOMES IN NEUROPSYCHIATRIC
DISORDERS

In this part, we briefly introduce the findings regarding abnormal
brain networks in neurodevelopment disorders (ADHD, ASD
and dyslexia) using imaging connectomics.

ADHD is one of the most common neurodevelopment
disorders in childhood, with core symptoms of inattention,
hyperactivity and impulsivity (American Psychiatric Association.
DSM-5 Task Force, 2013). Convergent evidence suggested that
children with ADHD had abnormal small-world properties in
both functional and structural brain networks characterized by
higher local clustering and lower global integrity, indicating
a disorder-related regular shift in organizational properties
(Figure 4A; Wang et al., 2009b; Ahmadlou et al., 2012a,b;
Cao et al., 2013). Regional and connectional alterations were
found to be mainly involved in the default-mode, attention,
sensorimotor, and subcortical systems (Figure 4A; Fair et al.,
2010, 2013; Colby et al., 2012; Tomasi and Volkow, 2012; Di
Martino et al., 2013; Sripada C. et al., 2014a). Specifically, the two
primary symptoms of ADHD were found to be correlated with
different connectivity changing patterns. Decreased connectivity
in prefrontal-dominant circuitry and increased connectivity
in orbitofrontal-striatal circuitry correlated with behavioral
scores of inattention and hyperactivity/impulsivity symptoms,
respectively (Figure 4A; Tomasi and Volkow, 2012; Cao et al.,

2013; Fair et al., 2013). Notably, a developmental perspective has
recently been increasingly noted in the research of psychiatric
disorders (Di Martino et al., 2014). For ADHD, a delayed
developmental model has been proposed (Fair et al., 2010;
Cao et al., 2014a). Specific maturational lag in functional
connections within the DMN and in DMN interconnections with
the frontoparietal network and ventral attention network were
detected (Sripada C. S. et al., 2014b). Further studies are still in
needed to test the hypothesis from the connectomic perspective
using both multimodality data and whole-brain topological
analysis.

ASD manifests early in development and is characterized
by deficits in social interaction and communication, as well as
stereotyped and repetitive behaviors and restricted interests in
domains of activities (American Psychiatric Association. DSM-
5 Task Force, 2013). The findings about alterations in global
topological architecture in ASD were inconsistent. Whereas
the topological properties of functional networks were found
to exhibit a randomized tendency of decreased segregation,
both decreased and increased local clustering were found in
the structural networks of ASD patients (Rudie et al., 2012;
Jakab et al., 2013; Li et al., 2014; Valk et al., 2015). In
contrast, the regional findings suggested the disruption of both
functional and structural hubs in ASD (Figure 4B; Di Martino
et al., 2013; Crossley et al., 2014; Eilam-Stock et al., 2014).
Connectional analyses show hypoconnectivity in the so-called
“social network” encompassing the default mode, attention and
executive networks, and hyperconnectivity in limbic regions
(Figure 4B; Anderson et al., 2011; Gotts et al., 2012; Rudie
et al., 2012; Tyszka et al., 2014; Cheng et al., 2015). Specifically,
a lack of long-range connections and an increase in short-
range connections in ASD patients compared with healthy
controls were reported (Khan et al., 2013; Bernhardt et al.,
2014; Ameis and Catani, 2015; Kitzbichler et al., 2015). For
ASD, an overgrowth developmental hypothesis has been raised
(Courchesne et al., 2007; Uddin et al., 2013). Interestingly,
a recent DTI study conducted on 2-year-old babies showed
significantly disturbed local and global efficiency in high-risk
infants diagnosed with ASD, compared with both low- and
high-risk infants not diagnosed with ASD, indicating that the
abnormality occurred at a very early stage (Lewis et al., 2014).

Developmental dyslexia, also known as reading disorder, is
a neurobiological deficit characterized by persistent difficulty
in learning to read in children and adults who otherwise
possess normal intelligence (American Psychiatric Association.
DSM-5 Task Force, 2013). Thus far, the connectomic studies
in dyslexia are relatively few with divergent findings. Studies
employing sMRI data to explore alterations in Chinese dyslexia
found both decreased (Qi et al., 2016) and increased (Liu
et al., 2015) local clustering with constant global efficiency in
the structural networks compared with healthy participants.
Moreover, structural networks of children with familial risk of
reading difficulties showed no significant difference in global
topological properties compared with healthy controls (Hosseini
et al., 2013). Functional networks based on MEG data in
dyslexia showed reduced global and local efficiency during both
resting and task states compared with healthy controls (Vourkas
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FIGURE 4 | (A) Brain network alterations in ADHD. (i) Small-world models for ADHD and healthy brain networks. The ADHD networks showed a regular tendency

compared with healthy controls. Adapted from Cao et al. (2014a). (ii) Decreased or increased functional connectivity density (FCD) in ADHD patients compared with

healthy controls. Adapted from Tomasi and Volkow (2012). (iii) Decreased or increased white matter connections in ADHD participants compared with healthy controls

and their relationships with the clinical characteristics of the patients. Blue curve: the significantly decreased network-based statistic (NBS) component; red curve: the

significantly increased NBS component. Adapted from Cao et al. (2013). (B) Brain regions displaying disrupted functional connectivity in autism. (i) Voxels displaying

altered functional connectivity in autism. Voxels that displayed weaker functional connectivity in the autistic population than in the controls are shown in blue, and the

voxels that displayed stronger functional connectivity in the autistic population are shown in red. The color bar represents the degree of connectivity according to the

number of significantly affected edges relating to a given voxel. Adapted from Eilam-Stock et al. (2014). (ii) White matter tracts of the socio-emotional processing

system. Left: white matter tracts of the limbic system; middle: white matter tracts linking the mirror neuron system; right: white matter tracts of the face processing

system. Adapted from Ameis and Catani (2015). (C) Brain network alterations in dyslexia. (i) Whole-brain functional connectivity differences between groups.

