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Although abnormal cortical morphology and connectivity between brain regions

(structural covariance) have been reported in Parkinson’s disease (PD), the topological

organizations of large-scale structural brain networks are still poorly understood. In

this study, we investigated large-scale structural brain networks in a sample of 37 PD

patients and 34 healthy controls (HC) by assessing the structural covariance of cortical

gyrification with local gyrification index (lGI). We demonstrated prominent small-world

properties of the structural brain networks for both groups. Compared with the HC

group, PD patients showed significantly increased integrated characteristic path length

and integrated clustering coefficient, as well as decreased integrated global efficiency in

structural brain networks. Distinct distributions of hub regions were identified between

the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover,

the modular analyses revealed significantly decreased integrated regional efficiency in

lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in

Parieto-Temporal module in the PD group as compared to the HC group. In summary,

our study demonstrated altered topological properties of structural networks at a global,

regional and modular level in PD patients. These findings suggests that the structural

networks of PD patients have a suboptimal topological organization, resulting in less

effective integration of information between brain regions.

Keywords: Parkinson’s disease, structural covariance network, cortical gyrification, brain network, local

gyrification index

INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is characterized by
tremor, muscle stiffness or rigidity, slowness of movement or bradykinesia and postural instability
(Jankovic, 2008). Although the exact mechanism underlying the pathophysiology of PD is
unknown, increasing evidence suggests that it is associated with abnormal cortical morphology
and connectivity involving widespread brain regions (Braak and Braak, 2000). Quantitative analysis
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of the morphological changes of the cerebral cortex provides
a potential informative way of uncovering the pathological
deviations in PD. Using a surface-based local gyrification
index (lGI), our previous study observed significantly reduced
gyrification in multiple brain regions in PD patients (Zhang et al.,
2014). Although such univariate analysis could highlight the roles
played by each brain region in the pathogenesis in PD, it does
not allow us to evaluate the interaction or functional integration
among brain regions.

Recently, large-scale brain network analysis has been
applied to both healthy subjects and diseased populations
through interregional correlation of the blood oxygenation
level dependent (BOLD) signal (Van Den Heuvel et al., 2008),
cortical thickness (Khundrakpam et al., 2013; Zhao et al., 2015),
or streamline-based fiber tracking (Gong et al., 2009). These
methods not only can provide powerful modes to detect subtle
differences in brain organization (He et al., 2007; Bullmore and
Sporns, 2009), but also can bring new insights into relevant
network parameters that have profound effects on the dynamic
performances of a network, such as the local efficiency and
global efficiency, against pathological attacks by disease (Bassett
and Bullmore, 2006). Based on wavelet correlation, Skidmore
and his colleagues (Skidmore et al., 2011) observed reduced
global and nodal efficiency in PD patients. By assessing whole-
brain intrinsic connectivity, a recent study identified altered
topological parameters at a global, intermediate and local level
in PD patients (Göttlich et al., 2013). Further, a longitudinal
magnetoencephalography (MEG) study (Olde Dubbelink et al.,
2014) observed lower local clustering with preserved path
length in the delta frequency band in PD patients. All these
analyses were conducted in the functional domain, while the
structural covariance patterns at the whole brain level are yet to
be investigated in PD patients.

Among various structural covariance patterns of the brain,
cortical gyrification, a process by which the brain undergoes
changes in cortical surface morphology to create sulcal and
gyral regions, appears especially relevant to the development
of brain as a connected system (Chen et al., 2013). Moreover,
alterations in network parameters based on structural covariance
have been observed in various psychiatric and neurological
disorders (Achard and Bullmore, 2007; Palaniyappan et al., 2015).
Quantitative investigations of the structural covariance of cortical
gyrification in PD patients might contribute to the understanding
of this disorder.

In the current study, large-scale structural brain networks
were constructed for 37 PD patients and 34 healthy controls (HC)
by assessing the structural covariance of cortical gyrification with
lGI. Network topological properties, such as the path length,
local efficiency, global efficiency and clustering coefficient, were
computed and compared between the two groups. Regional
nodal characteristics of brain networks were also assessed to
investigate the differences of the hub distribution between the
PD and HC groups. Moreover, modularity, one of the main
organizing principles in most complex systems (Newman, 2006),
was used to identify a set of modules that are structurally or
functionally associated with components that perform specific
biological functions.

