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As an important component of ascending activating systems, brainstem cholinergic
neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation
of motor control (locomotion, posture and gaze) and cognitive processes (attention,
learning and memory). The PPTg is highly interconnected with several regions of the
basal ganglia, and one of its key functions is to regulate and relay activity from the
basal ganglia. Together, they have been implicated in the motor control system (such as
voluntary movement initiation or inhibition), and modulate aspects of executive function
(such as motivation). In addition to its intimate connection with the basal ganglia,
projections from the PPTg to the cerebellum have been recently reported to synaptically
activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were
regarded as forming separated anatomical loops that play a distinct functional role in
motor and cognitive behavioral control. Here, we suggest that the PPTg may also
act as an interface device between the basal ganglia and cerebellum. As such, part
of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing
and postural instability in advanced Parkinson’s disease (PD) patients might also involve
modulation of the cerebellum. We review the anatomical position and role of the PPTg
in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive
function and PD.

Keywords: pedunculopontine tegmental nucleus, basal ganglia, cerebellum, Parkinson’s disease, deep brain
stimulation

INTRODUCTION

It is conventionally accepted that the cerebellum and basal ganglia belong to segregated
systems involved in different features of the functional execution of motor and cognitive
behaviors (Middleton and Strick, 2000). The cerebellum has been regarded as a locus that
contributes to flexible modification of behavior and error-based learning (Wolpert et al.,
1998; Ito, 2002), whereas the basal ganglia is considered to play a role in reward prediction

Abbreviations: Ach, Acetylcholine; DBS, Deep brain stimulation; MLR, Mesencephalic locomotor region; PD,
Parkinson’s disease; PPTg, Pedunculopontine tegmental nucleus; RAS, Reticular activating system.
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and reward-based learning (Doya, 2000; Houk, 2005).
Anatomically, the loop that connects the cerebellum and
the cerebral cortex is separated from that between the basal
ganglia and cerebral cortex (Figure 1; Middleton and Strick,
2000; Graybiel, 2005). Signals from the cerebellum and basal
ganglia are relayed via different thalamic nuclei and then project
to the cerebral cortex (Percheron et al., 1996; Sakai et al., 1996),
which is considered to be an interface between those two systems.

However, in a recent series of studies, Strick and his
colleagues reported the existence of two disynaptic pathways
that connect the cerebellum and basal ganglia by using novel
trans-neuronal transport of the rabies virus in monkeys (Bostan
and Strick, 2010). One links the dentate nucleus with the
striatum through thalamic nuclei (Hoshi et al., 2005), whereas
the other connects the subthalamic nucleus (STN) with the
cerebellar cortex via the pontine nuclei (Bostan et al., 2010).
The defining of these pathways promoted understanding of
the role of connections between the cerebellum and basal
ganglia in motor disorders. In the 1960s, early attempts
were made to alleviate dyskinesia by conducting lesions in
the dentate nucleus (Higgins and Glaser, 1965; Heimburger,
1967; Zervas et al., 1967, 1968). Parkinson’s disease (PD) is
a neurodegenerative disorder caused mainly by dysfunctions
of the dopaminergic system in the basal ganglia (Pahapill and
Lozano, 2000), whereas pathophysiological changes were also
reported in other brain regions including cerebellum (Wu
and Hallett, 2013). In PD patients, increased and oscillatory
activities of the STN and hyperactivation of the cerebellum
were observed (Rascol et al., 1997; Yu et al., 2007; Amtage
et al., 2008). Furthermore, deep brain stimulation (DBS) of the
STN normalized cerebellar activity and reduced their motor
disorders (Limousin-Dowsey et al., 1999; Grafton et al., 2006),
possibly by a STN-cerebellum pathway (Bostan and Strick,
2010).

The pedunculopontine tegmental nucleus (PPTg, also known
as PPTN or PPN) of the brainstem, which intimately connects
with the basal ganglia, was recently reported to project fibers to
the cerebellum and to synaptically activate the deep cerebellar
nuclei (Vitale et al., 2016). This raises the possibility that
the PPTg and basal ganglia relay reward and motivational
information (Keating and Winn, 2002; Okada et al., 2009)
and modulates cerebellum activity and motor output signal.
It was also reported that DBS of the PPTg in a PD
patients could induce a therapeutic effect for symptoms that
were refractory to dopaminergic treatment (Ferraye et al.,
2010; Moro et al., 2010). In this mini review article, we
address the classical view of the PPTg and its position
within the cerebral cortex-basal ganglia-brainstem-cerebellum
circuit in the context of motor control, reward and cognitive
function.

PPTg AS A PART OF BASAL GANGLIA

The PPTg is a rostral brainstem nucleus located in the
pontomesencephalic reticular formation and adjacent to the
superior cerebellar peduncle. Mesulam et al. (1983) classified
cholinergic neurons in the PPTg that project to the thalamus

FIGURE 1 | Interconnections among the cerebral cortex, basal ganglia,
cerebellum and pedunculopontine tegmental nucleus (PPTg). Loops
that link the cerebral cortex with the basal ganglia (Cortico-basal ganglia
circuit; blue) and with the cerebellum (Cortico-cerebellar circuit; red) are
shown. PPTg is intimately connected with the basal ganglia nuclei and also
projects to the cerebellar nuclei.

as Ch5 group (Mesulam et al., 1983). The PPTg also contains
non-cholinergic neurons such as glutamatergic and GABAergic
neurons (Jones and Beaudet, 1987; Clements and Grant, 1990;
Spann and Grofova, 1992; Ford et al., 1995; Wang and Morales,
2009). A more recent report suggests that there is a different
intrinsic connectivity in the rostral vs. caudal aspects of the
PPTg, but the functional relevance remains unknown (Martinez-
Gonzalez et al., 2011). In addition to its ascending projection to
the thalamus, the PPTg is also connected with the basal ganglia
(Edley and Graybiel, 1983), cerebral cortex (Woolf and Butcher,
1989) and the brainstem reticulospinal tract (Rye et al., 1988).