Three-dimensional representation of healthy controls readers (NC) > dyslexic readers (DYS) and DYS > NC edge components (p < 0.01 after NBS correction).

Adapted from Finn et al. (2014). (ii) Between-group differences in regional nodal characteristics in cortical thickness networks. Group differences of and nodal degree

in cortical thickness networks. Blue represents the brain areas with significantly lower nodal properties in DYS than in NC, whereas red represents the brain areas with

significantly higher nodal properties in NC than in DYS. Adapted from Qi et al. (2016).

et al., 2011; Dimitriadis et al., 2013). Regional alterations in
both structural and functional networks were reported in the
visual cortex for visual information integration and prefrontal
areas for attention modulation, as well as the supramarginal
gyrus, precentral gyrus, Heschil’s gyrus, posterior cingulated, and
hippocampus (Figure 4C; Hosseini et al., 2013; Finn et al., 2014;
Liu et al., 2015; Valk et al., 2015; Qi et al., 2016). Interestingly,
the hub locations in the structural networks of Chinese dyslexia
were found to bemore bilateral and anterior than those of healthy
controls (Qi et al., 2016), which was consistent with the findings

that in functional networks, non-impaired readers have stronger
left lateralization for language than dyslexic readers, who rely on
bilateral systems (Finn et al., 2014).

Together, many previous studies have shown topological
disorganization of brain networks in these neurodevelopmental
disorders. In the future, it will be important to compare
commonalities and differences in developmental brain networks
among these neuropsychiatric disorders. These imaging
connectomics studies will be critical for deepening our
understanding of developmental mechanisms and to discover
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FIGURE 5 | Sketch plot showing the development of structural and

functional brain networks in infancy and childhood and adolescence

relative to healthy adults.

biomarkers for early diagnosis, treatment evaluation, and
identification of intervention targets.

CONCLUSION AND FURTHER
CONSIDERATIONS

Taken together, structural connectivity networks, structural
covariance networks, and functional networks already exhibit
an efficient small-world modular structure, with the appearance
of hubs at the time of birth. The organizations of structural
connectivity networks in infants were somewhat similar to those
of adults, with the refining of enhanced network integration
with development. In contrast, functional networks in infants
showed dramatically different architecture from those in adults,
although the critical topological structure was also established.
With development, functional networks are reorganized, with
both increased segregation and integration as hubs move
from primary regions toward high order cognitive regions.
These finding suggest that structural connectivity networks
may mature earlier than the functional ones (Figure 5). Given
that previous studies that employed empirical and simulated
data have demonstrated that structural connectivity provides
crucial structural substrates underlying the brain’s functional
connections in adults (Honey et al., 2009; van den Heuvel
et al., 2009; Wang et al., 2015), this developmental pattern
may reflect preparation for the potential structural constrains
of further development of the brain’s functional networks.
Further studies are needed to verify this hypothesis. The
brain networks constructed with structural covariance using
sMRI data showed different maturational curves than those of
either structural connectivity networks or functional networks.

Specifically, structural covariance networks with sMRI are more
complex and seem heavily affected by cortical morphological
changes with development. Finally, the literature reviewed here
suggests abnormal network development in populations with
developmental psychiatric disorders, such as ADHD and ASD.

Although these findings shed light on our understanding
of human development at a macroscopic level, some issues
and problems still need to be addressed. First, most of the
connectome developmental changes were detected based on
cross-sectional data; thus, theymay be influenced by inter-subject
variability and unbalanced cohort distributions. Thus far, only
a few studies regarding the structural connectome development
have employed longitudinal data, with relatively small sample
sizes. Investigations of longitudinal network dynamics with large
sample sizes should be under taken in the future to reveal the
nature of developmental changes. Second, it is now commonly
accepted that development is conjointly driven by structural
maturation of the brain as well as skill learning. However,
more evidence is needed to understand when and how genes
and the environment influence the human brain, especially the
differences between brain systems. Moreover, the underlying
physiological bases of behavior performances at different ages
remain largely unclear. Further studies employing multimodal
data should be conducted to ascertain the genetic/environment-
brain-behavior model during development. Third, according
to previous discussions, several inconsistencies existed in the
findings of connectomes in different imaging modalities, and
a significantly increased function-and-structure coherence was
observed. Although we summarized this as the earlier maturation
of structural networks compared with functional networks
(Figure 5), further studies are still needed to explore whether
these discrepancies reflect additional biological information or
limitations of the analysis or imaging methods. Fourth, some
new connectome analysis approaches have been raised recently,
such as dynamic connectivity, which more comprehensively
describes the brain’s dynamic integration, coordination and
responses to internal and external stimuli across multipletime
scales (Hutchison et al., 2013), and network controllability,
which reflects the underlyingmechanism of brain transformation
between cognitive states (Gu et al., 2015b). Further studies
using these methods on brain connectome development would
provide additional information. Fifth, novel imaging acquisition
protocols emerged recently. For example, multiband fMRI
(Feinberg et al., 2010; Moeller et al., 2010) with high sampling
rates may provide temporally complementary information about
functional integration among brain regions and simultaneously
reduce the effects of high frequency physiological noise compared
with traditional fMRI with low sampling rates (Liao et al.,
2013). Further studies with these new protocols will dramatically
increase our knowledge of network development.
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