MATERIALS AND METHODS

Participants
Initially, 40 PD patients without dementia and 34 HC were
recruited consecutively from Southwest Hospital. The diagnosis
of PD was according to the UK Parkinson’s Disease Society
Brain Bank criteria (Hughes et al., 1992). All the participants
underwent extensive neurologic, neuropsychologic, and clinical
imaging examinations. The participants who had a history
of neurologic or psychiatric disease and neurologic sequelae
induced by brain trauma were excluded. Movement symptom
severity for each side of the body was assessed using the motor
examination of the Unified Parkinson’s Disease Rating Scale
(UPDRS, part III; clinician-scored motor evaluation) following
overnight withdrawal from medication and within 1 week
postMRI scan examination (Fahn and Elton, 1987). Detailed
demographics and clinical status are summarized in Table 1. All
protocols were approved by the institutional review board of the
Third Military University. All participants signed an informed
consent prior to participation in the study.

MRI Data Acquisition
Three-dimensional T1-weighted structural MRI scans were
obtained on a 3.0 T Siemens Tim Trio whole-body MRI system
(Siemens Medical Solutions, Erlangen, Germany) using the
volumetric 3Dmagnetization prepared rapid gradient-echo (MP-
RAGE) sequence. Detailed scan parameters were: repetition time
= 1,900 ms, echo time = 2.52 ms, slice thickness = 1mm, no
gaps, slices, 176, flip angle = 9◦, matrix = 256 × 256, field of
view = 256 × 256mm2, and 1 × 1mm2 in-plane resolution on
each subject.

Construction of Gyrification-Based
Networks
Firstly, each individual cortical surface was preprocessed
using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) with its
standard preprocessing pipelines. Starting from the segmentation
of white matter and tessellation of the gray/white matter
boundary, an initial surface was obtained after automated
topological correction. For quality control, the pial and
white matter surfaces were then visually inspected for errors,
and edited when necessary according to the FreeSurfer
editing manual (https://surfer.nmr.mgh.harvard.edu/fswiki/Free
viewGuide/FreeviewWorkingWithData/FreeviewEditingaRecon).
As a result, three PD patients with serious topological defects
in the cortical surfaces were excluded. Secondly, the lGI was
calculated in three main steps advocated by Schaer et al. (2008)
on the basis of an index originally proposed by Zilles et al.
(1988). This method provides LGIs, numerical values assigned
in a continuous fashion to each vertex of the reconstructed
cortical sheet. The LGI of a vertex corresponds to the ratio of
the surface area of the folded pial contour (“buried” surface)
to the outer contour of the cortex (“visible” surface) included
within spherical regions of interest (25 mm radius). Thirdly, the
lGI map was parcellated into 68 brain regions with 34 identical
regions on each hemisphere (excluding the corpus callosum)
using the Desikan-Killiany atlas (http://surfer.nmr.mgh.harvard.
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TABLE 1 | Demographics and clinical data.

PD patients (n = 37) Controls (n = 34) P-value

Age (years) 58.68 ± 13.10 55.59 ± 10.55 0.2805a

Gender (male/female) 20/17 12/22 0.1776b

Subtype (TD/AR) 13/24

Duration of illness (years) 3.87 ± 3.10

Young onset 7

UPDRS scores 19.17 ± 9.22

LEDD (mg/day) 325.27 ± 173.42

MCI 5

aThe p-value was obtained by a two-tailed two-sample t-test.
bThe p-value was obtained by a chi-square test.

TD, tremor-dominant; AR, akinetic-rigid; UPDRS, Unified Parkinson’s Disease Rating

Scale; LEDD, levodopa equivalent daily dose; MCI, mild cognitive impairment.

edu/fswiki/CorticalParcellation) (Table 2). The average lGI of
all vertices that were included in a subregion was taken as the
gyrification index value for the corresponding brain regions.
Then, the interregional correlation matrix C = [cij] (i, j = 1,
2,... N, here N = 68) of each group was obtained by calculating
the Pearson’s correlation coefficients across individuals between
the lGIs of every pair of regions (He et al., 2007). Prior to
the correlation analysis, a linear regression was performed at
every cortical region to remove the effects of age, gender and
intracranial volume. Finally, the correlation matrix of each group
was thresholded with a fixed sparsity ranging from 15 to 40%
into a binarized matrix B= [bij].