Among these connections, the PPTg establishes unique
reciprocity with the basal ganglia (Figure 2; Mena-Segovia
et al., 2004). The output nuclei of the basal ganglia, the
substantia nigra pars reticulata (SNr) and internal globus pallidus
(GPi), are reciprocally connected with the PPTg (Moriizumi
and Hattori, 1992; Semba and Fibiger, 1992; Groenewegen
et al., 1993). SNr projections to the PPTg are GABAergic and
decrease the activation of cholinergic (Kang and Kitai, 1990;
Granata and Kitai, 1991; Saitoh et al., 2003) and non-cholinergic
(Saitoh et al., 2003) PPTg neurons. Mixed cholinergic and
glutamatergic projections then return from the PPTg to the
SNr and GPi and also to the external globus pallidus (GPe;
Clarke et al., 1987, 1997; Charara and Parent, 1994; Lavoie
and Parent, 1994). The STN innervates the PPTg through
glutamatergic projections and the PPTg sends both glutamatergic
and GABAergic projections back to the STN (Hammond et al.,
1983; Bevan and Bolam, 1995). The PPTg projects to the
dopaminergic neurons in the substantia nigra pars compacta
(SNc; Jackson and Crossman, 1983; Beninato and Spencer,
1987), these neurons are thought to play an important role in
the reinforcement learning (Alderson et al., 2006; Winn, 2006;
Wilson et al., 2009). Cholinergic and glutamatergic neurons
in the PPTg make synaptic connections with dopaminergic
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FIGURE 2 | Detailed connections between the PPTg and basal ganglia.
The basal ganglia forms several internal circuits. The PPTg have reciprocal
connections with the subthalamic nucleus (STN), internal globus pallidus (GPi)
and substantia nigra pars reticulata (SNr). The PPTg also projects to the
external globus pallidus (GPe), substantia nigra pars compacta (SNc) and
centromedian nucleus (CM).

neurons (Scarnati et al., 1986; Futami et al., 1995; Takakusaki
et al., 1996). Electrical stimulation of the PPTg induces a
burst firing of dopaminergic neurons (Lokwan et al., 1999;
Floresco et al., 2003), and induces the release of dopamine
in the striatum (Chapman et al., 1997; Forster and Blaha,
2003; Miller and Blaha, 2004). The PPTg also controls activity
of the striatum through its bilateral projection to the caudal
intralaminar nuclei (Erro et al., 1999; Barroso-Chinea et al.,
2011).

PPTg AND BASAL GANGLIA AS A
LIMBIC-MOTOR INTERFACE

Classically, the PPTg is thought to be involved in locomotion and
wake-sleep cycles. Several of its motor and non-motor features
are the subjects of previous reviews (Inglis and Winn, 1995;
Takakusaki, 2009; Garcia-Rill, 2015).

The PPTg is included in the mesencephalic locomotor region
(MLR) that regulates walking and running (Skinner and Garcia-
Rill, 1984; Sherman et al., 2015). The MLR was first discovered
in the cat and then in various vertebrate species from lampreys
to monkeys. Various human brainstem nuclei, specifically the
PPTg, cuneiform, and subcuneiform nuclei, exhibited increased
activity when participants were asked to imagine that they
were walking, and these have been found to correspond to the
MLR (Tattersall et al., 2014). The PPTg is regarded as being
involved in locomotion, while the anatomical contribution of
the PPTg to the MLR is still controversial, but it is regarded
as being involved in locomotion, which is one of the main
functions of MLR (Ryczko and Dubuc, 2013; Sloan et al., 2015).
As low-threshold electrical stimulation of the PPTg induces
locomotion (Garcia-Rill et al., 1987), it has been accepted that
the PPTg acts as a relay from the basal ganglia to the spinal

cord (Takakusaki et al., 2004a). However, the PPTg is regarded
as more than a simple relay (Mena-Segovia et al., 2004), based
on new studies showing that it also controls postural muscle
tone (Takakusaki et al., 2004a) and saccades (Kobayashi et al.,
2004). Certainly, the basal ganglia, PPTg, and spinal cord all
have common functions that are beyond motor control, and
are mutually influenced to some extent (Takakusaki et al.,
2004a).

The PPTg, together with the brainstem cholinergic
laterodorsal tegmental nucleus, is located in a rostral area
between the mesencephalon and the centrum semiovale
(Rothballer, 1956); forms the ascending reticular activating
system (RAS) that connects the brainstem to the cortex,
and controls cognitive processes such as attention, learning,
memory, wakefulness, and sleep-wake transitions (Garcia-Rill,
2015). The RAS is modulated by both acetylcholine (ACh)
and adrenaline, which work together and also competitively to
control thalamocortical activity and corresponding behavioral
states. PPTg neurons are active during waking and rapid eye
movement sleep (Garcia-Rill et al., 2007). Cholinergic activation
in the RAS leads to increased ACh release throughout the
reticular formation as well as in the substantia nigra, basal
forebrain, thalamus, and cerebellum (Garcia-Rill, 1997). The
basal ganglia are also involved in regulating the sleep-wake cycle
(Mena-Segovia et al., 2002), and its reciprocal relationships
with the PPTg are crucial for this function (Mena-Segovia
and Giordano, 2003; Takakusaki et al., 2004c). Garcia-
Rill et al. (2007) reported that posterior PPTg neurons are
electrically coupled, and that this coupling achieves better
spatial summation in the absence of a synaptic time delay.
The coordinate rhythmic firing of PPTg neurons and their
electrical coupling might underlie and enhance attentional
state for tasks such as radial maze (Dellu et al., 1991; Taylor
et al., 2004) and eye movement task (Okada and Kobayashi,
2015). As a result, the PPTg promotes sleep-wake transitions
as a part of the RAS, and works a crucial element in the
generation and maintenance of the rapid rhythms in the
cortex, (which are associated with wakefulness and REM
sleep).

Moreover, the PPTg has collateral functions with the basal
ganglia in attention, reward and learning behaviors. Our group
and others have examined neuronal activity of the monkey PPTg
under various behavioral conditions. These neurons showed
movement-related activity modulation associated with the arm
(Matsumura et al., 1997) and eyes (Kobayashi et al., 2002;
Okada and Kobayashi, 2009; Hong and Hikosaka, 2014), and
are also modulated by arousal levels, task performance and
reward (Kobayashi et al., 2002; Okada et al., 2009; Okada and
Kobayashi, 2013; Hong and Hikosaka, 2014). Moreover, many
neurons exhibited combinations of these multi-modal activities.
Furthermore, it is hypothesized that the PPTg is involved in
reward prediction error computation, and thus contributes to
decision-making (Kobayashi and Okada, 2007). Thus, the PPTg
is considered to take part in the facilitation of exogenous sensory
processing and central processing for motor commands, by
modulating awareness and attentive states via dopaminergic
systems (Kobayashi et al., 2002; Takakusaki et al., 2004b).
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Therefore, we can hypothesize that the PPTg and basal
ganglia play a common role as a limbic-motor interface
(Winn et al., 1997; Inglis et al., 2000). As a point of fact,
the multiple functions of the PPTg are partially in charge
of reward prediction during learning (Brown et al., 1999),
which is a function traditionally correlated with the basal
ganglia.

