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Background: Auditory processing and language impairments are prominent in

children with autism spectrum disorder (ASD). The present study integrated diffusion

MR measures of white-matter microstructure and magnetoencephalography (MEG)

measures of cortical dynamics to investigate associations between brain structure and

function within auditory and language systems in ASD. Based on previous findings,

abnormal structure-function relationships in auditory and language systems in ASD were

hypothesized.

Methods: Evaluable neuroimaging data was obtained from 44 typically developing (TD)

children (mean age 10.4 ± 2.4 years) and 95 children with ASD (mean age 10.2 ± 2.6

years). Diffusion MR tractography was used to delineate and quantitatively assess

the auditory radiation and arcuate fasciculus segments of the auditory and language

systems. MEG was used to measure (1) superior temporal gyrus auditory evoked M100

latency in response to pure-tone stimuli as an indicator of auditory system conduction

velocity, and (2) auditory vowel-contrast mismatch field (MMF) latency as a passive probe

of early linguistic processes.

Results: Atypical development of white matter and cortical function, along with atypical

lateralization, were present in ASD. In both auditory and language systems, white

matter integrity and cortical electrophysiology were found to be coupled in typically

developing children, with white matter microstructural features contributing significantly

to electrophysiological response latencies. However, in ASD, we observed uncoupled

structure-function relationships in both auditory and language systems. Regression

analyses in ASD indicated that factors other than white-matter microstructure additionally

contribute to the latency of neural evoked responses and ultimately behavior. Results also

indicated that whereas delayed M100 is a marker for ASD severity, MMF delay is more

associated with language impairment.

Conclusion: Present findings suggest atypical development of primary auditory as well

as auditory language systems in ASD. Findings demonstrate the need for additional

multimodal studies to better characterize the different structural features (white matter,
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gray matter, neurochemical concentration) that contribute to brain activity, both in typical

development and in ASD. Finally, the neural latency measures were found to be of clinical

significance, with M100 associated with overall ASD severity, and with MMF latency

associated with language performance.

Keywords: autism spectrum disorders (ASD), multimodal imaging, magnetoencephalography (MEG), diffusion

MRI, auditory pathways, language

INTRODUCTION

The etiology or, indeed, etiologies of autism spectrum disorder

(ASD) is currently unknown. It is hypothesized that alterations

to brain structure and function contribute to the clinical

symptoms common to ASD. Given the high rate of occurrence

of communication and language impairments in ASD, research

has focused on the brain regions associated with basic

auditory processes and more complex language skills, with prior

imaging studies showing alterations in temporal lobe structure,

connectivity and function (Klin et al., 2002; Boddaert et al., 2004;

Redcay and Courchesne, 2005; Lee et al., 2007; Lange et al., 2010;

Schipul et al., 2011; Nickl-Jockschat et al., 2012; Roberts et al.,

2013). Although, atypical development of temporal regions is

believed to precede and possibly underlie language impairments

in ASD (Wolff et al., 2012; Edgar et al., 2015a), the links between

abnormal development of brain structure and function with the

behavioral phenotype of ASD are poorly understood.

To investigate associations between structure and function

within auditory and language systems in ASD, the present

study integrated diffusion magnetic resonance imaging

(dMRI) measures of white-matter microstructure with

magnetoencephalography (MEG) measures of cortical neural

dynamics. Diffusion MRI is sensitive to microstructural

properties of white matter such as axon density and myelination

and has been used in quantitative studies of the superior

temporal gyrus and arcuate fasciculus in ASD (Lee et al., 2009;

