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Epilepsy is a paroxysmal neurological disorder characterized by recurrent and
unprovoked seizures affecting approximately 50 million people worldwide. Cognitive
dysfunction induced by seizures is a severe comorbidity of epilepsy and epilepsy
syndromes and reduces patients’ quality of life. Seizures, along with accompanying
histopathological and pathophysiological changes, are associated with cognitive
comorbidities. Advances in imaging technology and computing allow anatomical and
topological changes in neural networks to be visualized. Anatomical components
including the hippocampus, amygdala, cortex, corpus callosum (CC), cerebellum and
white matter (WM) are the fundamental components of seizure- and cognition-related
topological networks. Damage to these structures and their substructures results in
worsening of epilepsy symptoms and cognitive dysfunction. In this review article, we
survey structural, network changes and topological alteration in different regions of the
brain and in different epilepsy and epileptic syndromes, and discuss what these changes
may mean for cognitive outcomes related to these disease states.
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INTRODUCTION

Epilepsy is a prevalent neurological disorder characterized by recurrent seizures. An important
complication of epilepsy and epilepsy syndromes is disruption in cognitive ability. Understanding
how cognitive dysfunction occurs will not only improve the quality of life for patients, but will also
help elucidate neural mechanisms underlying cognition.

There are many forms of epilepsy, broadly characterized as involving partial or generalized
seizures. Epilepsy syndromes are defined by associated clinical manifestations. Childhood absence
epilepsy (CAE), for instance, is characterized by brief, consciousness-impairing staring spells and
3-Hz discharges on EEG.

Some forms of epilepsy and epilepsy syndromes may lead to cognitive impairment, further
compounding disease burden. Yet, how cognitive impairment relates to seizures is unclear. How
do seizures impact cognition? What are the neural mechanisms mediating this relationship? These
are important questions being addressed with investigation on multiple levels.

In this review article, we focus on changes to neuroanatomy and neural networks that alter
the topological relationship between brain regions. These alterations result in greater seizure
susceptibility and cognitive dysfunction. Furthermore, increased seizure severity causes further
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TABLE 1 | A list of abbreviations used in this review article.

Abbreviation Meaning

AHC Amygdalo-hippocampal complex
BECTS Benign epilepsy with centro-temporal spikes
CA Cornu ammonis (region of the hippocampus)
CAE Childhood absence epilepsy
CC corpus callosum
CPS Complex partial seizure
DMN Default mode network
DTI Diffuse tensor imaging
ELS Early life seizures
FDG-PET Fluorodeoxyglucose positron emission tomography
FLE Frontal lobe epilepsy
FS Febrile seizure
HS Hippocampal sclerosis
JME Juvenile myoclonus epilepsy
LSTGp Left posterior superior temporal gyrus
mTLE Medial temporal lobe epilepsy
PFC Prefrontal cortex
rTMS Repetitive transcranial magnetic stimulation
SMA Supplemental motor area
STP Short term potentiation
TLE Temporal lobe epilepsy
WM White matter

topological changes, thus establishing a vicious cycle. In this
survey, we focus on specific brain areas involved in seizure
initiation and cognition and epilepsy syndromes associated
with cognitive impairment. Abbreviations used throughout this
review article are in Table 1. A summary of structural and
functional anatomic findings associated with major epilepsy
syndromes covered in this review article can be found in Table 2.

ANATOMICAL BASIS OF
SEIZURE-RELATED COGNITIVE
OUTCOMES

Hippocampal Dysfunction
Animal and clinical studies show that seizures can result
in hippocampal dysfunction associated with cognitive and
behavioral disturbances in both the developing and mature
brain (Alvarez et al., 2014). The hippocampus plays an
important role in memory formation. Signals from the occipital,
temporal and parietal lobes, posterior cingulated cortex and the
contralateral hippocampus converge on hippocampal neurons
through the medial and lateral perforant pathways and through
the anterior commissure (Aggleton, 2012). Additional synaptic
integration arises from local recurrent excitatory networks,
where feedforward and inhibitory connections contribute to the
acquisition of new episodic memories (Casanova et al., 2014).

Seizures have been shown to cause aberrant neurogenesis
in the hippocampus and form faulty circuits that disrupt
hippocampal function (Fournier et al., 2013). Aberrant
neurogenesis, including neural progenitor proliferation,
ectopic granule cell production and mossy fiber sprouting
after seizures, are harmful to new memory formation (Arnold
et al., 2016). In a genetic mouse model, blocking ectopic granule
cell production using Nestin-δ-HSV-thymidine kinase-EGFP
before acute seizures reduces the frequency of spontaneous

recurrent seizures and improves epilepsy-associated memory
deficit (Cho et al., 2015). In addition, brief recurrent seizures
induced by flurothyl and the tetanus toxin result in dramatic
impairment of hippocampus-based spatial learning and memory
(Nishimura et al., 2011). Place cells in cornu ammonis 1 (CA1)
are unable to form a stable spatial map when animals experience
early life seizures (ELS; Karnam et al., 2009). In the long-term
kindling rat model, seizures during cell maturation prevent
newborn neurons from integrating properly into hippocampal
circuits that are important for memory formation. Reducing
activation of adult-born neurons may be a therapeutic strategy to
reverse cognitive deficits in epileptic syndromes (Fournier et al.,
2013).