PPTg PROJECTION TO THE CEREBELLUM

In addition to its dense connections with the basal ganglia,
the PPTg also projects to the cerebellum. Projections from the
PPTg have been anatomically identified to the deep cerebellar
nucleus in rats (Woolf and Butcher, 1989; Newman and
Ginsberg, 1992; Ruggiero et al., 1997). Furthermore, an imaging
study has reported this PPTg-cerebellum connection in humans
(Aravamuthan et al., 2007), but the function of this connection
remained unknown.

Recently, the functional connectivity between the PPTg
and deep cerebellar nuclei was investigated by electrical
microstimulation of rat PPTg (Vitale et al., 2016). Single
pulse microstimulation of the PPTg evokes a brief activation
of the deep cerebellar nuclei with a short latency, which
suggests that this orthodromic response might be mediated
by a direct PPTg-cerebellar excitatory pathway. The dentate
nucleus has the highest rate of recorded neurons that responded
to PPTg stimulation, while a lower extent of neurons was
activated in the fastigial and interpositus nucleus. Using an
iontophoretic approach with ACh antagonists, Vitale et al.
(2016). further demonstrated the involvement of ACh in the
evoked responses of cerebellar neurons. Also, only a small
number of antidromic responses were recorded in the PPTg.
This is consistent with the original anatomical report in cats
that did not find projections from the cerebellar nuclei to
the PPTg (Edley and Graybiel, 1983). Although there is a
species difference such that fibers from the deep cerebellar
nuclei directed to the PPTg in monkeys (Hazrati and Parent,
1992).

This raises the possibility that the PPTg acts as an interface
between the cerebellum and basal ganglia to influence motor
control and cognitive functions. Classical studies postulate that
the cerebellum plays a pivotal role in adaptive behavioral
control (Ito, 2002). Stiffness control, at the ankles for instance,
is required for locomotion and stabilizing posture. However,
large stiffness yield by large neural feedback gains would easily
induce instability due to its feedback delay. Such instability
can be compensated by phasic modulation of feedback gains,
as hypothesized by intermittent control (Suzuki et al., 2012).
Interestingly, phasic or intermittent control of feedback gains
can be established through reinforcement learning with a
simple reward function (Michimoto et al., 2016). The PPTg
might relay reward and reinforcement learning information
from the basal ganglia to the cerebellum, and might play a
crucial role in generating and regulating postural tonus and
stabilizing posture. Thus, dysfunction of the basal ganglia in
patients with PD might induce postural instability (Suzuki et al.,
2012).

THERAPEUTIC EFFECT OF PPTg
STIMULATION IN PARKINSON’S DISEASE

Recent advances in PD therapy using DBS of the PPTg
provide a hint of its involvement in coordinating the function
of the basal ganglia and cerebellum. PD patients show a
variety of motor and non-motor impairment, including PPTg-
related-symptoms, in particular, locomotor abnormalities
such as shorter steps and slowness of walking, and also
RAS-related deficits such as arousal and hyperactive reflexes.
Anatomically, cholinergic and glutamatergic excitatory
projections from the PPTg regulate activity of dopaminergic
neurons in the SNc and VTA (Takakusaki et al., 1996). These
observations suggest that the PPTg is related to PD (Garcia-Rill,
2015).

More specifically, dysfunction within the PPTg leads to
various PD-like movement disabilities. For example, inhibition
of neurons in the PPTg delayed movement onset and slowed
the acceleration as well as the deceleration and amount
of arm movements in primates (Matsumura and Kojima,
2001). Also, unilateral PPTg lesions in monkeys led to
hemiparkinsonism in the contralateral side (Kojima et al., 1997).
These reports support a facilitatory function by the PPTg
of spontaneous extremity movements through its excitatory
projections to the dopaminergic neurons (Kojima et al.,
1997).

While PD is thought to be a dopaminergic disorder, many
studies reported that freezing of gait and postural instability,
both symptoms of advanced PD, are resistant to dopaminergic
medication (Ferraye et al., 2010; Moro et al., 2010). Studies of
PD patients and monkeys demonstrated that the severities of
gait and posture impairments were correlated with the extent
of ACh neuronal loss in the PPTg (Karachi et al., 2010). DBS
of the PPTg has emerged as an effective treatment for the
symptoms like freezing of gait and postural instability that are
refractory to dopaminergic medication (Ferraye et al., 2010;
Moro et al., 2010). One hypothetical pathway suggested by
these results is that gait and axial disturbances are attributed
to a disruption of ACh mechanisms in the brainstem, and
effects of DBS might be obtained through surviving ACh
fibers projecting from the PPTg to cerebellum (Aravamuthan
et al., 2007) and then relayed via the cerebello-thalamo-cortex
pathway. In PD patients exhibiting a freezing of gait, alpha
range power (7–12 Hz) of local field potentials of the PPTg was
correlated with gait speed and the power attenuated with gait
freezing (Thevathasan et al., 2012). This oscillatory activity in
the PPTg was also reported in healthy animals (Mena-Segovia
et al., 2008; Okada and Kobayashi, 2015). Taken together, these
reports might suggest that rhythmic activity is a feature of the
functioning PPTg, which may change according to behavioral
condition.

In addition to axial movement disorders, PD patients
also exhibit eye movement control disabilities, especially in
saccades. The saccadic eye movement system is one of the
most well-studied systems in the brain. Saccades are regulated
across a distributed network of the brain, including the cerebral
cortex, basal ganglia, and cerebellum, and are executed by
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the well-understood brainstem circuitry (Munoz and Fecteau,
2002). Neuronal activity in the basal ganglia is modulated by
expected reward, and plays a key role in guiding the eyes to the
location where reward is available (Hikosaka et al., 2006). On
the other hand, neurons in the posterior vermis, caudal fastigial
nucleus, and interpositus nucleus of the cerebellum are related
to the precise and adaptive control of saccades (Robinson and
Fuchs, 2001; Dash and Thier, 2014). Recent studies reported
that single neurons in the oculomotor vermis and caudal
fastigial nucleus discharged both for macro- and micro-saccades
(Arnstein et al., 2015; Sun et al., 2016). We previously reported
that neurons in the monkey PPTg showed saccade-related
activitymodulation, somemodulations were only associated with
reward-related saccades consistent with neurons reported in the
basal ganglia (Kobayashi et al., 2002; Okada and Kobayashi,
2009), while others exhibited this modulation with every saccade,
including small fixational saccades, consistent with neurons in
the cerebellum (Okada and Kobayashi, 2014). One possibility
is that the PPTg acts as an interface between the basal
ganglia and cerebellum, and thus reward and cognitive signals
influence precise microsaccades (Joshua et al., 2015; Yu et al.,
2016). Analyzing saccade-associated neuronal activity may be
a key tool for understanding the roles of PPTg within the
cerebellar and basal ganglia networks in health and disease
conditions.

