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Although the olfactory sense has always been considered with less interest than the
visual, auditive or somatic senses, it does plays a major role in our ordinary life, with
important implication in dangerous situations or in social and emotional behaviors.
Traditional Diffusion Tensor signal model and related tractography have been used in the
past years to reconstruct the cranial nerves, including the olfactory nerve (ON). However,
no supplementary information with regard to the pathways of the olfactory network have
been provided. Here, by using the more advanced Constrained Spherical Deconvolution
(CSD) diffusion model, we show for the first time in vivo and non-invasively that, in
healthy humans, the olfactory system has a widely distributed anatomical network to
several cortical regions as well as to many subcortical structures. Although the present
study focuses on an healthy sample size, a similar approach could be applied in the
near future to gain important insights with regard to the early involvement of olfaction in
several neurodegenerative disorders.
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INTRODUCTION

The sense of smell plays a pivotal role in ordinary life. Together with the visual and auditory ones,
it enables us to monitor the human environment and to provide an escape route from dangerous
situations. More importantly olfaction has a big contribution in social and emotional behaviors,
being able to make us revive old experience.

The anatomy of the olfactory system has been classically investigated by using microsurgery
dissection (Kavoi and Jameela, 2011). More recently, olfactory tracts (OTs) were non-invasively
studied by means of Diffusion Tensor Imaging (DTI) both in normal (Skorpil et al., 2011)
and pathologic conditions (Scherfler et al., 2006). DTI fiber tracking has been extensively
used to visualize cranial nerves (Hodaie et al., 2010), including the olfactory nerve (ON) and
OTs. However, the intricate anatomy of the olfactory system (Price, 1990; Carmichael et al., 1994;
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Shipley and Ennis, 1996) and the presence of air in nasal sinuses
makes DTI-based fiber tracking of OTs challenging. Despite
those limitations, Skorpil and associates demonstrated for the
first time, using a 1.5 TMagnetic Resonance Imaging (MRI) scan,
that fiber tracking of the distal OTs is feasible (Skorpil et al.,
2011).

Although DTI has been employed in several contexts
(Basser and Pierpaoli, 1996; Pierpaoli and Basser, 1996;
Pajevic and Pierpaoli, 1999; Le Bihan, 2003), it is unable to
adequately characterize a system of fibers with complex axonal
configurations (crossing, fanning, merging, bending and kissing;
Tournier et al., 2007; Jones and Cercignani, 2010).

More sophisticated diffusion models, such as Constrained
Spherical Deconvolution (CSD), permit to detect more
consistently major fiber bundles in presence of intra-voxel
orientational heterogeneity (Tournier et al., 2007, 2008).
Indeed, CSD model allows to successfully identify multiple fiber
populations insisting over the same voxel. CSD compares the
signals observed in living tissues with a representative model
of a single fiber bundle, the so-called ‘‘response function’’. By
means a mathematical process, the spherical deconvolution,
CSD attempts to directly estimate from the Diffusion Signals
(DWs) the so-called fiber Orientation Distribution Function
(fODF), i.e., an approximation of the distinct fiber directions
that insist over white matter voxels CSD has been shown to
resolve most of typical DTI model limitations (Tournier et al.,
2007, 2008).

Using this approach, we have recently shown that a consistent
reconstruction of the basal ganglia, red nucleus, claustrum and
limbic connectome is feasible (Arrigo et al., 2014; Milardi et al.,
2015a,b, 2016a,b; Mormina et al., 2015; Cacciola et al., 2016,
2017).

Therefore, by taking advantage of CSD diffusion model,
the primary aim of this article was to provide an anatomical
in vivo reconstruction of both the short and long direct fiber
pathways of the olfactory system. Neurophysiological and clinical
considerations are widely discussed.

MATERIALS AND METHODS

Participants
A total of 10 healthy subjects (6 males, 4 females; mean age
32.1; age range 25–50 years) without any overt neurological,
psychiatric or traumatic disease were recruited. The entire
study was approved by Institutional Review Board of IRCCS
Bonino Pulejo—Messina—Italy (Scientific Institute for Research,
Hospitalization and Health Care) and all subjects received and
signed an inform consent before MRI examination.