Nagae et al., 2012; Berman et al., 2013). MEG is a non-invasive

neuroimaging modality that records neuronal currents with

high temporal resolution and has been used in many studies to

examine the neural dynamics of auditory encoding processes

in ASD (Wilson et al., 2007; Roberts et al., 2010; Stroganova

et al., 2013). In the present study, associations between the rate

of encoding auditory information and the structural integrity

of two white-matter tracks were examined. The white matter

and cortical neural measures selected for this study followed

the propagation of auditory input from basic auditory encoding

processes (primary/secondary auditory cortex and auditory

radiations) to higher-level auditory linguistic processes (vowel

mismatch discrimination and arcuate fasciculus). To examine

maturation of these measures, cross-sectional associations with

age were also examined.
The first white-matter track examined was the auditory

radiation, the pathway that relays acoustic information from
the medial geniculate nucleus (MGN) of the thalamus to the
primary/secondary auditory cortex of the superior temporal
gyrus (STG). The second white matter pathway examined was
the arcuate fasciculus (AF), a tract from the STG to higher-order

language areas. These circuits represent relatively early stages
of connection relevant for auditory processing and then later
stages relevant for language functioning. To this end, the first
functional MEG measure examined was the 100ms (M100)
STG auditory response. Auditory evoked M100 latency has been
shown to be due, in part, to thalamocortical conduction velocity
along the auditory radiation (Roberts et al., 2009, 2013). The
second functional measure examined was the auditory mismatch
field (MMF) elicited in response to an odd-ball stimulus
among a series of otherwise similar stimuli (e.g., the “/u/” in
“/a//a//a//a//u//a/”). The MMF response is involved in passive
sound processing and is a precursor to language processing
(Näätänen et al., 2007). Thus, M100 latency is considered to
reflect relatively basic auditory encoding processes and MMF
latency an index of preparatory language function.

This study was motivated by prior studies that individually
focused on auditory or language systems in ASD (Oram Cardy
et al., 2005; Roberts et al., 2010, 2013). For example, the latency
of the auditory M100 decreases between infancy and adulthood,
with M100 latency delays, indicating slower conduction and
processing of auditory stimuli, observed in ASD (Rojas et al.,
1998; Wunderlich et al., 2006; Roberts et al., 2010). The latency
of the MMF has also been examined and appears to be a marker
of language impairment, with MMF latency delays observed
in individuals with specific language impairment (SLI) and
associated with language impairment in ASD (Roberts et al.,
2011).

Recent studies combining MEG and diffusion MR have
shown associations between M100 conduction velocity and
Heschl’s gyrus white-matter integrity in typically developing
(TD) children, with these associations less evident in children
with ASD (Roberts et al., 2013). The present study extended
prior studies from our laboratory to support the hypothesis
that abnormal structure–function relationships are pervasive
across auditory and language systems. To this end, high
angular resolution diffusion imaging (HARDI) tractography
was employed to measure the microstructural integrity of the
entire auditory radiation to assess associations between auditory
radiation tract microstructure and M100 latency. Similarly,
diffusion MR white-matter measures of the arcuate fasciculus
were obtained and associations with vowel-contrastMMF latency
examined.

MATERIALS AND METHODS

Participants
Children with a prior clinical ASD diagnosis were recruited
from the Regional Autism Center of The Children’s Hospital
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of Philadelphia (CHOP) and from local parent support groups.
During the research visit, clinical and diagnostic testing by
licensed child psychologists were performed to confirm ASD
diagnosis and to ensure that typically developing children met
inclusion criteria. ASD diagnosis was confirmed with the Autism
Diagnostic Observation Schedule (ADOS; Lord et al., 2000) and
parent report on the Social Communication Questionnaire (SCQ;
Rutter et al., 2003) and the Social Responsiveness Scale (SRS;
Constantino et al., 2003). In the rare event that diagnosis could
not be confirmed with the ADOS and parent questionnaires
alone, the Autism Diagnostic Interview-Revised (ADI-R) was
administered to resolve diagnostic discordances (Lord et al.,
1994). To diagnose language impairment (LI), all subjects were
evaluated with the Clinical Evaluation of Language Fundamentals
– 4th edition (CELF-4; Semel et al., 2003). Language impairment
(LI) was defined based on the CELF-4 core language index, using
a threshold of at or below 1SD from the mean and the 16th