CONCLUSION

Based on traditional knowledge about the functions and
connections of the PPTg, and given the existence of fibers from
the PPTg to the cerebellum, we suggest that the PPTg acts as
an interface between the basal ganglia and cerebellum, thereby
influencing motor control and cognitive functions. From this
standpoint, the therapeutic effects of PPTg DBS in patients
with PD insensitive to dopamine treatment might occur via
transmission of the artificial signal to the cerebellum. Thus, it is
likely that the PPTg has a role in monitoring the balance between
basal ganglia and cerebellum, and thereby controlling cerebral
activity.

AUTHOR CONTRIBUTIONS

FM, KO, TN and YK wrote the article.

ACKNOWLEDGMENTS

This work was supported by Interdisciplinary Program for
Biomedical Science (IPBS), MEXT’s program for Leading
Graduate Schools in Osaka University and Grants-in-aid for
scientific research from the Japan Society for the Promotion of
Science (14431458, 15H02669).

REFERENCES

Alderson, H. L., Latimer, M. P., and Winn, P. (2006). Intravenous
self-administration of nicotine is altered by lesions of the posterior, but
not anterior, pedunculopontine tegmental nucleus. Eur. J. Neurosci. 23,
2169–2175. doi: 10.1111/j.1460-9568.2006.04737.x

Amtage, F., Henschel, K., Schelter, B., Vesper, J., Timmer, J., Lücking, C. H.,
et al. (2008). Tremor-correlated neuronal activity in the subthalamic nucleus of
Parkinsonian patients. Neurosci. Lett. 442, 195–199. doi: 10.1016/j.neulet.2008.
06.087

Aravamuthan, B. R., Muthusamy, K. A., Stein, J. F., Aziz, T. Z., and Johansen-
Berg, H. (2007). Topography of cortical and subcortical connections of the
human pedunculopontine and subthalamic nuclei. Neuroimage 37, 694–705.
doi: 10.1016/j.neuroimage.2007.05.050

Arnstein, D., Junker, M., Smilgin, A., Dicke, P. W., and Thier, P. (2015).
Microsaccade control signals in the cerebellum. J. Neurosci. 35, 3403–3411.
doi: 10.1523/JNEUROSCI.2458-14.2015

Barroso-Chinea, P., Rico, A. J., Conte-Perales, L., Gómez-Bautista, V., Luquin, N.,
Sierra, S., et al. (2011). Glutamatergic and cholinergic pedunculopontine
neurons innervate the thalamic parafascicular nucleus in rats: changes
following experimental parkinsonism. Brain Struct. Funct. 216, 319–330.
doi: 10.1007/s00429-011-0317-x

Beninato, M., and Spencer, R. F. (1987). A cholinergic projection to the rat
substantia nigra from the pedunculopontine tegmental nucleus. Brain Res. 412,
169–174. doi: 10.1016/0006-8993(87)91455-7

Bevan, M. D., and Bolam, J. P. (1995). Cholinergic, GABAergic and
glutamate-enriched inputs from the mesopontine tegmentum to the
subthalamic nucleus in the rat. J. Neurosci. 15, 7105–7120.

Bostan, A. C., Dum, R. P., and Strick, P. L. (2010). The basal ganglia communicate
with the cerebellum. Proc. Natl. Acad. Sci. U S A 107, 8452–8456. doi: 10.
1073/pnas.1000496107

Bostan, A. C., and Strick, P. L. (2010). The cerebellum and basal ganglia are
interconnected. Neuropsychol. Rev. 20, 261–270. doi: 10.1007/s11065-010-
9143-9

Brown, J., Bullock, D., and Grossberg, S. (1999). How the basal
ganglia use parallel excitatory and inhibitory learning pathways to

selectively respond to unexpected rewarding cues. J. Neurosci. 19,
10502–10511.

Chapman, C. A., Yeomans, J. S., Blaha, C. D., and Blackburn, J. R. (1997). Increased
striatal dopamine efflux follows scopolamine administered systemically or to
the tegmental pedunculopontine nucleus. Neuroscience 76, 177–186. doi: 10.
1016/s0306-4522(96)00358-2

Charara, A., and Parent, A. (1994). Brainstem dopaminergic, cholinergic and
serotoninergic afferents to the pallidum in the squirrel monkey. Brain Res. 640,
155–170. doi: 10.1016/0006-8993(94)91870-8

Clarke, N. P., Bevan, M. D., Cozzari, C., Hartman, B. K., and Bolam, J. P. (1997).
Glutamate-enriched cholinergic synaptic terminals in the entopeduncular
nucleus and subthalamic nucleus of the rat. Neuroscience 81, 371–385. doi: 10.
1016/s0306-4522(97)00247-9

Clarke, P. B., Hommer, D. W., Pert, A., and Skirboll, L. R. (1987). Innervation
of substantia nigra neurons by cholinergic afferents from pedunculopontine
nucleus in the rat: neuroanatomical and electrophysiological evidence.
Neuroscience 23, 1011–1019. doi: 10.1016/0306-4522(87)90176-x

Clements, J. R., and Grant, S. (1990). Glutamate-like immunoreactivity in neurons
of the laterodorsal tegmental and pedunculopontine nuclei in the rat. Neurosci.
Lett. 120, 70–73. doi: 10.1016/0304-3940(90)90170-e

Dash, S., and Thier, P. (2014). Cerebellum-dependent motor learning: lessons
from adaptation of eye movements in primates. Prog. Brain Res. 210, 121–155.
doi: 10.1016/B978-0-444-63356-9.00006-6

Dellu, F., Mayo, W., Cherkaoui, J., Le Moal, M., and Simon, H. (1991). Learning
disturbances following excitotoxic lesion of cholinergic pedunculo-pontine
nucleus in the rat. Brain Res. 544, 126–132. doi: 10.1016/0006-8993(91)90893-z

Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning
and motor control. Curr. Opin. Neurobiol. 10, 732–739. doi: 10.1016/s0959-
4388(00)00153-7

Edley, S. M., and Graybiel, A. M. (1983). The afferent and efferent connections
of the feline nucleus tegmenti pedunculopontinus, pars compacta. J. Comp.
Neurol. 217, 187–215. doi: 10.1002/cne.902170207

Erro, E., Lanciego, J. L., and Giménez-Amaya, J. M. (1999). Relationships between
thalamostriatal neurons and pedunculopontine projections to the thalamus: a
neuroanatomical tract-tracing study in the rat. Exp. Brain Res. 127, 162–170.
doi: 10.1007/s002210050786