Graph Theoretical Analysis
To investigate the topological properties of the structural
networks obtained from the HC and PD groups, we used a
number of network properties: path length (Lp), local efficiency
(Elocal), global efficiency (Eglobal), clustering coefficient (Cp), and
small-world index (SWI).

(1) The shortest path length of a node in the network G (N, E)
is defined as:

Li =
1

N − 1

∑

i6=j∈G

dij, (1)

in which dij is the shortest absolute path length between the i and
j nodes. Lp is the average of the shortest path length between the
nodes:

Lp =
1

N

∑

i∈G

Li. (2)

which quantifies the extent of average connectivity or the overall
routing efficiency of the network (Achard and Bullmore, 2007).

(2) The global efficiencyof G (N, E) is defined as:

EGlobal(G) =
1

N(N − 1)

∑

i6=j∈G

1

dij
, (3)

TABLE 2 | Cortical regions include in the Desikan–Killiany atlas performed

under FreeSurfer v5.1.0.

Region Abbreviations Index

(left)

Index

(right)

Banks of the superior temporal sulcus bSTS 1 35

Caudal anterior cingulate CAR 2 36

Caudal middle frontal gyrus cMFG 3 37

Cuneus CUN 4 38

Entorhinal cortex EC 5 39

Fusiform gyrus FG 6 40

Inferior parietal gyrus IPG 7 41

Inferior temporal gyrus ITG 8 42

Isthmus cingulate IC 9 43

Lateral occipital gyrus LOG 10 44

Lateral orbitofrontal gyrus LFGor 11 45

Lingual gyrus LG 12 46

Medial orbitofrontal gyrus MFGor 13 47

Middle temporal gyrus MTG 14 48

Parahippocampal gyrus ParaHIPP 15 49

Paracentral gyrus ParaCG 16 50

Pars opercularis pOPER 17 51

Pars orbitalis pORB 18 52

Pars triangularis pTRI 19 53

Pericalcarine cortex PeriCAL 20 54

Postcentral gyrus PostCG 21 55

Posterior cingulate PCC 22 56

Precentral gyrus PreCG 23 57

Precuneus PreCUN 24 58

Rostral anterior cingulate RAC 25 59

Rostral middle frontal gyrus rMFG 26 60

Superior frontal gyrus SFG 27 61

Superior parietal gyrus SPG 28 62

Superior temporal gyrus STG 29 63

Supramarginal gyrus SupraMG 30 64

Frontal pole Fpole 31 65

Temporal pole Tpole 32 66

Transverse temporal gyrus TTG 33 67

Insula INS 34 68

The reflecting the global efficiency of parallel information
transfer in the network (Achard and Bullmore, 2007), where dij
is the shortest path length between nodes i and j in G.

(3) The local efficiency of G (N, E) is defined as:

ELocal(G) =
1

N

∑

i∈G

EGlobal(Gi), (4)

where EGlobal (Gi) is the global efficiency of Gi, the sub-graph
of the neighbors of node i, which can be understood as a
measure of the fault tolerance of the network, indicating how
well each subgraph exchanges information when the index node
is eliminated (Achard and Bullmore, 2007).

(4) Clustering coefficient of a node i is defined as the number
of existing links divided by the number of all possible links among
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the neighbors of a node:

Ci =
2Ei

Ki(Ki − 1)
, (5)

whereKi is the number of connections to node i, Ei is the number
of existing connections among the neighbors. The clustering
coefficient of a network is the average of the clustering coefficient
of all nodes:

Cp =
1

N

∑

i∈G

Ci, (6)

which is a measure of the extent of local cliquishness or local
efficiency of information transfer of a network (Latora and
Marchiori, 2001).

(6) SWI of a network is defined as:

SWI =
Cp

Cnull

/

Lp
Lnull

, (7)

where Cnull and Lnull are respectively the clustering coefficient
and the path length of a random network which has the
same number of nodes, edges and degree distribution as the
gyrification-based network.