In temporal lobe epilepsy (TLE), extra-hippocampal
volume abnormalities are observed in association with
cognitive dysfunction. Chronic TLE is characterized by extra-
hippocampal brain abnormality and cognitive impairment
in both memory and non-memory domains (Tuchscherer
et al., 2010). Baseline thalamic volumes of TLE patients are
lower than that of controls and executive functioning is poorer
in the TLE group even after correcting for hippocampal
and frontal lobe volumes (Tuchscherer et al., 2010). The
thalamus is involved in the evolution and propagation of
partial seizures and plays a role in cognition. The anterior
thalamus interacts with the hippocampus and cortex and
functions in memory processing and spatial navigation, the
intralaminar thalamic nucleus and the parafascicular thalamus
are involved in behavioral flexibility, and the mediodorsal
thalamic nucleus in goal-directed behavior (Saniya et al., 2017).
The amygdala also affects cognitive tasks such as emotional
appraisal. The lateral amygdala, which when stimulated
causes experiential symptoms in TLE patients, projects to
the hippocampus and temporal neocortex, and selective
amygdalotomy can be used to effectively treat TLE (Saniya et al.,
2017).

Plasticity and metaplasticity are thought to be fundamental
to learning and memory and may be involved in epilepsy.
Synaptic plasticity is modulated by prior synaptic activity,
a phenomenon termed metaplasticity (Zhang and Luo,
2011). Dysfunction of plasticity and metaplasticity in the
hippocampus is implicated in febrile seizure (FS), a common
childhood episode that can impair cognitive function
(Zhang and Luo, 2011). FS impairs metaplasticity of the
lateral perforant path of the rat hippocampus without
affecting long-term potentiation, suggesting that FS may
cause dysfunction in the excitatory status of other pathways
that ultimately lead to brain damage (Zhang and Luo,
2011).

In the following sections, we further explore the relationship
between seizures and hippocampal dysfunction, specifically
focusing onHippocampal sclerosis (HS), dendritic pathology and
cortical alterations.

Hippocampal Sclerosis
HS is a pathological development associated with benign
and drug-resistant mTLE and is involved in epilepsy-related
cognitive dysfunction (Blumcke et al., 2012). Unilateral HS
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TABLE 2 | Structural and functional anatomic changes involved in the epilepsy syndromes covered in this review article.

Condition Structural Functional

Early life seizures
Neuronal injury in l. septal nuclei, amygdala, v.
subiculum/CA1

CA1 unable to form spatial mapPrefrontal cortex short term
potentiation alterations (LII/LIII-to-LV and LV-to-LV)

Temporal lobe epilepsy Volume loss in thalamus, hippocampus, cerebellum
Temporal and frontal cortical thinning (only frontal in
some studies)
With postictal psychosis: prefrontal and temporal
thickening

Lateral amygdala stimulation causes experiential symptoms
White matter abnormalities in a. and m. temporal, ips. cerebellum,
p. callosum, con. frontoparietal
Interictal hypometabolism in epileptic region
Poorly segregated cognitive modules

Temporal lobe epilepsy with
hippocampal sclerosis

Neuronal loss and gliosis centered around CA1
Granule cell dispersion and loss and sprouting of
interneurons in dentate gyrus
Mesiotemporal cortex sclerosis, neuronal loss, gliosis
Increase in complexity of temporal and frontal cortical
folding
Cortical thinning in regions connected with
hippocampus

Decrease connectivity between amygdalo-hippocampal complex
and bil. v. prefrontal, temporal pole, con. p. cingulate; Increase
connectivity with a. cingulate, d. m. prefrontal, bil. temporo-parietal
junction
Increased synchronization in ips. parahippocampus, midbrain,
insula, callosum, bil. sensorimotor cortex, frontoparietal subcortical
structures; Decreased synchronization in cerebellum, precuneus, p.
cingulate, bil. i. l. parietal, m. PFC

Frontal lobe epilepsy Frontal cortical volume loss in children for
left FLE: (ips) s. frontal, paracentral, precuneus,
cingulate, i. parietal, supramarginal, postcentral, s.
temporal (con) s. and m. frontal, m. orbitofrontal,
supramarginal, postcentral, s. temporal banks,
parahippocampus;
right FLE: (ips) precentral, postcentral, transverse
temporal, parahippocampus, lingual, l. occipital (con)
s. front, i. parietal, postcentral, s. temporal, p.
cingulate, lingual

Frontal, temporal, parietal hypometabolism

Juvenile myoclonic epilepsy Gray matter changes in s. m. frontal, p. cingulate and
a. callosum
Gray matter reduction in supplementary motor area
and p. cingulate

White matter abnormalities in bil. a. and s. corona radiata, callosum
genu and body, cingulum-temporal connections, p. parietal, and
frontal
Reduced connectivity between prefrontal and frontopolar regions;
Increased connectivity between occipital cortex and supplementary
motor area
Hyperconnectivity in subnetwork involving primary motor cortex,
precuneus, cerebellum lobules IV and V, basal ganglia, bil.
parietal/postcentral, subcortical regions and right hippocampus