Frontiers in Neuroanatomy | www.frontiersin.org 5 November 2016 | Volume 10 | Article 109

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Mori et al. Interface Role of PPTg

Ferraye, M. U., Debû, B., Fraix, V., Goetz, L., Ardouin, C., Yelnik, J.,
et al. (2010). Effects of pedunculopontine nucleus area stimulation on gait
disorders in Parkinson’s disease. Brain 133, 205–214. doi: 10.1093/brain/
awp229

Floresco, S. B., West, A. R., Ash, B., Moore, H., and Grace, A. A. (2003).
Afferent modulation of dopamine neuron firing differentially regulates tonic
and phasic dopamine transmission. Nat. Neurosci. 6, 968–973. doi: 10.1038/
nn1103

Ford, B., Holmes, C. J., Mainville, L., and Jones, B. E. (1995). GABAergic neurons
in the rat pontomesencephalic tegmentum: codistribution with cholinergic
and other tegmental neurons projecting to the posterior lateral hypothalamus.
J. Comp. Neurol. 363, 177–196. doi: 10.1002/cne.903630203

Forster, G. L., and Blaha, C. D. (2003). Pedunculopontine tegmental stimulation
evokes striatal dopamine efflux by activation of acetylcholine and glutamate
receptors in the midbrain and pons of the rat. Eur. J. Neurosci. 17, 751–762.
doi: 10.1046/j.1460-9568.2003.02511.x

Futami, T., Takakusaki, K., and Kitai, S. T. (1995). Glutamatergic and cholinergic
inputs from the pedunculopontine tegmental nucleus to dopamine neurons
in the substantia nigra pars compacta. Neurosci. Res. 21, 331–342. doi: 10.
1016/0168-0102(94)00869-h

Garcia-Rill, E. (1997). Disorders of the reticular activating system. Med.
Hypotheses 49, 379–387. doi: 10.1016/s0306-9877(97)90083-9

Garcia-Rill, E. (2015). Waking and the Reticular Activating System in Health and
Disease. Amsterdam: Elsevier Academic Press.

Garcia-Rill, E., Heister, D. S., Ye, M., Charlesworth, A., and Hayar, A. (2007).
Electrical coupling: novel mechamism for sleep-wake control. Sleep 30,
1405–1414.

Garcia-Rill, E., Houser, C. R., Skinner, R. D., Smith, W., and Woodward, D. J.
(1987). Locomotion-inducing sites in the vicinity of the pedunculopontine
nucleus. Brain Res. Bull. 18, 731–738. doi: 10.1016/0361-9230(87)90208-5

Grafton, S. T., Turner, R. S., Desmurget, M., Bakay, R., Delong, M., Vitek, J.,
et al. (2006). Normalizing motor-related brain activity: subthalamic nucleus
stimulation in Parkinson disease. Neurology 66, 1192–1199. doi: 10.1212/01.
wnl.0000214237.58321.c3

Granata, A. R., and Kitai, S. T. (1991). Inhibitory substantia nigra inputs
to the pedunculopontine neurons. Exp. Brain Res. 86, 459–466. doi: 10.
1007/bf00230520

Graybiel, A. M. (2005). The basal ganglia: learning new tricks and loving it. Curr.
Opin. Neurobiol. 15, 638–644. doi: 10.1016/j.conb.2005.10.006

Groenewegen, H. J., Berendse, H. W., and Haber, S. N. (1993). Organization of the
output of the ventral striatopallidal system in the rat: ventral pallidal efferents.
Neuroscience 57, 113–142. doi: 10.1016/0306-4522(93)90115-v

Hammond, C., Rouzaire-Dubois, B., Féger, J., Jackson, A., and Crossman, A. R.
(1983). Anatomical and electrophysiological studies on the reciprocal
projections between the subthalamic nucleus and nucleus tegmenti
pedunculopontinus in the rat. Neuroscience 9, 41–52. doi: 10.1016/0306-
4522(83)90045-3

Hazrati, L.-N., and Parent, A. (1992). Projection from the deep cerebellar nuclei to
the pedunculopontine nucleus in the squirrel monkey. Brain Res. 585, 267–271.
doi: 10.1016/0006-8993(92)91216-2

Heimburger, R. F. (1967). Dentatectomy in the treatment of dyskinetic disorders.
Confin. Neurol. 29, 101–106. doi: 10.1159/000103686

Higgins, D. C., and Glaser, G. H. (1965). Recovery of motor stability after
cerebellectomy. Neurology 15, 794–801. doi: 10.1212/WNL.15.9.794

Hikosaka, O., Nakamura, K., and Nakahara, H. (2006). Basal ganglia orient eyes to
reward. J. Neurophysiol. 95, 567–584. doi: 10.1152/jn.00458.2005

Hong, S., and Hikosaka, O. (2014). Pedunculopontine tegmental nucleus neurons
provide reward, sensorimotor and alerting signals to midbrain dopamine
neurons. Neuroscience 282, 139–155. doi: 10.1016/j.neuroscience.2014.07.002

Hoshi, E., Tremblay, L., Féger, J., Carras, P. L., and Strick, P. L. (2005). The
cerebellum communicates with the basal ganglia. Nat. Neurosci. 8, 1491–1493.
doi: 10.1038/nn1544

Houk, J. C. (2005). Agents of the mind. Biol. Cybern. 92, 427–437. doi: 10.
1007/s00422-005-0569-8

Inglis, W. L., Olmstead, M. C., and Robbins, T. W. (2000). Pedunculopontine
tegmental nucleus lesions impair stimulus–reward learning in autoshaping and
conditioned reinforcement paradigms. Behav. Neurosci. 114, 285–294. doi: 10.
1037//0735-7044.114.2.285

Inglis, W. L., and Winn, P. (1995). The pedunculopontine tegmental nucleus:
where the striatum meets the reticular formation. Prog. Neurobiol. 47, 1–29.
doi: 10.1016/0301-0082(95)00013-l

Ito, M. (2002). Historical review of the significance of the cerebellum and the role
of Purkinje cells in motor learning. Ann. N Y Acad. Sci. 978, 273–288. doi: 10.
1111/j.1749-6632.2002.tb07574.x

Jackson, A., and Crossman, A. R. (1983). Nucleus tegmenti pedunculopontinus:
efferent connections with special reference to the basal ganglia, studied in
the rat by anterograde and retrograde transport of horseradish peroxidase.
Neuroscience 10, 725–765. doi: 10.1016/0306-4522(83)90213-0