To have a summary metric and a comparative measure that
can be used for all the network groups, we used the normalized
integrals of the network parameters:

b
∫

a
Lp

b− a
,

b
∫

a
E
Global

b− a
,

b
∫

a
E
Local

b− a
,

b
∫

a
Cp

b− a
,

b
∫

a
SWI

b− a
, (8)

where a and b are respectively the lower and upper limits of
sparsity (here, a= 15 and b= 40).

Network Statistical Analysis
For group comparison of network parameters, we generated
1,000 bootstrap samples (with replacement) from each group
(Markus and Groenen, 1998) and computed a gyrification
correlation matrix for each sample. The Lp, Elocal, Eglobal,
and Cp were computed from the correlation matrix of each
bootstrap sample, over the range of sparsity thresholds and
their summary metrics. Normalized integrals of the network
parameters were used to compare between the HC and PD
groups. The distributions of the 1,000 summary graph metrics
were checked for normality. Then two sample t-tests were used
to assess the significant difference of the integrated Lp, integrated
Elocal, integrated Eglobal, and integrated Cp between the two
groups.

Global Hubs in the Network
In this study, we examined the nodal characteristics of the cortical
gyrification network using “betweenness centrality” in the HC
and PD groups. The betweenness of a node i is defined as
the number of shortest paths between any two nodes that run
through node i, and is denoted as bci. We defined the normalized

betweenness as BCi = bci�bci
, where bci was the average

betweenness of all the nodes. Then, we averaged the normalized
betweenness across the range of sparsity. Regions with a higher
value of BCi (> mean+ SD) were identified as the global hubs in
the brain network.

Modularity Analysis
A module can be generally defined as a subset of nodes in
the graph that are more densely connected to other nodes in
the same module than to nodes outside the module (Radicchi
et al., 2004). The Newman’s optimization algorithm can detect
the optimum number of modules by giving the highest possible
modularity value, which is defined as the difference between
the numbers of intra-modular links in a given network and the
number of inter-modular links that will be seen in a random
network for the same numbers of modules. To investigate the
abnormal interactions between and within these modules, we
defined the inter- and intra-modular connectivity respectively
as the mean correlation coefficient of all pairs of nodes in two
different modules and one single module. The mean correlation
coefficient was then converted to z values using Fisher’s r-to-
z transformation. Furthermore, we also computed the average
integrated regional efficiency of each module using the bootstrap
samples and compared them between the two groups.

RESULTS

Gyrification-Based Networks
Figure 1 displayed the gyrification correlation matrices of the
HC and PD groups. The overall global topological parameters,
namely Lp, Elocal, Eglobal, and Cp of the structural networks of
the two groups are shown in Figure 2 as a function of sparsity.
The cortical networks of both groups showed prominent small-
world indices (SWIs, average SWI across the range of sparsity
for HC = 1.6408 and PD = 1.6924). Moreover, we found
significantly increased integrated path length and integrated
clustering coefficient, as well as decreased integrated global
efficiency in PD patients as compared to the HC group (two
sample t-test at p < 0.05/4 = 0.0125 with a strict Bonferroni
correction).

The Distributions of Global Hubs
We found different global hub distributions of the cortical
networks for the two groups (Figure 3). In the HC group, 11
regions were identified as hubs because of large values in the
normalized betweenness BCi (>mean+ SD), including 5 regions
in the frontal cortex (the left rostral anterior cingulate, the left
lateral orbitofrontal gyrus, the bilateral superior frontal gyrus,
and the right rostral middle frontal gyrus), 3 regions in the
temporal cortex (the bilateral transverse temporal gyrus and the
right superior temporal gyrus), 2 regions in the parietal cortex
(the right paracentral gyrus and the left inferior parietal gyrus),
and 1 subcortical regions (the left insula). However, in the PD
group, 7 of 9 hub regions were located in the frontal cortex (the
bilateral rostral middle frontal gyrus, the left pars orbitalis, the
left pars opercularis, the bilateral superior frontal gyrus, and the
right pars triangularis), and the other 2 regions in the parietal
cortex (the left precuneus and the left inferior parietal gyrus). The
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FIGURE 1 | The inter-regional correlation matrices for HC and PD groups. The connectivity matrix shows the Pearson correlation coefficient between any two

nodes of the network. The nodes are numbered according to Table 2 for better overview. The color bar represents the absolute value of the Pearson correlation

coefficient, which ranged from 0 (blue) to 1 (red).