Data Acquisition
The study was performed with a 3-T Achieva Philips equipped
with a 32-channel SENSE head coil (Best, Netherlands). For each
subject, the following MRI protocol was carried out:

• (3D) high-resolution T1-weighted fast field echo (FFE)
sequence, with the following parameters: Repetition Time

25 ms; Echo Time 4.6 ms; flip angle 30◦; Field of View
(FOV) 240 × 240 mm2; reconstruction matrix 240 × 240;
voxel size 1 × 1 × 1 mm. Total acquisition time was
6 min.

• A single-shot echo-planar Imaging (SS-EPI) diffusion
weighted sequence, with the following parameters:
Repetition Time 11884 ms; Echo Time 54 ms; FOV
240 × 240 mm2; scan matrix 120 × 120; in-plane
resolution 2 × 2 mm, axial slice thickness 2 mm
without inter-slice gap. One unweighted b0 volume and
30 diffusion encoding directions (b-value = 1000 s/mm2)
covering a half sphere were acquired following the
rules stated by an electrostatic repulsion model (Jones
et al., 1999). The total acquisition time was 9 min. In
addition, a b0 volume was acquired by using a reverse
phase-enconding direction for post-acquisition artifacts
correction.

Data Processing, Segmentation and
Tractography
Diffusion data were corrected for motion and susceptibility
artifacts using top-up and eddy FMRIB Software Library (FSL)
tools (Jenkinson et al., 20021). Rotational part of transformation
was applied to gradient directions at the end of this stage.

To model the Diffusion Signal (DW), we used a modified
High Angular Resolution Diffusion Imaging (HARDI)
technique, called nonnegative CSD. This model estimates
the so-called fODF by deconvolving the DW signal with
a representative single fiber response function (Tournier
et al., 2007). By using CSD, we managed to overcome poor
representation of complex fiber geometries typical of DTI
(Tournier et al., 2008). We reconstructed a color-coded map
in which red (left-right), blue (inferior-superior) and green
(anterior-posterior) colors indicate the principal eigenvector’s
direction (Pajevic and Pierpaoli, 1999). Response function
estimation and CSD fitting were performed by using MRtrix
software, release 3 (Tournier et al., 20122).

Structural T1w volumes were co-registered to diffusion data
by means of a non-linear procedure based on cerebrospinal
fluid (CSF) probability maps coming from T1w and b0 images.
Details of the pipeline are reported in Besson et al. (2014).
Estimation of CSF probability maps was performed by means
of New Segment command provided within the Matlab
based Statistical Parametric Mapping tool, release 8 (SPM8).
Non-linear registration was accomplished by means of FSL
flirt and fnirt routines. Segmentation of the OTs was manually
performed on co-registered T1-weighted structural scans by
an experienced neuroradiologist. An overlap as accurate as
possible between diffusion data and structural maps (Figure 1)
is crucial since tractographic reconstruction could be spoiled due
to well-known asymmetry in the cranio-caudal position of the
tracts, their small size and the presence of air in the ethmoid
cells. The pyriform cortex was firstly identified in a oblique-axial
section with +20◦ relative to the anterior commissure-posterior

1https://www.fmrib.ox.ac.uk/fsl
2www.mrtrix.org
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FIGURE 1 | Coronal T1 weighted image shows the olfactory tracts
(OTs). (A) Note the slight positional asymmetry on the cranio-caudal plane. On
anisotropic map (B) OTs appears green due to their main antero-posterior
direction. A good matching between T1 weighted scan and diffusion maps (C)
is necessary to obtain consistent and robust results for of such small anatomic
structures.

commissure axis thus allowing to see the relationship between
the piriform cortex, amygdala and hippocampus (Vaughan and
Jackson, 2014). Taking into account that there are no clues to
outline the frontal borders of the pyriform cortex and that its
frontal portion represent only the 10%–15% of the total pyriform
cortex volume on MRI, we focused on its temporal extension
(Gonçalves Pereira et al., 2005).