Childhood absence epilepsy White matter abnormalities in bil. thalamus, a. callosum, upper
brainstem, prefrontal, a. cingulate, parietal, p. cerebellum, bil.
putamen, bil. p. internal capsule
Altered whole-brain topology
Impaired subcortical and orbitofrontal subnetworks
Microstructural changes in callosum and bil. precuneus

Some changes span both categories, in which case we classified it according to its dominant feature. Abbreviations used are positional: a-anterior, p-posterior, v-ventral,
d-dorsal, s-superior, i-inferior, l-lateral, m-medial, ips-ipsilateral, con-contralateral, bil-bilateral. Italicized text are animal studies.

is the most frequent mTLE pathological change, observed in
60%–80% of mTLE patients (Berkovic et al., 1995). HS is
also observed in patients who suffer from neurodegenerative
diseases including Alzheimer’s disease and fronto-temporal lobe
dementia (Bandopadhyay et al., 2014).

Histologically, epileptic HS exhibits a consistent pattern
of neuronal loss and gliosis centered on the CA1 subfield
and a more variable loss in CA4 and other subfields
(Thom, 2009). Other features seen in epileptic HS include
the dispersion of the granule cell layer of the dentate
gyrus and sprouting of mossy fiber axons (Schmeiser et al.,
2017). Loss and sprouting of dentate gyrus interneurons in
either a unilateral or bilateral pattern are also observed in
post mortem (Martinian et al., 2012; Thom et al., 2012).
Interneuronal axon sprouting is a functional process related to
network changes through synaptic re-organization (Maglóczky,
2010).

In unilateral mTLE with HS, seizures can induce effective
connectivity alterations between the non-epileptic amygdalo-
hippocampal complex (AHC) and the rest of human brain
(Trotta et al., 2013). These changes include a significant
decrease in connectivity between the non-epileptic AHC and
the bilateral ventral prefrontal cortical areas, the temporal
pole and the posterior cingulated cortex contralateral to
HS, and a significant increase in connectivity between the
non-epileptic AHC and midline structures such as the
anterior cingulate and dorsal medial prefrontal cortices,
as well as the bilateral temporo-parietal junction (Trotta
et al., 2013). Connectivity alterations also exist between
the non-epileptic AHC and some limbic and default mode
network (DMN) areas. These changes may account for
the emotional, cognitive and decision-making impairment
that occur frequently in mTLE patients (Trotta et al.,
2013).
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Dendritic Pathology
Abnormalities in dendritic spines are often observed in
brain specimens from epilepsy patients and animal models
of epilepsy (Bartsch et al., 2010). Dendritic spine density
progressively decreases with increasing duration of infancy- or
childhood-onset epilepsy (Casanova et al., 2014). However, the
relationship between dendritic pathology and epileptogenesis
and cognitive deficits is complex (Wong and Guo, 2013).

Dendritic spines are small actin rich dendritic protrusions
that receive excitatory input from axons and presynaptic signals.
They are the major sites of contact for synapsing neurons and
provide a metric for the number and strength of signaling
connections between the elements of a functional neuronal
circuit (Mancuso et al., 2014). Epilepsy or seizures damage
these structures, thus contributing to progressive epileptogenesis,
decreased seizure thresholds and learning and memory problems
(Wong and Guo, 2013). In turn, dendritic spine abnormalities
can promote hyperexcitability in circuits, further worsening
the epilepsy and associated cognitive dysfunction. Using a
morphologically and biophysically realistic model of a bursting
layer 5 pyramidal cell from the cat visual cortex, van Elburg and
van Ooyen (2010) showed that alterations in size or topology of
pyramidal cell morphology, such as shortening or lengthening
the dendritic tree, or even just modifying the pattern in which the
branches in the tree are connected, may change neuronal burst
firing and affect information processing and cognition. This
resembles the neuronal mechanism seen in Alzheimer’s disease,
mental retardation, epilepsy and chronic stress (van Elburg and
van Ooyen, 2010).

Recurrent ELS may suppress dendrite growth by impairing
the addition of new branches and/or impairing the growth of
existing branches (Casanova et al., 2012). Apical and basilar
dendrites appear to respond differently to seizures. Recurrent
ELS do not affect the length or branch number of apical dendrites
but reduce that of basilar dendrites in mouse models (Nishimura
et al., 2011; Yang et al., 2015). The latter may reduce anatomical
and molecular substrates for learning and memory. Even though
apical dendrite morphology appear unaffected, seizures may
still produce activity-dependent alterations in synaptic efficacy
and affect aspects of hippocampal synaptic plasticity, such as
long-term potentiation and depression, which are thought to
form the cellular basis for hippocampal learning and memory
(Alarcon et al., 2006).

Interestingly, the effect of seizures on dendrite anatomy
and spatial learning appears to be age-dependent. The effects
mentioned above are absent when seizures are induced in
older rats. Thus, there may exist a neurodevelopmental time
window during which dendritic growth and maintenance are
particularly vulnerable to seizures. This would explain the
cognitive impairment seen in children with epilepsy and in adult
patients who have had early-onset epilepsy (Hermann et al.,
2008).