percentile (i.e., SS < 85).
Inclusion criteria for the typically developing children

included having no history of neurodevelopmental, psychiatric,
or neurological disorders, scoring below cut-offs for ASD on the
ADOS and on parent questionnaires, and performing above the
16th percentile on the CELF-4. All subjects scored at or above the
second percentile (SS > 70) on either the Perceptual Reasoning
Index (PRI) or the Verbal Comprehension Index (VCI) of the
Wechsler Intelligence Scale for Children-IV (WISC-IV). Detailed
inclusion and exclusion criteria of the ASD and TD groups
have been described previously (Roberts et al., 2010). The study
was approved by the CHOP Institutional Review Board and all
participants’ legal guardian(s) gave informed written consent.
Where competent to do so, children over 7 years gave verbal
assent.

The pool of participants with evaluable neuroimaging data
for this multimodal study included 44 TD (mean age 10.4 ±

2.4 years) and 95 ASD (mean age 10.2 ± 2.6 years). MEG and
DTI findings from a smaller subset of these participants have
been previously reported (Roberts et al., 2010, 2011). Group
differences in age were not significant [t-test, t(127) = 0.35, p =

0.70]. Of the children with ASD with diagnostic language scores,
35 were classified as ASD with language impairment (ASD/+LI;
mean age 9.3 ± 2.5 years) and 56 as ASD without language
impairment (ASD/-LI; mean age 10.6± 2.5 years). Although, the
difference in age between ASD/+LI and ASD/-LI was significant
(t-test, p = 0.04), the age difference was small. Given the
challenges of multimodal imaging, complete diffusion MR and
MEG datasets were not available for all subjects. In particular, 28
participants had evaluable HARDI and DTI for measurement of
the auditory radiation as well as evaluable M100 latency. Eighty-
two participants had evaluable MMF latency and 78 participants
had evaluable DTI for measurement of the arcuate fasciculus.

MEG
Data were acquired in a magnetically shielded room using a 275-
channel whole-cortex CTF magnetometer (VSM MedTech Inc.,
Coquitlam, BC). The details of theM100 andMMF tasks and data
processing have been previously described (Roberts et al., 2010,
2011). In brief, for the M100 task, tones of 200, 300, 500, and

1000Hz (300ms duration, 10ms ramps) were passively presented
at 45 dB sensation level and repeated 130 times. The inter-
stimulus interval varied randomly between 900 and 1100ms.
The left and right STG M100 latency response was obtained
using a left and right STG dipole source model that transformed
MEG sensor signals into source space. For the MMF task,
auditory stimuli consisted of the vowels /a/ and /u/ (300ms in
duration), with deviant stimuli occurring at random positions in
the sequence with a 15% probability. Inter-stimulus interval was
700ms. Two runs with the vowels alternating as standard/deviant
allowed matched token subtraction (i.e., deviant /u/–standard
/u/). MMF latency, again obtained using a left and right STG
dipole source model, was defined at the maximal deflection in
the difference waveform, occurring between 150 and 350ms after
stimulus onset, and after identifiable M50 andM100 components
in the unsubtracted waveforms.

MR Imaging
MR imaging was performed with a 3T Siemens VerioTM and
32-channel head coil (Siemens Medical Solutions, Erlangen,
Germany). HARDI and conventional DTI were performed.
Whole-brain HARDI acquisition included 64 gradient directions
at b = 3000 s/mm2, TR/TE = 14.8 s/111ms, voxel size =

2 × 2 × 2mm, and 128 × 128 matrix. DTI acquisition used
30 diffusion gradient directions at b = 1000 s/mm2, one b =

0 s/mm2 volume, TR/TE = 11 s/76ms, voxel size 2 × 2 ×

2mm, and 128 × 128 matrix. The HARDI acquisition was
18min in duration and the DTI acquisition 6min in duration.
Anatomical T1-weighted MP-RAGE volumes were also acquired
with TR/TE/TI= 1900/2.87/1050ms, 1mm isotropic voxels, and
full head coverage.