The Desikan-Killiany atlas included in the FreeSurfer
image analysis suite (Fischl et al., 2004, available at
http://surfer.Nmr.mgh.harvard.edu/) was employed to obtain
volumetric segmentation of the amygdala and entorhinal
cortex based on the co-registered T1 images. Successively, the
segmentations obtained from each individual were visually
inspected and, if needed, manually edited. In addition, we
segmented the fornix and optic system from the optic nerve up
to the lateral geniculate nucleus to avoid the reconstruction of
spurious streamlines running through such regions.

Fiber-tracking was performed using Mrtrix package
(Tournier et al., 2012), release 3. The step size of the tracking
algorithm was set at 0.2 mm, the minimum radius of curvature
at 1 mm and the fODF amplitude cutoff for terminating
tracks was 0.15. Multiple Regions of Interest (ROIs) as well
as Regions of Avoidance (ROAs) were combined to fulfill
the complicated tracking demand for each fiber bundle
reconstruction (Verstynen et al., 2011).

RESULTS

In all subjects we obtained an accurate co-registration of
T1 weighted scan and anisotropic map (Figure 1) and we were
able to reconstruct several white matter bundles forming the
olfactory network.

Lateral Striae
OTs projected directly to the piriform cortex and to the olfactory
tubercle running through the anterior perforated substance.
Olfactory tubercle is very small and difficult to be detected at
the resolution used in this study, therefore its segmentation was
not carried out (Porter et al., 2005). We detected a pathway
connecting OT and the rostral temporal lobe in the piriform
cortex (Figure 2).

The OTs also projected to the rostromedial temporal lobe in
the parahippocampal gyrus, where the rostral entorhinal cortex

is located (Figure 2). In addition direct projections between the
amygdala and OT were detected (Figure 2). The entire course
of the lateral striae in coronal view is shown in Supplementary
Figure S1.

Olfactory Direct and Indirect Pathways
A bundle directly connecting piriform lobe with orbitofrontal
cortex (OFC) could be seen. The fibers surrounded the temporal
horn of the lateral ventricle and run through the sublenticular
white matter (Figure 3).

It is worth to note that pathways 1, 2 and 3 reached the
piriform cortex, enthorinal cortex and amygdala which in turn
were reciprocally connected to the medial OFC via the direct
olfactory pathway (Figure 3 and Supplementary Figure S2).

An indirect projection via the medio-dorsal nucleus of
the thalamus (MDNT) has been previously demonstrated
(Ongür and Price, 2000). However, we could not reconstruct
such indirect disynaptic pathway due to the inability of
tractography reconstruction to provide definitive information
on multisynaptic connections passing through more
than two gray matter structures. On the other hand,
we demonstrated the presence of connections running
between the pyriform lobe and the MDNT and the
MDNT and the OFC. Therefore, based on this finding,
we can speculate that these connections may represent
the anatomical substrate of the olfactory indirect pathway
(Figure 4).

DISCUSSION

By using CSD diffusion model we showed for the first time
in vivo that, in normal humans, olfactory system has a widely
distributed anatomical network to several cortical regions as
well as to many subcortical structures. These data extend
previous works showing that CSD is a robust technique for
the in vivo reconstruction of the intricate and complex brain
networks (Lambert et al., 2012; Arrigo et al., 2014; Milardi et al.,
2015a,b, 2016a,b; Mormina et al., 2015; Cacciola et al., 2016,
2017).

To the best of our knowledge, so far only one article has
used DTI for studying the olfactory system (Skorpil et al.,
2011). More in detail, Skorpil et al. (2011) performed DTI-based
tractographic reconstruction on five patients with a 1.5 T to
reconstruct OTs; however, no supplementary information of
the other bundles of the olfactory network were provided. In
addition, few data exist on DTI abnormalities in pathologic
conditions (Scherfler et al., 2006, 2013; Erb et al., 2012; Erb-
Eigner et al., 2014).