Cortical Changes
We next discuss cortical changes in TLE, frontal lobe epilepsy
(FLE), ELS and juvenile myoclonus epilepsy (JME). In TLE,
cortical parameters including area, thickness and volume are

affected, and cognitive impairment in TLE is associated with the
severity of cortical abnormalities (Gutierrez-Galve et al., 2012).
Many studies report cortical abnormalities in the temporal and
frontal regions (Raj et al., 2010; Voets et al., 2011) while some
found abnormalities only in the frontal lobe (Gutierrez-Galve
et al., 2012). This discrepancy may arise from differences in
inclusion criteria and methodology of the studies, thus more
evidence is needed for clarification. In general, in TLE with or
without HS, cortical thinning is associated with loss of volume in
the hippocampus and anterior thalamus (Mueller et al., 2010).

TLE patients with HS is associated with neuropathology
primarily in the frontotemporal cortex, which includes
mesiotemporal sclerosis, neuronal loss and gliosis (Kaaden et al.,
2011). These extratemporal cortical abnormalities contribute
to patterns of cognitive impairment in TLE, including IQ
decline and deficits in language, executive and motor functions
(Hermann et al., 2009; Keller et al., 2009; Tuchscherer et al.,
2010). Surface-based morphometry reveals an increase in the
complexity of temporal and frontal cortical folding distant from
the epileptic focus (Voets et al., 2011) and widespread cortical
thinning in regions connected with the hippocampus (Raj et al.,
2010).

In TLE with postictal psychosis, cortical thickness is increased
in prefrontal and temporal regions (DuBois et al., 2011). Cortical
abnormalities in extratemporal areas in TLE patients may not
only explain the observed cognitive impairment, but also reflect
the spread of seizure activity through the thalamus in addition to
limbic pathways (Bernhardt et al., 2008).

FLE and its corresponding cognitive outcomes are
associated with changes in cortical parameters. A study
using 18F-Fluorodeoxyglucose positron emission tomography
(FDG-PET) in children with FLE shows widespread
hypometabolism not only in the frontal lobe but also in the
extrafrontal cortex, including the temporal and parietal cortices
(da Silva et al., 1997). This suggests that, similar to TLE, FLE
seizures also spread from a single epileptic focus to brain regions
via pathways including cortico-cortical connections.

Frontal cortical volumes are smaller in children with
intractable FLE than in healthy children (Lawson et al.,
2002) with similar changes seen in extrafrontal areas (Widjaja
et al., 2011), which may explain the complicated cognitive
dysfunction in intractable FLE. Surface-based morphometry
shows that in children with left FLE, cortical thinning is
present in the left superior frontal, paracentral, precuneus,
cingulate, inferior parietal, supramarginal, postcentral and
superior temporal gyri, as well as in the right superior and
middle frontal, medial orbitofrontal, supramarginal, postcentral,
banks of superior temporal sulcus and parahippocampal gyri.
Conversely, in children with right FLE, cortical thinning is
present in the right precentral, postcentral, transverse temporal,
parahippocampal, lingual and lateral occipital gyri, as well as in
the left superior frontal, inferior parietal, postcentral, superior
temporal, posterior cingulate and lingual gyri (Widjaja et al.,
2011). Widespread cortical thinning and gray matter volume
reduction appear to be more prominent in left FLE than in
right FLE (Widjaja et al., 2011). We note that although cortical
abnormalities are observed in FLE, there is currently no direct
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evidence linking these changes and cognitive dysfunction in FLE
patients.

The prefrontal cortex (PFC) is an important brain region
for neonatal seizure-related cognitive impairment, as in the
case of ELS. Anatomical and electrophysiological studies show
that direct connections between the hippocampus and medial
PFC as part of the hippocampo-PFC circuit play an important
role in aspects of learning and memory processing including
information consolidation and working memory (Preston and
Eichenbaum, 2013). Even a single episode of neonatal seizure
can permanently alter synaptic organization and transmission
(Isaeva et al., 2006) in the CA1 region of the hippocampus
and impair spatial learning and working memory (Kleen et al.,
2011b). Animals that experience ELS display a deficit in
behavioral flexibility associated with PFC architectural changes
(Kleen et al., 2011a). ELS may also result in anxiety-like
behavior and impaired spatial learning and memory during the
developmental stage (Mlsna and Koh, 2013). These behavioral
deficits are temporally correlated with the presence of neuronal
injury in the following regions involved in modulation of
the hypothalamic-pituitary-adrenal stress response (Mlsna and
Koh, 2013): (1) the lateral septal nuclei which is involved in
motivational and affective function; (2) the amygdala which
is involved in anxiety, threat-induced behavioral arousal and
emotion; and (3) the ventral subiculum/CA1 which is involved
in spatial learning (Mlsna and Koh, 2013).