Jones, B. E., and Beaudet, A. (1987). Distribution of acetylcholine and
catecholamine neurons in the cat brainstem: a choline acetyltransferase and
tyrosine hydroxylase immunohistochemical study. J. Comp. Neurol. 261, 15–32.
doi: 10.1002/cne.902610103

Joshua, M., Tokiyama, S., and Lisberger, S. G. (2015). Interactions between target
location and reward size modulate the rate of microsaccades in monkeys.
J. Neurophysiol. 114, 2616–2624. doi: 10.1152/jn.00401.2015

Kang, Y., and Kitai, S. T. (1990). Electrophysiological properties of
pedunculopontine neurons and their postsynaptic responses following
stimulation of substantia nigra reticulata. Brain Res. 535, 79–95. doi: 10.
1016/0006-8993(90)91826-3

Karachi, C., Grabli, D., Bernard, F. A., Tandé, D., Wattiez, N., Belaid, H.,
et al. (2010). Cholinergic mesencephalic neurons are involved in gait and
postural disorders in Parkinson disease. J. Clin. Invest. 120, 2745–2754. doi: 10.
1172/JCI42642

Keating, G. L., and Winn, P. (2002). Examination of the role of the
pedunculopontine tegmental nucleus in radial maze tasks with or without a
delay. Neuroscience 112, 687–696. doi: 10.1016/s0306-4522(02)00108-2

Kobayashi, Y., Inoue, Y., and Isa, T. (2004). Pedunculo-pontine control of
visually guided saccades. Prog. Brain Res. 143, 439–445. doi: 10.1016/s0079-
6123(03)43041-0

Kobayashi, Y., Inoue, Y., Yamamoto, M., Isa, T., and Aizawa, H. (2002).
Contribution of pedunculopontine tegmental nucleus neurons to performance
of visually guided saccade tasks in monkeys. J. Neurophysiol. 88, 715–731.

Kobayashi, Y., and Okada, K.-I. (2007). Reward prediction error computation in
the pedunculopontine tegmental nucleus neurons. Ann. N Y Acad. Sci. 1104,
310–323. doi: 10.1196/annals.1390.003

Kojima, J., Yamaji, Y., Matsumura, M., Nambu, A., Inase, M., Tokuno, H., et al.
(1997). Excitotoxic lesions of the pedunculopontine tegmental nucleus produce
contralateral hemiparkinsonism in the monkey. Neurosci. Lett. 226, 111–114.
doi: 10.1016/s0304-3940(97)00254-1

Lavoie, B., and Parent, A. (1994). Pedunculopontine nucleus in the squirrel
monkey: cholinergic and glutamatergic projections to the substantia nigra.
J. Comp. Neurol. 344, 232–241. doi: 10.1002/cne.903440205

Limousin-Dowsey, P., Pollak, P., Van Blercom, N., Krack, P., Benazzouz, A.,
and Benabid, A. (1999). Thalamic, subthalamic nucleus and internal pallidum
stimulation in Parkinson’s disease. J. Neurol. 246, II42–II45. doi: 10.
1007/bf03161080

Lokwan, S. J., Overton, P. G., Berry, M. S., and Clark, D. (1999). Stimulation
of the pedunculopontine tegmental nucleus in the rat produces burst firing
in A9 dopaminergic neurons. Neuroscience 92, 245–254. doi: 10.1016/s0306-
4522(98)00748-9

Martinez-Gonzalez, C., Bolam, J. P., and Mena-Segovia, J. (2011). Topographical
organization of the pedunculopontine nucleus. Front. Neuroanat. 5:22. doi: 10.
3389/fnana.2011.00022

Matsumura, M., and Kojima, J. (2001). The role of the pedunculopontine
tegmental nucleus in experimental parkinsonism in primates. Stereotact. Funct.
Neurosurg. 77, 108–115. doi: 10.1159/000064614

Matsumura, M., Watanabe, K., and Ohye, C. (1997). Single-unit activity
in the primate nucleus tegmenti pedunculopontinus related to voluntary
arm movement. Neurosci. Res. 28, 155–165. doi: 10.1016/s0168-0102(97)
00039-4

Mena-Segovia, J., Bolam, J. P., and Magill, P. J. (2004). Pedunculopontine nucleus
and basal ganglia: distant relatives or part of the same family? Trends Neurosci.
27, 585–588. doi: 10.1016/j.tins.2004.07.009

Mena-Segovia, J., Cintra, L., Prospéro-Garcia, O., and Giordano, M. (2002).
Changes in sleep-waking cycle after striatal excitotoxic lesions. Behav. Brain
Res. 136, 475–481. doi: 10.1016/s0166-4328(02)00201-2

Frontiers in Neuroanatomy | www.frontiersin.org 6 November 2016 | Volume 10 | Article 109

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Mori et al. Interface Role of PPTg

Mena-Segovia, J., and Giordano, M. (2003). Striatal dopaminergic stimulation
produces c-Fos expression in the PPT and an increase in wakefulness. Brain
Res. 986, 30–38. doi: 10.1016/s0006-8993(03)03167-6

Mena-Segovia, J., Sims, H. M., Magill, P. J., and Bolam, J. P. (2008). Cholinergic
brainstem neurons modulate cortical gamma activity during slow oscillations.
J. Physiol. 586, 2947–2960. doi: 10.1113/jphysiol.2008.153874

Mesulam, M. M., Mufson, E. J., Wainer, B. H., and Levey, A. I. (1983).
Central cholinergic pathways in the rat: an overview based on an alternative
nomenclature (Ch1–Ch6). Neuroscience 10, 1185–1201. doi: 10.1016/0306-
4522(83)90108-2

Michimoto, K., Suzuki, Y., Kiyono, K., Kobayashi, Y., Morasso, P., and Nomura, T.
(2016). ‘‘Reinforcement learning for stabilizing an inverted pendulum naturally
leads to intermittent feedback control as in human quiet standing,’’ in 36th
the Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, (Orlando, FL), 37–40.

Middleton, F. A., and Strick, P. L. (2000). Basal ganglia and cerebellar loops:
motor and cognitive circuits. Brain Res. Rev. 31, 236–250. doi: 10.1016/s0165-
0173(99)00040-5

Miller, A. D., and Blaha, C. D. (2004). Nigrostriatal dopamine release modulated
by mesopontine muscarinic receptors. Neuroreport 15, 1805–1808. doi: 10.
1097/01.wnr.0000135692.81613.85

Moriizumi, T., and Hattori, T. (1992). Separate neuronal populations of the
rat globus pallidus projecting to the subthalamic nucleus, auditory cortex
and pedunculopontine tegmental area. Neuroscience 46, 701–710. doi: 10.
1016/0306-4522(92)90156-v

Moro, E., Hamani, C., Poon, Y. Y., Al-Khairallah, T., Dostrovsky, J. O.,
Hutchison, W. D., et al. (2010). Unilateral pedunculopontine stimulation
improves falls in Parkinson’s disease. Brain 133, 215–224. doi: 10.
1093/brain/awp261

Munoz, D. P., and Fecteau, J. H. (2002). ‘‘Vying for dominance: dynamic
interactions control visual fixation and saccadic initiation in the superior
colliculus,’’ in Progress in Brain Research The Brain’s Eye: Neurobiological and
Clinical Aspects of Oculomotor Research, eds J. Hyona, D. P. Munoz, W. Heide
and R. Radach (Amsterdam: Elsevier), 3–19.