FIGURE 2 | Changes in the topological parameters of the structural network in PD patients. (A) The path length, local efficiency, global efficiency and

clustering coefficient for the HC and PD groups as a function of sparsity (15–40%). (B) Statistical comparisons of the graph metrics, namely the integrated path length,

integrated local efficiency, integrated global efficiency and integrated clustering coefficient for a range of sparsity (15–40%) using 1,000 bootstrap samples. The

distributions of the 1,000 summary graph metrics were checked for normality and two-sample t-test was used to examine the significant difference of a summary

graph metric between the two groups (i.e., p < 0.05/4 = 0.0125 with a strict Bonferroni correction, **represents significant differences between the two groups).

bilateral superior frontal gyrus and the left inferior parietal gyrus
were identified in both groups.

Modular Difference
In the HC group, three optimal modules were identified
includingmodule 1 (21 regions), designated as the lateral Fronto-
Insula-Temporal module (lFIT module), module 2 (30 regions),
designated as the medial module for midline structures (Medial

module), and module 3 (17 regions), designated as the Parieto-
Temporal module (PT module). The detailed modular structures
of the structural network of the HC group were shown in
Figure 4A. Compared with the HC group, no significant inter-
modular or intra-modular connectivity difference was observed
in PD patients. Whereas PD patients showed significantly
decreased integrated regional efficiency in lFIT module and
increased integrated regional efficiency in PT module as
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FIGURE 3 | Distributions of hub regions in the HC and PD groups. (A) Graphical representation of gyrification networks in the HC and PD groups, visualized

using BrainNetviewer (http://www.nitrc.org/projects/bnv). The size of the nodes is proportional to the nodal betweenness in the networks. (B) Bar plot of betweenness

centrality in all regions (upper: HC; bottom: PD). The red regions were hubs of the network and gray ones were non-hubs. All abbreviations were listed in Table 2.

compared to the HC group (Figure 4B, two sample t-test at p =
0.05/3≈ 0.016 with a strict Bonferroni correction).

DISCUSSION

By assessing interregional correlation of lGI, we constructed the
structural networks for 37 PD patients and 34 HC and performed
a comprehensive investigation of the structural networks of the
two groups, which revealed altered network parameters at a
global, regional and modular level in PD patients.

A small-world network is characterized by a high local
clustering of connections between neighboring nodes and short
path lengths between any pair of nodes, which reflects high
segregation and integration efficiency. To date, the small-world
attribute seems to be convergent evidence frommethodologically
disparate studies in multiple functional and structural human
brain networks (Bassett et al., 2008; Liu et al., 2008; Li et al.,
2009; Zhang et al., 2012; Palaniyappan et al., 2015). In line with
previous studies, small-world attributes were observed in both
the HC and PD groups in this study. The presence of the small-
world properties in the PD group suggested that abnormalities
in the gyrification patterns are subtle and do not affect the basic
organization principles of cortical folding. Moreover, our results

also supported the common finding that small-world topology
is a fundamental principle of the structural and functional
organization of complex brain networks (Bassett and Bullmore,
2006; Gong et al., 2009).

Notably, several previous studies (Skidmore et al., 2011;
Göttlich et al., 2013; Olde Dubbelink et al., 2014) have
documented altered brain network properties in PD patients.
Our work further extends previous studies by showing that the
combination of graph theory with gyrification analysis can be
used to investigate differences in network properties between the
HC and PD groups. As expected, the present study observed
significantly decreased integrated global efficiency in PD patients.
This finding was in line with a previous fMRI study (Skidmore
et al., 2011) which found lower global efficiency of the brain
networks of PD patients as compared to that of the control
subjects. Indeed, brain networks with high global efficiency or
low path length assure effective integrity or rapid transfer of
information between and across remote regions, which were
believed to constitute the basis of cognitive process (Sporns and
Zwi, 2004). Thus, our finding of decreased integrated global
efficiency in PD patients indicated that structural brain networks
of PD patients take on a less optimal configuration during
cognitive processes, which might be the structural substrates
underlying the cognitive dysfunction of this disorder.
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FIGURE 4 | Modular differences of regional efficiency in the HC and PD