Solid angle q-ball reconstruction of the HARDI data was
used with a probabilistic fiber tracking algorithm to delineate
the left and right auditory radiation (Figure 1; Berman et al.,
2008, 2013). Although, difficult to obtain in children, HARDI
tractography is necessary to traverse the crossing fibers of
the auditory radiation (Berman et al., 2013). In contrast, DTI
deterministic fiber tracking is sufficient to follow the core of
the left and right arcuate fasciculus tracts (Figure 1; Mori et al.,
1999). The arcuate fasciculus was selected based on previous
reports and by a priori hypothesis to reduce statistical confounds
associated with multiple comparisons in more comprehensive
explorations (Nagae et al., 2012). DTI parameters (fractional
anisotropy “FA,” mean diffusivity “MD,” radial diffusivity “RD,”
and axial diffusivity “AD”) were determined from the eigen-
values of the diffusion tensor and evaluated voxelwise over the
course of the left and right auditory radiations and arcuate
fasciculus as determined with tractography.

Statistical Analysis
Statistical analyses included group comparisons, multivariate
regression, and linear mixed models. Analyses were performed
using JMP (Version 11, SAS). A single “effective” M100 latency
for each participant’s left and right STG was calculated with
a linear mixed model to reduce the number of M100 latency
analyses (Roberts et al., 2000). Given that M100 latency varies
by stimulus tone frequency, the “effective” M100 latencies were
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FIGURE 1 | White matter measurement regions of interest, as defined

with diffusion MR tractography, are shown. An axial slice through the

auditory radiation tracts shows connectivity from the auditory cortex to

thalamus (yellow, left). A 3D rendering of left-hemisphere arcuate fasciculus is

shown (right).

computed with a linear mixed-model. The M100 latency model
contained fixed effects of hemisphere, stimulus frequency, group,
age, and a random effect of subject. Fitted values from the
model were used to predict M100 latency for participants
with partially missing observations (e.g., absent response to a
stimulus tone and/or in one hemisphere) to enable comparisons
across participants with different distributions of missing data.
Considering subject as a random effect (on the model intercept)
allows retention of inter-individual differences when modeling
and imputing missing data.

RESULTS

Auditory System: Auditory Radiation and
M100
Each DTI parameter was linearly modeled with main effects of
group, age, and hemisphere, along with each two-way interaction
term. Auditory radiation MD and RD decreased with age and
FA increased with age, indicating white matter maturation across
both ASD and TD in the studied age range [MD: F(1, 52) = 9.1,
p = 0.004; RD: F(1, 52) = 11.8, p = 0.001; FA: F(1, 52) = 6.63,
p = 0.013]. The main effect of group was not significant for any
DTI parameter. Significant age by group interactions for FA and
RD [FA: F(1, 52) = 4.66, p = 0.036; RD: R(1, 52) = 4.85, p =

0.032], indicated group differences in maturation. In particular,
collapsing across hemisphere, FA increased by 0.013 per year
(95th CI [0.003, 0.02]) in TD vs. 0.001 per year (95th CI[–0.005,
0.007]) in ASD, and RD decreased by 15.2 × 10−6 mm2/s/year
(95th CI [−25, −46] × 10−6) in TD vs. 3.04 × 10−6 mm2/s/year
(95th CI [−9, 2.5] 10−6) in ASD.