The functional deficits with ELS may result from short
term potentiation (STP) alterations in the PFC. STP of the
PFC is important to its functions including short-term working
memory, information processing and decision-making processes
(Hernan et al., 2013). Using a flurothyl mouse model of ELS,
it was observed that recurrent seizures early in development
affect STP at Layer II/III (LII/III)-to-LV and LV-to-LV networks
in the PFC (Hernan et al., 2013). Both networks are involved
in working memory tasks: the apical dendrites of LV neurons
serve as the receiver for feedback information from thalamic
inputs as well as from cortico-cortical connections in LII/III
(Kuroda et al., 1998), and the basal dendrites are integral to
the interconnected network of deep pyramidal neurons whose
continued firing during the delayed phase of a working memory
task is thought to underlie short-term working memory (Hernan
et al., 2013). Therefore, alterations in STP in the PFC induced by
ELS may lead to cognitive deficits (Deng et al., 2011), particularly
in spatial learning and working memory.

JME-related cognitive impairment is associated with cortical
abnormalities. fMRI and EEG show gray matter volume
alterations in the superior midline frontal regions in JME,
with reduced volume seen in some studies (O’Muircheartaigh
et al., 2011) and increased volume in others (Koepp et al.,
2013). Gray matter of the posterior cingulate and the anterior
callosum regions are affected in JME and may contribute
to reduction in cognitive performance demonstrated in letter
fluency and similarity tasks, concordant with JME frontal
lobe dysfunctions (Sonmez et al., 2004). Generally speaking,
JME patients have subtle focal cortical abnormalities and
gray matter reduction in the mesial frontal cortex, especially
the supplementary motor area (SMA) and posterior cingulate

cortex. Cognitively, they exhibit impaired verbal fluency,
comprehension and expression, as well as impaired nonverbal
memory and mental flexibility (O’Muircheartaigh et al., 2011).
White matter (WM) abnormalities in these regions and networks
are also observed, which we further discuss in the next
section.

Besides the cortex, seizure-induced abnormalities in the
callosal and cerebellar networks affect cognitive function. In
TLE, Schneider et al. (2014) found that anterior and mid-callosal
corpus callosum (CC) changes affect cognitive performance.
In chronic intractable TLE patients with intermittent explosive
disorders, total brain and cerebellar volumes, particularly in the
left cerebellum, are influenced by patient age and duration of
epilepsy. These alterations in total brain and cerebellar volumes
are strongly associated with cognitive impairment, whereas
alterations in hippocampal volume have a minor influence on
cognitive parameters (Hellwig et al., 2013).

White Matter Changes
WM is composed of glial cells and myelinated axons and serves
as signal transmitter from one cerebral region to another or
to lower brain centers. Diffusion tensor imaging (DTI) reveals
the following associations between WM in different regions of
the brain and cognitive function: (1) right temporal WM with
language and executive function; (2) the CC with intelligence
and language; and (3) left parietal WM with language (Kim
et al., 2012; Widjaja et al., 2013a). WM impairment may reflect
connectivity disruptions in cortical processing networks that
are necessary for cognitive development (Widjaja et al., 2013a).
Here we discuss specific WM changes seen in JME, chronic
TLE and CAE.

In patients with JME, WM abnormalities are seen in the
bilateral anterior and superior corona radiata, genu and body of
CC, cingulum connections to the temporal cortex (Seltzer and
Pandya, 2009), posterior parietal regions (part of the splenium)
and multiple frontal regions which result in widespread
interconnection disturbances in the frontal lobe (Kim et al.,
2012). These structural abnormalities in the thalamofrontal
network may account for JME patients’ poor performance in
frontal functions.

Patients with chronic epilepsy may have cognitive
comorbidities and widespread network abnormalities outside the
epileptic zone, such as inWM areas that affect cognitive function
and global intelligence (Vaessen et al., 2012). In chronic TLE
patients, WM abnormalities are seen in the anterior temporal
lobe, mesial temporal lobe, ipsilateral cerebellum, posterior
regions of the CC, and the frontoparietal lobe contralateral to
the side of seizure onset (Riley et al., 2010; Rodríguez-Cruces
et al., 2018). Abnormalities in the anterior temporal lobe are
correlated with delayed memory, the mesial temporal lobe with
immediate memory, and the CC with earlier age of seizure
onset (Riley et al., 2010). Although chronic epileptic patients
with regional or multi-regional WM impairment usually exhibit
severe and complicated cognitive impairment, their whole brain
WM volume does not differ from that of healthy controls or of
patients with little to no cognitive impairment (Vaessen et al.,
2012). This suggests that impaired WM connectivity rather
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than WM volumetric change is involved in cognitive decline in
patients with chronic epilepsy.

WM changes are observed in patients with CAE, a syndrome
of idiopathic generalized epilepsy. In untreated CAE patients,
there are significant WM abnormalities in the bilateral thalamus,
anterior CC, upper brainstem, prefrontal areas, anterior
cingulate, parietal areas, posterior cerebellar hemispheres, and
in subcortical structures including the bilateral putamen and
bilateral posterior limbs of the internal capsule. These changes
point to impairment of WM integrity in the basal ganglia-
thalamocortical circuit of drug-naïve CAE patients, which may
result in increased cortical excitability and cognitive, linguistic
and behavioral/emotional deficits during and between seizures
(Yang et al., 2012).