groups. (A) Graphical representation of modular distributions in the HC group,

visualized using BrainNetviewer. Using Newman’s module detection algorithm,

we identified 3 modules from the structural network of the HC group, which

were coded separately (Red, lFIT module; Green, Medial module; and blue, PT

module). The size of the nodes is proportional to the nodal betweenness in the

networks. (B) Statistical comparisons of regional efficiency of brain divisions in

the HC and PD groups using two-sample t-tests with a strict Bonferroni

correction (i.e., p = 0.05/3 ≈ 0.016 as threshold, **represents significant

differences between the two groups). Abbreviations: medial module for midline

structures (Medial module), lateral Fronto-Insula-Temporal module (lFIT

module), and Parieto-Temporal module (PT module).

Despite the absence of prominent alterations in the integrated
local efficiency, both the integrated clustering coefficient and
integrated path length were higher in the PD group as compared
to the HC group. These findings were similar to the results
of a previous resting-state brain network analysis (Göttlich
et al., 2013) which showed higher clustering coefficient and
path length at a low sparsity value of 0.2 in PD patients. The
longer characteristic path length, which indicates a lower speed
of information transferring, combined with the higher clustering
coefficient, which indicates a stronger local specialization
(Zhang et al., 2012), in the gyrification covariance networks
of PD patients suggests that the normal balance between local
specialization and global integration was disturbed (Sporns et al.,
2000; Zhang et al., 2012), rendering their networks more in favor
of a regular configuration.

Using betweenness centrality, we identified the hub regions of
the cortical networks for the two groups. In the HC group, the
hub regions were distributed in the frontal cortex, the temporal
cortex, the parietal cortex, and the sub-cortex. However, in the

PD group, the hub regions were mostly located in the frontal
cortex and the parietal cortex. Although the identified hub
regions varied between the two groups, most of these regions
were found to show high regional efficiency or betweenness
centrality in previous studies (Shu et al., 2009; Wu et al., 2012;
Göttlich et al., 2013). The discrepancies of identified hub regions
among studies could be due to the different neuroimaging
modalities, subjects’ characteristics and computational methods.
Moreover, the higher betweenness centrality, particularly in
regions of the frontal cortex in PD patients, suggested a higher
importance of the frontal regions or their connections for
information integration. Given that the frontal cortex was mainly
involved in high-order cognitive functions, it is tempting to
speculate that higher betweenness centrality in these frontal
regions may represent a compensatory mechanism to maintain
normal cognitive functions.

The analysis of network modules allowed us to obtain deeper
insights into the global network properties. In this study, we
identified three modules in the HC group including the lFIT
module, the medial module, and the PT module. Our modular
distributions were similar to a previous gyrification study
showing that the three modules were hierarchically gathered
according to the distribution of the lGI measurements (Schaer
et al., 2008), that is, the lowest (Medial Module), the middle
(PT module), and the highest (lFIT module). Considering the
altered integrated regional efficiency in the lFIT and PT modules
in the PD patients, we may conclude that the more complex
the gyrification of the module is, the more easily it tends
to be affected. Moreover, most homotopic regions of the two
hemispheres were observed to belong to the same module, which
may indicate strong interhemispheric coupling according to the
gyrification-based networks.

Several limitations should be mentioned. Firstly, most of the
PD patients were given dopaminergic medications. Studies of
drug-naïve individuals to exclude the effects of dopaminergic
medications on the network topological characteristics are
warranted. Secondly, the gyrification covariance networks
only measure the anatomical connectivity patterns indirectly
compared with the anatomical networks. However, with
the relatively low computational load and simple definition
connections, the gyrification covariance networks are more
practical for revealing the anatomical connectivity patterns
of the human brain. Finally, since the nature of structural
covariance network does not allow for the extraction of the
network parameters at an individual level, we cannot examine
their correlations with the clinical scores of PD patients.
Future diffusion-based network analyses with the availability of
individual-level network parameters are needed to investigate the
relationship between them.

In summary, we compared the topological properties of
the structural cortical networks inferred from interregional
correlation of lGI between PD patients and healthy controls.
We revealed altered network properties at a global, regional and
modular level in PD patients. These findings suggests that the
structural networks of PD patients have a suboptimal topological
organization, resulting in less effective integration of information
between brain regions.
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