Although, there was no significant group by hemisphere by
age interaction, given overall group maturation rate differences
and a priori hypotheses relating to the development of lateralized
hemisphere functional specialization, left and right hemisphere
DTI parameters were assessed separately. In the left hemisphere,
significant group by age interaction terms indicated group
differences in the maturation of left hemisphere FA [F(1, 26) =

7.9, p = 0.01], RD [F(1, 26) = 6.2, p = 0.02], and AD [F(1, 26) =
5.4, p = 0.03]. As depicted in Figure 2, left hemisphere FA
increased at a faster rate in the TD than ASD, driving the overall

FIGURE 2 | Developmental trajectory of left and right auditory radiation

microstructure are shown with 95% confidence intervals (shading).

Left-hemisphere FA increased at a faster rate in the TD vs. ASD group

(p < 0.01). No right-hemisphere group difference in maturation was observed.

group by age difference. The slower maturation of FA in ASD
was likely due to a slower rate of RD decrease in ASD vs. TD.
No differences in rate of maturation were detected in the right
hemisphere.

M100 was similarly modeled with group, age and hemisphere
as main effects, as well as each interaction term. A main
effect of hemisphere, F(1, 52) = 8.0, p = 0.01, indicated
that M100 responses were 11ms later in the left than right
hemisphere, consistent with prior reports (Paetau et al., 1995;
Howard and Poeppel, 2009). A main effect of age, F(1, 52) =

28.6, p < 0.0001, showed that M100 decreased ∼4.5ms per
year (Figure 3). No group difference in rate of maturation was
detected. Again, despite the absence of a group by hemisphere
interaction, a priori hypotheses called for the interrogation of
M100 latencymaturation in each hemisphere. Figure 4 compares
the left and right hemisphere maturation rates for FA and
M100. Left-hemisphere M100 latency tended to decrease at a
faster rate in TD than ASD. Although, the group difference in
left hemisphere M100 maturation did not reach significance,
this group difference pattern is conspicuously similar to the
significant group differences in maturation of left hemisphere
FA. Also of note, although in this sample groups did not differ
in M100 latency, Figure 3 suggests later right-hemisphere M100
responses in ASD vs. TD, a pattern consistent with prior reports
(Roberts et al., 2010; Edgar et al., 2015b).

To examine the association between M100 and behavior, ASD
symptom and language ability measures (SRS and CELF-4) were
modeled with M100 latency, age, and hemisphere as factors.
M100 was a significant predictor of SRS [F(1, 57) = 6.1, p = 0.02].
M100 did not predict language ability (CELF-4). Amean adjusted
leverage plot was used to isolate and visualize the relationship
between SRS and M100 latency (Figure 5).

For the multimodal analysis, to account for additional
variance in the M100 latency, a linear model of each participant’s
effective M100 latency with average DTI parameters and group
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as effects was constructed. Age was not included given the
above results indicating that both DTI and M100 measures
show age dependence andmay have interdependentmaturational
trajectories. A main effect of RD, F(1, 27) = 4.7, p = 0.04, showed
that increased RD was related to longer M100 latencies (slope =
15.7 × 104 ms ∗ s/mm2). A similar trend was observed between
MD and M100 latency, F(1, 27) = 3.4, p = 0.08. Analyzing

groups separately showed this structure-function relationship

was primarily driven by the TD group: RD was positively

correlated with M100 in TD, F(1, 8) = 6.2, p = 0.04 (slope =

20.2× 104 ms ∗ s/mm2, 95th CI: [1.4, 39]× 104), but not in ASD,
F(1, 18) = 0.8, p = 0.4 (slope= 10.4× 104 ms ∗ s/mm2).

FIGURE 3 | Developmental trajectory of left and right auditory M100

latency. M100 latency shortened with age across the population (p < 0.0001).

Although no group difference in rate of maturation was observed, the TD

group trended toward faster maturation.