As outlined in the ‘‘Introduction’’ Section, DTI is unable
to identify multiple fiber regions within a voxel; it is however
known that more than 90% of white matter voxels have complex
structures (Jeurissen et al., 2013). Therefore, it is inadequate
in most occasions. CSD attempts to resolve multiple fiber
geometries by comparing observed signals with a representative
single fiber ‘‘response function’’. Unlike DTI, CSD overcome
most of DTI limitations, such as the partial volume effect (Jones
and Cercignani, 2010), thus resulting in improved tractographic
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FIGURE 2 | Olfactory lateral stria of a representative subject. (A) Medio-lateral sagittal views show the course of OT connections with amygdala, entorhinal
and pyriform cortices. Axial (B) and coronal (C) views of the OT, as indicated by the crosshair and red voxels.

performances. Othermodels exist to providemore useful insights
into white matter structures than what DTI is able to do, like
for instance Q-ball imaging (QBI, Tuch, 2004), or Diffusion

Spectrum Imaging (DSI, Wedeen et al., 2008). Nevertheless,
for a clinical use, DSI is less used since it requires longer
scan time (Tournier et al., 2007), whilst QBI suffers from

FIGURE 3 | Olfactory direct pathway. (A) Latero-medial sagittal views of the connections between the primary olfactory cortices—amygdala, entorhinal and
piriform cortices—with the medial orbitofrontal cortex (OFC). Axial (B) and coronal (C) representative views of the same pathways.
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FIGURE 4 | Olfactory indirect pathway. (A) Latero-medial sagittal views of the connections between the pyriform lobe and the MDTN (in red), and between
medio-dorsal nucleus of the thalamus (MDNT) and the medial OFC. Axial (B) and coronal (C) views of the indirect pathway at the level of the medial OFC.

technical restraints, such as the inability to reconstruct fibers
with crossing angle smaller than 45◦ (Tournier et al., 2008;
Gigandet et al., 2013). Taking into account the abovementioned
considerations, probabilistic CSD is to date, probably, the most
promising approach for tractographic reconstruction in a clinical
context.

Olfactory Tract: Lateral and Medial Striae
The olfactory bulb (OB) sends direct projections to the
anterior olfactory nucleus which in turn projects back to the
ipsilateral and contralateral OB via the anterior commisure
and to several secondary olfactory areas (Mohedano-Moriano
et al., 2012). The OT is described as a band of white
fiber matters originating from tufted and mitral cells within
the OB that splits into medial and lateral striae, before
reaching the perforate substance (PF; Duprez and Rombaux,
2010). Furthermore, tract-tracing studies in primates have
demonstrated that the anterior olfactory nucleus is connected
to orbitofrontal areas 12 and 13, which are both functionally
and anatomically related to olfactory processing (Mohedano-
Moriano et al., 2005). In contrast to anatomical data, we
were not able to obtain consistent tractographic CSD-based
reconstructions linking the OT and anterior olfactory nucleus
to the contralateral OT via the anterior commissure (Risse et al.,
1978).

In particular, the presence of air in ethmoidal cells may
interfere with EPI sequences as already reported in literature
(Skorpil et al., 2011). On the other hand, we could detect
the different portions of the lateral olfactory stria projecting
directly (Smythies, 1997; Gottfried and Zald, 2005; Wilson and

Sullivan, 2011) to piriform and entorhinal cortices and amygdala
(Price, 1985, 2003; Porter et al., 2005) without thalamic relay.
Positron emission tomography studies combined with olfactory
stimulation showed significant cerebral blood flow increase in
the bilateral pirifom cortex, the rostromedial region of the
entorhinal cortex and in the right OFC (Zatorre et al., 1992).
The major role of the piriform cortex is to discern odors
of different categories: more in detail the anterior piriform
cortex is correlated with odor identification, whilst the posterior
one is correlated with odor categorization (Gottfried et al.,
2006; Wilson et al., 2006; Howard et al., 2009). On the other
hand, it has been suggested that the rostromedial area of the
entorhinal cortex sends topographically organized projections
to the temporal region of the hippocampus, thus partially
explaining the presence of ‘‘olfactory auras’’ and ‘‘olfactory
hallucinations’’ in many neurological disorders (Insausti et al.,
2002).

Olfactory Direct and Indirect Pathway to
Neocortex
Odorant information is transmitted from the olfactory cortices
directly to the OFC and via the thalamus (direct and indirect
pathways).