NETWORK AND TOPOLOGICAL BASIS OF
SEIZURE-RELATED COGNITIVE
OUTCOMES

Networks
Epileptogenesis engages multiple brain networks. The
functionality of these networks is based on the level of
synchronous neural activity or structural correlates between
different areas through a complex pattern of increased or
decreased connectivity (Stam and van Straaten, 2012). The
exact number of networks involved and how they interact in
epileptogenesis is unclear. Analysis of known networks provides
information on: (1) the onset, propagation and termination of
seizures (Kramer et al., 2008); (2) the preictal, ictal, interictal and
postictal state of functional networks in epilepsy (Horstmann
et al., 2010; van Dellen et al., 2012); (3) alterations in structural
networks in epilepsy (Bernhardt et al., 2011); and (4)mechanisms
of seizure comorbidities such as cognitive decline and behavioral
deficits (Vlooswijk et al., 2011; Vaessen et al., 2012). For a
detailed discussion on the functional and structural networks
involved and topological changes in epilepsy, we recommend
reviews by Halász (2010a,b), van Diessen et al. (2013) and Wang
et al. (2015). Here we discuss some of the networks associated
with seizure-related cognitive dysfunction focusing on the DMN,
adaptive networks and the thalamo-frontocortical network.

The Default Mode Network: A Resting-State Network
The DMN consists of brain regions that are activated during the
resting state and during internally directed cognition (Karmonik
et al., 2010) and deactivated during task engagement (Danielson
et al., 2011). It has primary nodes (sites or brain areas) in the
precuneus/posterior cingulate and the medial frontal and lateral
parietal cortices involved in introspective and social cognitive
functions (Danielson et al., 2011). The DMN is abnormal in
several types of epilepsy, which can be either the cause or the
result of seizure-related cognitive comorbidities.

In children with refractory epilepsy, decreased DMN
connectivity is seen in the posterior cingulate cortex/precuneus,
bilateral lateral parietal cortex, and the anterior and
mid-cingulate cortex (Widjaja et al., 2013b). In patients
with medial temporal lobe epilepsy (mTLE) and HS, regional

synchronization is significantly increased in the ipsilateral
parahippocampal gyrus, midbrain, insula, CC, bilateral
sensorimotor cortex and frontoparietal subcortical structures,
but is decreased in the cerebellum and the DMN, specifically in
the precuneus and posterior cingulate gyrus, bilateral inferior
lateral parietal, and mesial PFC (Zeng et al., 2013). In absence
patients, functional connectivity is increased between the frontal,
parietal and temporal lobes but is decreased in the DMN,
which may result in cognitive mental impairment and loss of
consciousness during an absence seizure (Luo et al., 2011; Li
et al., 2015).

DMN abnormalities are seen during resting interictal periods
without interictal epileptiform discharges (Luo et al., 2011). In
patients with complex partial seizures (CPS), the average volume
of activated brain regions is 98% higher than that of controls,
and 81% of activated areas are in cognitive regions of the frontal
and temporal lobes, anterior cingulate cortex, precuneus and
cuneus, while the remaining 19% are in the precentral gyrus, the
superior and medial occipital gyrus, the parahippocampal gyrus,
the inferior parietal lobule and the angular gyrus (Karmonik
et al., 2010). In CPS patients, large areas of activation occur in the
frontal and temporal lobes, as well as the cuneus and precuneus,
as opposed to the control group where activation is found mostly
in the parietal lobe (Karmonik et al., 2010). These results suggest
that switching from goal-directed behavior to the default mode
in CPS patients is impaired.

In summary, complex partial, generalized tonic-clonic and
absence seizures can decrease the activity of the DMN (Danielson
et al., 2011). While disorders in other regions may contribute
to epileptogenesis and propagation, dysfunction in the DMN
appears to be responsible for widespread functional cognitive
impairment (Zeng et al., 2013).

Brain Adaptive Networks and Connectivities
There is evidence that the brain undergoes structural and
connectivity adaptations in response to seizures to preserve
cognitive function. We present some of the evidence in this
section, with a focus on language preservation in seizures of
the left posterior superior temporal gyrus (LSTGp), striatal
changes in benign epilepsy with centro-temporal spikes (BECTS)
and response to hypometabolism in temporal and frontal lobe
seizures.

When the LSTGp is temporarily impaired by a seizure,
brain trauma or stroke, the brain adapts to maintain language
comprehension ability. Data from repetitive transcranial
magnetic stimulation (rTMS) with fMRI studies suggest that this
adaptation consists of two parts: (1) increased synchronization
between compensating regions coupled with decreased
synchronization within the primary language network; and
(2) decreased activation at the rTMS site as well as in distal
regions followed by a recovery process. Adaptation involves
three synchronization centers: the contralateral homolog of the
area receiving rTMS (i. e. the right STGp), areas adjacent to
the rTMS site and the medial frontal gyrus, a region involved
in discourse monitoring (Mason et al., 2014). Because of such
insights on the role of the language network in epilepsy-related
cognitive outcomes, particularly its adaptive response to injury,
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this network may be a therapeutic target to prevent cognitive
impairment in epilepsy.