Language System: MMF Latency and
Arcuate Fasciculus
Given the reported relationship between MMF latency and
language ability, group comparisons of CELF-4 and MMF
latency included three groups: ASD with and without
language impairment (ASD/+LI, ASD/-LI) as well as TD.
As expected, mean CELF-4 Core Language Index (CLI)
scores were significantly different for all pairwise group
comparisons (TD: 109 ± 11.9; ASD/-LI: 98.6 ± 10.2;
ASD/+LI: 70.7 ± 14.6; p’s < 0.005 with Tukey–Kramer
Adjustment for multiple comparisons). MMF latency was
modeled with group, stimulus type (vowel /a/ or /u/), and

FIGURE 5 | The correlation between M100 and SRS is observed in the

partial regression leverage plot. The ordinate (y-axis) of the leverage plot

shows the residuals of the response variable (SRS) when regressed on all

model parameters except M100. The abscissa (x-axis) of the leverage plot

shows the residuals from regressing M100 against the other independent

variables. M100 is a significant predictor of SRS (p = 0.02).

FIGURE 4 | Developmental trajectory (slope) of auditory radiation FA (left) and auditory cortex M100 latency (right). Left-hemisphere FA development was

significantly slower in ASD vs. TD (p < 0.01). Although not reaching significance, the left-hemisphere M100 latency showed a similar pattern of more rapid

development in TD vs. ASD. For both MEG and DTI measures, a lack of hemispheric asymmetry or specialization is evident in the ASD group.

Frontiers in Neuroanatomy | www.frontiersin.org 5 March 2016 | Volume 10 | Article 30

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Berman et al. Diffusion-MRI and MEG of Autism

hemisphere as fixed effects and subject as a random effect.
Additionally, PRI was considered as a potential confounding
covariate.

There was a main effect of group on MMF latency, F(2, 72.4) =
4.2, p = 0.02 (mean TD: 229.9 ± 6.7ms; ASD/-LI: 220.1 ±

5.9ms; ASD/+LI: 248.3± 8.1ms; Roberts et al., 2011). ASD/+LI
exhibited MMF latencies ∼25ms later than ASD/-LI (p < 0.02,
Tukey–Kramer Adjustment for multiple comparisons). MMF
latency did not differ with respect to stimulus type or hemisphere
and was not associated with PRI or age. Within the combined
ASD group, MMF latency (latency collapsed across hemisphere)
correlated with CELF-4 CLI, F(1, 49.4) = 8.4, p = 0.01
(Figure 6). Separately examining the left and right hemisphere,
in ASD, both left and right hemisphere MMF latency correlated
with language ability, F(1, 43.5) = 7.5, p = 0.01 in left;
F(1, 42.8) = 6.1, p = 0.01 in right. No significant association
between MMF latency and language ability (CELF-4 CLI) was
observed in TD. In contrast to M100 latency, no significant
association between MMF latency and SRS was observed in ASD
or TD.

To examine the role of white-matter microstructure on
MMF latency as well as language ability, arcuate fasciculus DTI
parameters were measured. Arcuate fasciculus FA increased with
age in the ASD, F(1, 85) = 4.0, p = 0.05 (slope = 0.0024/year)
and TD groups, F(1, 55) = 21.8, p < 0.0001 (slope = 0.0052/year).
MD decreased with age in the ASD, F(1, 85) = 22.4, p < 0.0001
(slope= − 0.052× 10−4 mm2/s/year) and TD groups F(1, 55) =
28.6, p < 0.0001 (slope = −0.076 × 10−4 mm2/s/year). Group
by age interactions were not significant, indicating no detectable
group difference in FA orMDmaturation slopes. DTI parameters
(with age as a covariate) were not predictive of CELF-4 CLI in
either ASD or TD.

FIGURE 6 | Relationship between CELF-4 score and MMF latency is

shown for ASD (red) and TD (blue). The correlation is significant for ASD

(p < 0.005). Although not significant in TD, the slope suggests a negative

correlation between MMF and language ability.