The indirect pathway through the thalamus is thought to
account for the perceptions and discriminations of odors,
because people with extensive damage of the OFC are unable to
identify (Jones-Gotman and Zatorre, 1998) and to discriminate
odors (Zatorre and Jones-Gotman, 1991; Caminiti et al., 2013).
As pointed out before, the main characteristic of the olfactory
system is the absence of primary connections with the thalamus;
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since the axons of OBs neurons project directly to the primary
olfactory cortex (Smythies, 1997; Spence et al., 2001b; Gottfried
and Zald, 2005; Murakami et al., 2005; Shepherd, 2005). In this
study we showed for the first time that olfaction has a direct route
to the neocortex connecting the piriform, entorhinal cortices
and amygdala to the OFC; those findings are in keeping with
an established body of research based on both humans and
animals (Takagi, 1986; Price et al., 1991; Johnson and Leon,
2000).

In addition, we found tractographic evidences of direct
connections running between the pyriform lobe and the
MDNT and the MDNT and the OFC. As suggested in the
previous section, we speculate that these connections may
represent the anatomical substrate of the olfactory indirect
pathway.

Physiological and Clinical Considerations
Although the olfactory sense has always been considered with
less interest than the visual, auditive or somatic senses, it does
plays a major role in our ordinary life. A proof of concept
is that despite the smell in humans is less important than
in other species, in which the odor detection is essential for
searching for food, recognition of the presence of predators
or for sexual coupling (Manzini et al., 2014), nonetheless
the structure of the human olfactory system is extremely
sophisticated.

Indeed, olfaction has some positive physiological cross-
modal influence on several behavioral domains such as
attention (Spence et al., 2001a), emotion (Herz et al.,
2004), memory (Herz, 1998), airflow motor control
(Bensafi et al., 2003), scent tracking (Porter et al.,
2006) and visuo-motor interactions (Castiello et al.,
2006).

The prerogative of different odors to evoke pleasant or
unpleasant sensations implies that the olfactory sensitivity may
affect individual’s emotional reaction to the environment, person
or object wearing a specific odor (Rolls et al., 2003). This
is particularly important in determining the palatability of a
food or a drink, emphasizing the involvement of smell in the
regulation of food intake. It is also noteworthy how certain
odors remain long as a component of the involuntary memory
of pleasant or unpleasant events, and how a certain smell can
bring out the same emotions produced by the first experience
of it; a phenomenon similar of that described by Proust and
correlated with the Madeleine’s cake taste (Proust, 1987–89).
The ‘‘memory of odors’’ has also long-term effects on reflexes
activity: a typical example is the nausea associated with the smell
of food, which has caused vomiting in the past. Some of these
considerations are strongly supported by the existence of the
intricate olfactory network demonstrated in the present study
(Figures 2–4).

It has been demonstrated that the piriform cortex and
the olfactory tubercle are strictly connected to the MDTN
via the so-called indirect pathway (Ongür and Price, 2000).
This circuit along with the direct circuit, which project
from the pyriform lobe to orbito-frontal cortex, is involved
in the conscious perception of odors (Zald and Rauch,

2008). Hence, both the olfactory direct and indirect pathways
reconstructed in the present study, by using CSD-based
tractography, should be further investigated in combined MRI
and psychophysiological studies to shed new light on their
functions.

Lesion studies in rats have shown that MDNT lesions might
led to several olfactory functions impairment such as olfactory
discrimination (Eichenbaum et al., 1980), odor reversal learning
(McBride and Slotnick, 1997) and odor-guided sexual behavior
(Sapolsky and Eichenbaum, 1980).

In a clinical context, studies on patients with Korsakoff’s
syndrome as well as with focal lesions of the MDNT further
suggest a significant role of MDNT in olfactory function. On
the other hand, given the wide neural impairment in Korsakoff’s
syndrome (Victor et al., 1971; Ridley et al., 2005), and the
occurrence of cases of Korsakoff’s without detectable damage
to MDNT (Mair et al., 1979), it is difficult to pinpoint the
precise role of the MDNT in olfaction from these patients
alone.