BECTS is a benign epilepsy syndrome involving the Rolandic
area. It is the most common childhood epilepsy syndrome
and is considered a neurodevelopmental disorder with an
underlying genetic and anatomical basis (Lin et al., 2012).
Children with BECTS show aberrant volume and morphology in
subcortical regions involved in motor processing and executive
functions with reduced functional connectivity in the Rolandic
region. A meta-analysis concluded that BECTS has poor
cognition outcomes for language ability, which involves visual
processing, auditory processing, single-word reading, expressive
and receptive language, verbal fluency, processing speed, fluid
reasoning and verbal knowledge (Wickens et al., 2017). Structural
changes include putamen hypertrophy, dorsoventral elongation
of the left caudate and bilateral putamen, and subnuclei
expansion in the ventral and dorsal striatum (Lin et al., 2012).
But these alterations may not cause cognitive deterioration
but instead be cognitively adaptive, as larger putamen volumes
have been linked to better cognitive performance (Lin et al.,
2012).

FDG-PET show that 60%–95% of unilateral mTLE patients
have significant hypometabolism in the epileptic temporal
regions during the interictal period (Trotta et al., 2011).
Significant metabolic changes have concomitantly been observed
in the surrounding and remote brain regions, including the
lateral temporal areas, PFC, frontal lobe, thalamus and even
some areas within the DMN. These structures are involved
in epilepsy-induced reorganization of neuronal networks and
effective connectivity within the mesiotemporal regions or other
distant brain areas (Zhang et al., 2010), the latter accounting for
some of the cognitive impairment observed in mTLE (Takaya
et al., 2009). Meanwhile, functional reorganization/plasticity in
the non-epileptic temporal lobe may represent a compensatory
mechanism sustaining key cognitive functions such as memory
or speech (Bettus et al., 2009; Trotta et al., 2011).

Unlike mTLE, there is no consistent pattern of cognitive
impairment seen in FLE patients, although some evidence
support the notion that cognitive function is impaired
(O’Muircheartaigh and Richardson, 2012). Given that the
frontal lobes consist a large proportion of the cerebral cortex
and contains rich connections with other brain regions, it
is not surprising to either find or not find structure-related
cognitive deficits in FLE (O’Muircheartaigh and Richardson,
2012).

Thalamo-Frontocortical Network
Thalamo-frontocortical network disorders are seen in JME,
which is the most common idiopathic epilepsy syndrome
and is considered a benign seizure disorder (Wandschneider
et al., 2012). The JME phenotype includes a frontal lobe
type neuropsychological profile, photosensitivity, hyperexcitable
motor cortex, and abnormal functional connectivity of the
motor cortex and SMA (Vollmar et al., 2012). Advanced
imaging studies have identified functional and structural
abnormalities in the frontal cortex and thalamus in JME patients
(Wandschneider et al., 2012). Connectivity is reduced between

prefrontal and frontopolar regions and increased between the
occipital cortex and the SMA (Vollmar et al., 2012). This
may form the anatomical basis of cognitive triggering of
motor seizures in JME, as well as the link between seizure
semiology, neurophysiology, neuropsychology and imaging
findings (Vollmar et al., 2012). A subnetwork comprising the
primary motor cortex, precuneus, cerebellum lobules IV and
V, basal ganglia, bilateral parietal/postcentral gyrus, subcortical
regions and right hippocampus is hyperconnected in JME
patients, which is correlated with decreased auditory memory,
verbal fluency and executive function (Caeyenberghs et al., 2015).
Of note, the highly heritable nature of JME, along with the
cognitive dysfunction observed in otherwise healthy siblings of
JME patients, supports the concept of a genetically determined
thalamo-frontocortical network dysfunction (Wandschneider
et al., 2012).

Topology
Modern brainmapping techniques such as fMRI andDTI suggest
that brain function depends on large-scale networks rather
than isolated brain areas. Disorders in components of these
networks, even a small change in neuronal network topology,
can break the network balance, induce explosive synchronization
transition and activity propagation, and lead to epileptic seizures
(Wang et al., 2017). A topological view of brain functioning
borrows concepts from its mathematical counterpart, concepts
such as strength, path length, clustering coefficient and
efficiency, global efficiency, local efficiency, modularity, hub
distribution and small-world. Study methodologies such as
region of interest approach, unbiased whole brain approach and
graph theoretical analysis are used to study the correlations
between network metrics and clinical characteristics. Within this
framework, brain images are treated as a close topological space
consisting of functional and structural networks or sub-networks
associated with cognitive and behavioral functions. Seizures, even
psychogenic non-epileptic seizures associated with attention,
emotion and sensorimotor systems (Ding et al., 2014), induce
an elastic-like deformation in the brain, resulting in alterations
of the connectedness, continuity and boundary of areas and
networks. In this section, we briefly discuss topological changes
in the brain on the network level and the neuronal level.