To explore contributions to MMF latency by arcuate
fasciculus microstructure, linear mixed models with MMF
latency as the dependent variable were constructed with DTI
parameter, PRI, group (ASD and TD), age, stimulus type, and
hemisphere as main effects and subject as the random effect. A
main effect of FA, F(1, 103) = 4.2, p= 0.04, indicated associations
between FA and MMF latency. Explored in each group, FA
predicted MMF in TD, F(1, 45.8) = 4.60, p = 0.04 (Figure 7),
and not in ASD (p = 0.3) or in the ASD/+LI (p = 0.4) or
ASD/-LI (p = 0.4) subgroups. No associations withMMF latency
were observed for the other DTI parameters (MD, RD, and AD;
p > 0.05).

DISCUSSION

The present multimodal and multi-circuit study examined
associations between brain structure and function in auditory
and language areas. In both auditory and language systems,
white-matter integrity, and cortical electrophysiology were
found to be coupled in TD, with white-matter microstructural
features contributing to M100 and MMF latency. However, in
ASD, these structure–function relationships were less obvious
or uncoupled. Results also suggested that the neural latency
measures are of clinical significance, with a delayed M100
associated with increased ASD severity (as measured with SRS)
and a delayed MMF delay associated with greater language
impairment (CELF-4 CLI).

Accurate and rapid encoding of auditory information
is critical for receptive language. A prior study of auditory
processing observed abnormal brainstem and cortical
electrophysiology in children with language learning problems
(Wible et al., 2005). M100 latency provides information
about the average auditory pathway conduction velocity to

FIGURE 7 | Leverage plot of arcuate fasciculus FA vs. MMF latency in

TD showing a significant correlation (p < 0.01). Left and right hemisphere

measures are combined in the scatter plot.
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primary/secondary auditory areas, with delayed auditory
encoding reported in ASD (Roberts et al., 2010). In the present
study, M100 latency was observed to shorten with age in both
groups. Regarding brain structure, diffusion MR analyses also
demonstrated maturation of the thalamocortical segment of the
central auditory pathway in TD and ASD. As the midbrain white
matter and vestibulocochlear nerve portions of the auditory
system were not examined, it remains undetermined if the
thalamocortical measurements are representative of the entire
auditory pathway. Despite observing maturation of white-matter
measures and M100 latency in ASD, analyses indicated slower
maturation in ASD vs. TD, especially in the left hemisphere.
Although, maturation of conduction efficiency occurs in ASD,
there was some suggestion of a lateralized abnormality in ASD,
with left-hemisphere maturation of FA slower in ASD vs. TD.
Additionally, in the TD group, a hemisphere asymmetry in
microstructural development trajectory was observed, consistent
with the known structural and volumetric asymmetries of the
auditory and language systems (Geschwind and Levitsky, 1968;
Morillon et al., 2010). The children with ASD, however, did
not exhibit this hemispheric asymmetry, consistent with prior
reports of abnormal hemispheric asymmetry of STG and arcuate
fasciculus white matter in ASD (Fletcher et al., 2010; Lange
et al., 2010). Mirroring structural maturation, M100 latency
results also indicated a lack of hemispheric asymmetry in ASD.
In particular, although not reaching significance, the rate of left
hemisphere M100 latency shortening appeared diminished in
children with ASD vs. TD. Given that in ASD the FA and M100
analyses both suggested a loss of the hemispheric asymmetry
observed in TD, present findings lend support to the hypothesis
of a lack of hemispheric functional specialization in ASD. It
should be noted that many studies with methods ranging from
structural to functional support the atypical development of left
and right hemispheres in ASD (Lange et al., 2010; Herbert et al.,
2002, 2005; De Fossé et al., 2004; Flagg et al., 2005).

Coupling of structure and function in typically developing
children was evidenced by associations between auditory
radiation and arcuate fasciculus white-matter microstructure
and M100 and MMF latency. In ASD, however, white-matter
microstructure was not predictive of either M100 or MMF
latency. A prior study observed a similar structure-function
uncoupling in ASD when examining the latency of the
earlier M50 auditory response and Heschl’s Gyrus white-matter
microstructure (Roberts et al., 2013). Of note, in the present
study, the specificity of “auditory radiation toM100” and “arcuate
fasciculus to MMF” coupling was established by considering
cross-regional correlations of M100 to arcuate microstructure
and MMF to auditory radiation microstructure, with each of
these pairings found to be unrelated (although with findings
limited by the number of subjects with complete data sets).