Sela et al. (2009) tested 17 patients with unilateral focal
thalamic lesions and 18 age-matched controls on a battery of
tests that included olfactory detection, olfactory identification,
and olfactory pleasantness estimation. These investigators
found that thalamic lesions did not affect olfactory detection
but significantly impaired olfactory identification, and
only right lesions altered olfactory hedonics of pleasant
odors.

Finally, in a recent psychophysiological study, it has
been demonstrated that patients with MDNT lesions had
varying impairments in the olfactory attention domain but
not on most general olfactory ability, thus suggesting that
the MDNT pathway plays, either a specific or generic, role
in mediating olfactory attention in humans (Tham et al.,
2011).

In addition, olfactory memory relies on the connections
with entorhinal and piriform cortices, which are
exchanging extensive information with hippocampus
(Price, 1990; Kerr et al., 2007).

Finally the associations of odors to emotional stimuli is
supported by the direct connections of OT to amygdala and from
the reciprocal connections between pyriform and entorhinal
cortex as described in animal studies.

It is worthy to note that olfactory abnormalities are present in
a wide range of neurological disorders such as, Multiple Sclerosis
(Rolet et al., 2013), Huntington disease (HD; Barrios et al., 2007),
Alzheimer disease (Ferreyra-Moyano and Barragan, 1989) and
Parkinson’s disease (PD; Doty et al., 1988; Hawkes et al., 1997,
1999).

Impairment in the sense of smell is often associated with
PD, probably due to hippocampal dopaminergic denervation
(Bohnen et al., 2008). The olfactory deficits typically occur
very early in the disease process, long before the damage in
the basal ganglia and the onset of motor-related symptoms
(Braak et al., 2004). It is well known that according to the
Braak stage, alpha-synuclein accumulation initially occurs in
the OBs and the anterior olfactory nucleus (in addition to
the dorsal motor nuclei of the IX and X cranial nerves)
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thus leading to prodromal non-motor symptoms such as
hyposmia. In addition, it is likely that central olfactory
structures such as the entorhinal and piriform cortices are
involved in the third stage of the disease (Braak et al.,
2003). However, it remains still unclear to what extent alpha-
synuclein accumulation and dopamine receptors dysfunctions
both in peripheral and central olfactory structures contribute
to the etiopathology of PD (Ubeda-Bañon et al., 2014). In
a combined [123I]β-CIT-SPECT study, Berendse et al. (2001)
have shown a sub-clinical abnormal reduction in striatal
dopamine transporter binding in asymptomatic PD patients’
relatives with quantitative olfactory dysfunction (Berendse et al.,
2001). In line with this finding, it is likely that relative of
PD patients with olfactory deficit have a 10% chance of
developing clinically manifest PD (Ponsen et al., 2004). In
addition, several PET and SPECT imaging studies in early-
stage PD patients have demonstrated correlations between
olfactory test scores and dopamine transporter levels in the
striatum and hippocampus (Siderowf et al., 2005; Bohnen et al.,
2008).

These findings further suggest that olfactory deficits may
precede clinical motor signs of PD and further studies should
be fostered to evaluate olfactory involvement as early biomarker
of the disease. In this perspective, CSD-based analysis may
help to provide robust reconstruction of olfactory system
in order to detect PD related symptoms at a very early
stage.

Recently, Rolheiser et al. (2011) revealed significant
differences of FA values in the substantia nigra and anterior
olfactory region, as the OT, between normal and PD
subjects, in a combined study of olfactory testing and DTI.
Moreover, FA reduction has also been reported in PD in
a voxel-based DTI study (Ibarretxe-Bilbao et al., 2010).
Particularly, they showed lower FA values in the primary
olfactory cortex (piriform cortex, the anterior cortical
nucleus of the amygdala and the rostral entorhinal cortex),
associated with reduced smell sensation (Ibarretxe-Bilbao et al.,
2010).