Newman, D. B., and Ginsberg, C. Y. (1992). Brainstem reticular nuclei that project
to the cerebellum in rats: a retrograde tracer study. Brain Behav. Evol. 39, 24–68.
doi: 10.1159/000114102

Okada, K.-I., and Kobayashi, Y. (2009). Characterization of oculomotor and visual
activities in the primate pedunculopontine tegmental nucleus during visually
guided saccade tasks. Eur. J. Neurosci. 30, 2211–2223. doi: 10.1111/j.1460-9568.
2009.07009.x

Okada, K.-I., and Kobayashi, Y. (2013). Reward prediction-related increases
and decreases in tonic neuronal activity of the pedunculopontine tegmental
nucleus. Front. Integr. Neurosci. 7:36. doi: 10.3389/fnint.2013.00036

Okada, K., and Kobayashi, Y. (2014). Fixational saccade-related activity of
pedunculopontine tegmental nucleus neurons in behaving monkeys. Eur.
J. Neurosci. 40, 2641–2651. doi: 10.1111/ejn.12632

Okada, K.-I., and Kobayashi, Y. (2015). Rhythmic firing of pedunculopontine
tegmental nucleus neurons in monkeys during eye movement task. PloS One
10:e0128147. doi: 10.1371/journal.pone.0128147

Okada, K., Toyama, K., Inoue, Y., Isa, T., and Kobayashi, Y. (2009). Different
pedunculopontine tegmental neurons signal predicted and actual task rewards.
J. Neurosci. 29, 4858–4870. doi: 10.1523/JNEUROSCI.4415-08.2009

Pahapill, P. A., and Lozano, A. M. (2000). The pedunculopontine nucleus and
Parkinson’s disease. Brain 123, 1767–1783. doi: 10.1093/brain/123.9.1767

Percheron, G., Francois, C., Talbi, B., Yelnik, J., and Fenelon, G. (1996). The
primate motor thalamus. Brain Res. Rev. 22, 93–181. doi: 10.1016/s0165-
0173(96)00003-3

Rascol, O., Sabatini, U., Fabre, N., Brefel, C., Loubinoux, I., Celsis, P., et al. (1997).
The ipsilateral cerebellar hemisphere is overactive during hand movements
in akinetic parkinsonian patients. Brain 120, 103–110. doi: 10.1093/brain/120.
1.103

Robinson, F. R., and Fuchs, A. F. (2001). The role of the cerebellum in voluntary
eye movements. Annu. Rev. Neurosci. 24, 981–1004. doi: 10.1146/annurev.
neuro.24.1.981

Rothballer, A. B. (1956). Studies on the adrenaline-sensitive component of the
reticular activating system. Electroencephalogr. Clin. Neurophysiol. 8, 603–621.
doi: 10.1016/0013-4694(56)90084-0

Ruggiero, D. A., Anwar, M., Golanov, E. V., and Reis, D. J. (1997). The
pedunculopontine tegmental nucleus issues collaterals to the fastigial nucleus
and rostral ventrolateral reticular nucleus in the rat. Brain Res. 760, 272–276.
doi: 10.1016/s0006-8993(97)00397-1

Ryczko, D., and Dubuc, R. (2013). The multifunctional mesencephalic locomotor
region. Curr. Pharm. Des. 19, 4448–4470. doi: 10.2174/1381612811319240011

Rye, D. B., Lee, H. J., Saper, C. B., and Wainer, B. H. (1988). Medullary and
spinal efferents of the pedunculopontine tegmental nucleus and adjacent
mesopontine tegmentum in the rat. J. Comp. Neurol. 269, 315–341. doi: 10.
1002/cne.902690302

Saitoh, K., Hattori, S., Song, W. J., Isa, T., and Takakusaki, K. (2003). Nigral
GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine
tegmental nucleus. Eur. J. Neurosci. 18, 879–886. doi: 10.1046/j.1460-9568.
2003.02825.x

Sakai, S. T., Inase, M., and Tanji, J. (1996). Comparison of cerebellothalamic
and pallidothalamic projections in the monkey (Macaca fuscata): a double
anterograde labeling study. J. Comp. Neurol. 368, 215–228. doi: 10.
1002/(SICI)1096-9861(19960429)368:2<215::AID-CNE4>3.0.CO;2-6

Scarnati, E., Proia, A., Campana, E., and Pacitti, C. (1986). A microiontophoretic
study on the nature of the putative synaptic neurotransmitter involved in the
pedunculopontine-substantia nigra pars compacta excitatory pathway of the
rat. Exp. Brain Res. 62, 470–478. doi: 10.1007/bf00236025

Semba, K., and Fibiger, H. C. (1992). Afferent connections of the laterodorsal and
the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade
transport and immunohistochemical study. J. Comp. Neurol. 323, 387–410.
doi: 10.1002/cne.903230307

Sherman, D., Fuller, P. M., Marcus, J., Yu, J., Zhang, P., Chamberlin, N. L.,
et al. (2015). Anatomical location of the mesencephalic locomotor region and
its possible role in locomotion, posture, cataplexy and parkinsonism. Front.
Neurol. 6:140. doi: 10.3389/fneur.2015.00140

Skinner, R. D., and Garcia-Rill, E. (1984). The mesencephalic locomotor region
(MLR) in the rat. Brain Res. 323, 385–389. doi: 10.1016/0006-8993(84)
90319-6

Sloan, A. M., Fink, M. K., Rodriguez, A. J., Lovitz, A. M., Khodaparast, N.,
Rennaker, R. L., et al. (2015). A within-animal comparison of skilled forelimb
assessments in rats. PLoS One 10:e0141254. doi: 10.1371/journal.pone.0141254

Spann, B. M., and Grofova, I. (1992). Cholinergic and non-cholinergic neurons
in the rat pedunculopontine tegmental nucleus. Anat. Embryol. (Berl) 186,
215–227. doi: 10.1007/bf00174143