Appropriate white matter structural maturation appears
necessary, but not sufficient for efficient auditory conduction
and processing. Other factors that contribute to M100 and
MMF latency likely include cortical architecture and synaptic
transmission. Age-related changes in synaptic efficiency and
cortical layers are associated with maturation of the auditory
response (Steinschneider et al., 1994; Eggermont and Ponton,
2003). Pyramidal cells are the primary source of MEG activity

and maturation of these neurons can modulate MEG recording
(Lewine and Orrison, 1995; Spruston, 2008; Elston et al., 2010;
Lange et al., 2010; Elston and Fujita, 2014). As an example, studies
have noted associations between gray matter cortical thickness
and the strength of auditory responses (Edgar et al., 2012). Future
studies examining the contributions of white matter, gray matter,
and neurochemistry to M100 and MMF latencies in ASD are
needed.

In the present study, M100 latency was associated with
the severity of autism symptoms, as assessed by the SRS.
M100 latency was not associated with language performance. In
contrast, the observed difference in MMF latency between ASD
subjects with and without language impairment, as well as the
bilateral associations of MMF latency and CELF-4 performance
(and the concomitant lack of MMF association with SRS or
PRI), supported the hypothesis that MMF latency is an index
of language impairment rather than ASD severity or intellectual
ability (Roberts et al., 2011). An association of MMF latency with
language ability only in ASD suggested that MMF latency tracks
with language impairment and not the normal variation in CELF-
4 CLI scores observed in the controls. MMF does not predict
language abilities in excess of the CELF-4 median. Impaired
auditory perception and auditory discrimination are expected
to have upstream ramifications for language cognition (Bishop,
2007). The MMF latency and language ability associations in
both hemispheres suggests that passive auditory change detection
is neither a very basic sensory function nor a higher-level
language process restricted to the presumed language-dominant
left hemisphere. Basic auditory detection, as measured with the
M100, has not been correlated with language ability in this or
prior studies. DTI parameters were not directly related to CELF-
4 scores in this study. However, as previously reported, when
our dataset is not limited to those subjects with both evaluable
DTI andMEG data, arcuate fasciculus diffusivity was observed to
correlate with CELF-4 scores (Roberts et al., 2014).

A limitation of this and other multimodal studies included
incomplete or even sparse datasets. As the number of
independent measures or modalities increases, the number of
participants expected to have complete data sets unfortunately
decreases. It is also of note that although Figure 3 suggested
delayed right STG M100 latencies in ASD vs. TD, this group
difference was not statistically significant. Failure to replicate
previous studies showing right STG M100 latency group
differences is likely due to a lack of power given much smaller
samples in the present study vs. previous studies.

To conclude, multimodal examination of auditory and
language systems in ASD indicated atypical development of
white matter and cortical neural function, including abnormal
hemispheric lateralization in children with ASD. Analyses also
demonstrated a lack of coupling between structure and function
in early auditory (M100) as well as later-stage auditory processing
(MMF) in ASD. As white-matter microstructure did not explain
all the variance in M100 and MMF latency, other aspects of brain
structure clearly contribute to age-related changes in M100 and
MMF latency. Future multimodal studies examining a broader
array of brain structure measures (e.g., gray matter, brainstem
white matter, MRS) are needed tomore fully understand auditory
encoding impairments in children with ASD. Finally, the neural
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latency measures were found to be of clinical significance, with
M100 associated with SRS (but not CELF-4 CLI) indicating that
slow auditory processing is an indicator of overall ASD severity,
and with MMF latency associated with language performance.
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