In addition, it has been demonstrated that olfactory
function is compromised in early stages of AD. Although the
pathophysiology of olfactory impairments in AD is still not
clear, it has been suggested that pathological accumulation of tau
protein in the OBs and olfactory related areas may play a key
role for the changes in olfactory identification, recognition and
olfactory detection threshold (Braak et al., 1993; Attems et al.,
2005). In line with this hypothesis, by using olfactory fMRI,
Wang et al. (2010) detected olfactory deficits in AD, showing
significant reduced activation in several olfactory areas such as
the primary olfactory cortices, the thalamus, hypothalamus and
hippocampus (Wang et al., 2010).

Early odor dysfunctions have been documented in HD as
well: indeed, odor memory impairment have been found to
occur before the onset of cognitive deficit and involuntary
movements (Moberg et al., 1987). On the other hand, several
authors have shown that HD patients had significant deficits
in the odor identification domain, but not in odor recognition
memory (Bacon Moore et al., 1999; Nordin et al., 1995). In

a voxel-based morphology study in patients with HD, it has
been revealed significant volume reductions in olfactory-related
areas such as the gyrus rectus and the parahippocampal gyrus,
in addition to a significant correlation between degeneration
of the entorhinal cortex, the caudate and thalamic nuclei,
parahippocampal gyrus and the olfactory psychophysical deficit
(Barrios et al., 2007). Concurrently to these findings, knock-in
mouse models of HD with 140 CAG repeats have shown
that early accumulation of huntingtin protein containing
aggregates occurs in the olfactory system (Menalled et al.,
2003).

Altogether, these findings suggest the need to further develop
new approaches for the investigation of the olfactory system in
patients with neurodegenerative disease both in the early and
later stages of the pathology. Our results showed that the use
of CSD-based tractography may provide a new framework to
investigate olfactory dysfunctions and brain connectivity of the
olfactory network in patients with neurodegenerative disorders.

LIMITATIONS OF THE STUDY

The present study is not prone of limitations. A technical
intrinsic weakness of tractography is the incapability to detect
the presence of synapsis and gap junctions as well as the
directionality (afferent-efferent) of the signal transmission
(Chung et al., 2011; Parker et al., 2013; Milardi et al., 2015b).

Tractography is rather a technique which provides the
likelihood of connection between two given anatomical areas,
thus giving only an indirect measure of the underlying potential
existence of an anatomical pathway and cannot be taken as
definitive evidence for either pathway.

In keeping with previous findings of our group, we
confirmed however that CSD-based tractography is a valuable
technique which allows a robust reconstruction of both short
and long white matter pathways in brain regions presenting
fibers with complex geometry (Kristo et al., 2013; Arrigo
et al., 2014; Milardi et al., 2015a; Mormina et al., 2015;
Cacciola et al., 2017) using 3T MRI scanners. This approach
can overcome most of the DTI limitations including those
related to low anisotropy crossing fibers (Parker et al.,
2013).

We were unable to detect and reconstruct the proximal part
of the OTs. This limitation may be due to: (i) the tracts splitting
up into very thin diameters fibers compared to the diffusion
weighted axial slice thickness and voxel resolution; and (ii) to
well-known susceptibility artifacts that are inherent to the area
of interest (presence of air in ethmoidal cells) in EPI sequences.

CONCLUSION

Despite the above-mentioned limitations, our work provided
anatomical in vivo reconstruction of the extensive olfactory
network by using CSD diffusion model. Such non-invasive
mapping should be further improved with higher spatial
resolution imaging in order to provide not only a qualitative
assessment of the olfactory system, but also a quantitative
evaluation of diffusion parameters. A similar approach
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could be used in the near future to explore the early
involvement of olfaction in several neurodegenerative
disorders.
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FIGURE S1 | Olfactory lateral stria. Sagittal (A) and axial (B) views of the
proximal portion of the lateral stria. Coronal sections (C) show the entire
course of the right and left lateral striae, from the olfactory tracts (OTs) to the
amygdala, entorhinal and pyriform cortices.

FIGURE S2 | Olfactory direct pathway. Sagittal (A) and axial (B) views of
the pathway at the level of the medial orbitofrontal cortex (OFC). Coronal
sections (C) show the entire course of the right and left olfactory direct
pathway connecting the amygdala, entorhinal and piriform cortices with the
medial OFC.
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