Sun, Z., Junker, M., Dicke, P. W., and Thier, P. (2016). Individual neurons in the
caudal fastigial oculomotor region convey information on both macro- and
microsaccades. Eur. J. Neurosci. 44, 2531–2542. doi: 10.1111/ejn.13289

Suzuki, Y., Nomura, T., Casadio, M., and Morasso, P. (2012). Intermittent control
with ankle, hip and mixed strategies during quiet standing: a theoretical
proposal based on a double inverted pendulum model. J. Theor. Biol. 310,
55–79. doi: 10.1016/j.jtbi.2012.06.019

Takakusaki, K. (2009). Motor control by the basal ganglia. Rinsho Shinkeigaku 49,
325–334. doi: 10.5692/clinicalneurol.49.325

Takakusaki, K., Oohinata-Sugimoto, J., Saitoh, K., and Habaguchi, T. (2004a).
Role of basal ganglia-brainstem systems in the control of postural muscle tone
and locomotion. Prog. Brain Res. 143, 231–237. doi: 10.1016/s0079-6123(03)
43023-9

Takakusaki, K., Saitoh, K., Harada, H., and Kashiwayanagi, M. (2004b). Role of
basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci.
Res. 50, 137–151. doi: 10.1016/j.neures.2004.06.015

Takakusaki, K., Saitoh, K., Harada, H., Okumura, T., and Sakamoto, T. (2004c).
Evidence for a role of basal ganglia in the regulation of rapid eye movement
sleep by electrical and chemical stimulation for the pedunculopontine
tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats.
Neuroscience 124, 207–220. doi: 10.1016/j.neuroscience.2003.10.028

Takakusaki, K., Shiroyama, T., Yamamoto, T., and Kitai, S. T. (1996). Cholinergic
and noncholinergic tegmental pedunculopontine projection neurons in rats
revealed by intracellular labeling. J. Comp. Neurol. 371, 345–361. doi: 10.
1002/(SICI)1096-9861(19960729)371:3<345::AID-CNE1>3.0.CO;2-2

Tattersall, T. L., Stratton, P. G., Coyne, T. J., Cook, R., Silberstein, P., Silburn, P. A.,
et al. (2014). Imagined gait modulates neuronal network dynamics in the
human pedunculopontine nucleus. Nat. Neurosci. 17, 449–454. doi: 10.
1038/nn.3642

Frontiers in Neuroanatomy | www.frontiersin.org 7 November 2016 | Volume 10 | Article 109

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Mori et al. Interface Role of PPTg

Taylor, C. L., Kozak, R., Latimer, M. P., and Winn, P. (2004). Effects of changing
reward on performance of the delayed spatial win-shift radial maze task in
pedunculopontine tegmental nucleus lesioned rats. Behav. Brain Res. 153,
431–438. doi: 10.1016/j.bbr.2003.12.019

Thevathasan, W., Pogosyan, A., Hyam, J. A., Jenkinson, N., Foltynie, T.,
Limousin, P., et al. (2012). Alpha oscillations in the pedunculopontine nucleus
correlate with gait performance in parkinsonism. Brain 135, 148–160. doi: 10.
1093/brain/awr315

Vitale, F., Mattei, C., Capozzo, A., Pietrantoni, I., Mazzone, P., and Scarnati, E.
(2016). Cholinergic excitation from the pedunculopontine tegmental nucleus
to the dentate nucleus in the rat. Neuroscience 317, 12–22. doi: 10.1016/j.
neuroscience.2015.12.055

Wang, H.-L., and Morales, M. (2009). Pedunculopontine and laterodorsal
tegmental nuclei contain distinct populations of cholinergic, glutamatergic and
GABAergic neurons in the rat. Eur. J. Neurosci. 29, 340–358. doi: 10.1111/j.
1460-9568.2008.06576.x

Wilson, D. I. G., MacLaren, D. A. A., and Winn, P. (2009). Bar pressing for
food: differential consequences of lesions to the anterior versus posterior
pedunculopontine. Eur. J. Neurosci. 30, 504–513. doi: 10.1111/j.1460-9568.
2009.06836.x

Winn, P. (2006). How best to consider the structure and function of the
pedunculopontine tegmental nucleus: evidence from animal studies. J. Neurol.
Sci. 248, 234–250. doi: 10.1016/j.jns.2006.05.036

Winn, P., Brown, V. J., and Inglis, W. L. (1997). On the relationships between the
striatum and the pedunculopontine tegmental nucleus. Crit. Rev. Neurobiol. 11,
241–261. doi: 10.1615/critrevneurobiol.v11.i4.10

Wolpert, D. M., Miall, R. C., and Kawato, M. (1998). Internal models in
the cerebellum. Trends Cogn. Sci. 2, 338–347. doi: 10.1016/s1364-6613(98)
01221-2

Woolf, N. J., and Butcher, L. L. (1989). Cholinergic systems in the rat brain:
IV. Descending projections of the pontomesencephalic tegmentum. Brain Res.
Bull. 23, 519–540. doi: 10.1016/0361-9230(89)90197-4

Wu, T., and Hallett, M. (2013). The cerebellum in Parkinson’s disease. Brain 136,
696–709. doi: 10.1093/brain/aws360

Yu, G., Xu, B., Zhao, Y., Zhang, B., Yang, M., Kan, J. Y. Y., et al. (2016).
Microsaccade direction reflects the economic value of potential saccade goals
and predicts saccade choice. J. Neurophysiol. 115, 741–751. doi: 10.1152/jn.
00987.2015

Yu, H., Sternad, D., Corcos, D. M., and Vaillancourt, D. E. (2007). Role of
hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage
35, 222–233. doi: 10.1016/j.neuroimage.2006.11.047

Zervas, N. T., Horner, F. A., and Pickren, K. S. (1967). The treatment of
dyskinesia by stereotaxic dentatectomy. Confin. Neurol. 29, 93–100. doi: 10.
1159/000103685

Zervas, N. T., Horner, F. G., and Gordy, P. D. (1968). Stereotaxis dentatectomy in
extrapyramidal disorders. Dev. Med. Child Neurol. 10, 248–249.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Mori, Okada, Nomura and Kobayashi. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution and reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Neuroanatomy | www.frontiersin.org 8 November 2016 | Volume 10 | Article 109

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive

	The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia
	INTRODUCTION
	PPTg AS A PART OF BASAL GANGLIA
	PPTg AND BASAL GANGLIA AS A LIMBIC-MOTOR INTERFACE
	PPTg PROJECTION TO THE CEREBELLUM
	THERAPEUTIC EFFECT OF PPTg STIMULATION IN PARKINSON'S DISEASE
	CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	REFERENCES