Recent studies examined topological changes in functional
and structural networks and sub-networks in epilepsy and their
relation to seizures and seizure-related cognitive outcomes.
Bonilha et al. (2014) found that children with new-onset epilepsy
have a suboptimal topological structural organization with
enhanced network segregation and reduced global integration.
This results in: (1) structural reorganization that involves the
redistribution of nodes from the posterior to the anterior head
regions; and (2) lower IQ and poorer executive function in these
children (Bonilha et al., 2014).

The most common epilepsy syndrome in children, CAE,
is shown to have altered whole-brain structural network
topology, impaired subnetworks in subcortical and orbitofrontal
structures, microstructural changes in the genu of the CC and
bilateral precuneus. The bilateral precuneus is a core area in
the DMN and involved in processing of visuospatial imagery,
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episodic memory retrieval and consciousness (Liang et al., 2016;
Qiu et al., 2017).

Others have found topological alterations in cognition-
related brain domains in TLE. Using graph analysis, Kellermann
et al. (2016) divided functional brain domains into several
modules. They found that TLE patients have poorly segregated
cognitive modules compared to non-TLE controls. In the
control group, there are numerous segregated, small modules
related to cognitive functioning that include: (1) verbal memory;
(2) language, perception and intelligence; (3) speed and fluency;
and (4) visual memory and executive function, whereas in
TLE patients there are fewer, larger and more mixed modules
including: (1) verbal memory, visual memory and executive
function; (2) speed and fluency; and (3) speed, executive
function, perception, language, intelligence and nonverbal
memory (Kellermann et al., 2016). This phenomenon may
suggest a compensatory mechanism to protect brain networks
and neurocognitive function from epileptic impairment, which
may be helpful clinically for cognition training and rehabilitation
attempts.

Topological changes are also seen in the elements of the
network: neurons. Neurons display a wide range of intrinsic
firing patterns (van Elburg and van Ooyen, 2010). Burst
firing, the generation of clusters of action potentials with
short inter-spike intervals, is a relevant pattern for neuronal
signaling and synaptic plasticity and is modulated by dendritic
morphology and ion channel composition. Computational
modeling of neocortical pyramidal cells shows that it is not
only the total length of the apical dendrite but also the
topological structure of its branching pattern that influence
inter- and intra-burst spike intervals and predict whether
the cell exhibits burst firing (van Elburg and van Ooyen,
2010). Varying the topology of apical dendritic trees by
swapping branches within the tree, all the trees will have
the same total length and surface area and differ only in
the way their branches are connected. This results in wider
connections between pyramidal cells and produce firing patterns
ranging from tonic firing to strongly bursting. Only a range
of dendritic sizes supports burst firing, and this range is
modulated by dendritic topology. Alterations in the size or
topology of pyramidal cells, as seen in epilepsy, may change
neuronal burst firing patterns and thus affect higher-level
information processing and cognition (van Elburg and van
Ooyen, 2010).

Because changes in topologymay influence seizure spread and
seizure-related cognitive impairment, the following questions
may serve as future research directions: are there rules
or principles that can explain and predict seizure spread
and seizure-related cognitive outcomes? To what extent are
topological changes in multiple regions involved?

The topographical framework of viewing brain function is
still in early development. There is a need for standard analysis
methods, as different methods lead to different and sometimes
contradictory findings. For example, the definition of network
weights, such as the definition of edge weights in DTI network
analysis, can change the calculated network properties. Thus
more accurate and unified analysis should be a research focus.

CONCLUSION

There are still many unknowns in the relationship between
epileptogenesis and cognitive and topological alteration.
Mechanistic studies thus far have been performed using
animal models while observational studies are performed
on animals and human patients. Animal models have less
heterogenicity than human patients, which is advantageous in
mechanistic studies where only one or two factors are examined.
There are, however, the following limitations with animal
models: (1) human epilepsy includes acquired, idiopathic and
cryptogenic causes, whereas animal epilepsy models are mostly
induced by chemical or physical methods, which means they
cannot completely imitate the pathophysiological course of
human epilepsy; (2) chemical or physical ignition affects the
whole brain and disrupts the neurogenic niche, which makes
it difficult to parse out the contribution of specific regions or
structures to cognition; and (3) human beings have higher
intelligence and more advanced cognitive functions such as
computation, language and integrated analysis, which cannot
be studied in animal models, thus animal models are used to
study memory, social behavior and recognition. For readers
interested in chemosonbulsant-induced epilepsy and cognitive
testing in animal models, we recommend a review by Minjarez
et al. (2017).

On the other hand, complicating factors in human studies
include the following: (1) most epilepsy patients studied
are receiving antiepileptic drugs that can result in cognitive
impairment. This acts as a confounding factor when we aim
to study the direct relationship between epileptogenesis and
epilepsy-associated cognitive deficit; and (2) patients who suffer
from chronic epilepsy often have comorbid depression and
anxiety, which can result in cognitive decline.

Alterations in anatomic structure, networks and topology are
associated with seizure-related cognitive impairment. Integrating
multiscale imaging approaches such as CT, PET and MRI
for macroscopic observation, super-resolution and electron
microscopy for microscopic research, and computational tools
for analysis, studying structural or sub-structural alterations in
the brain is a promising and rewarding approach to understand
brain function and dysfunction.
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