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Reelin is a large extracellular matrix (ECM) glycoprotein secreted by several neuronal
populations in a specific manner in both the developing and the adult central nervous
system. The extent of Reelin protein distribution and its functional role in the adult
neocortex is well documented in different mammal models. However, its role in the adult
spinal cord has not been well characterized and its distribution in the rodent spinal cord
is fragmentary and has not been investigated in carnivores or primates as of yet. To gain
insight into which neuronal populations and specific circuits may be influenced by Reelin
in the adult spinal cord, we have conducted light and confocal microscopy study analysis
of Reelin-immunoreactive cell types in the adult spinal cord. Here, we describe and
compare Reelin immunoreactive cell type and distribution in the spinal cord of adult non-
human primate (macaque monkeys, Macaca mulatta), carnivore (ferret, Mustela putorius)
and rodent (rat, Rattus norvegicus). Our results show that in all three species studied,
Reelin-immunoreactive neurons are present in the intermediate gray matter, ventricular
zone and superficial dorsal horn and intermedio-lateral nucleus, while positive cells in the
Clarke nucleus are only found in rats and primates. In addition, Reelin intermediolateral
neurons colocalize with choline acetyltransferase (ChAT) only in macaque whilst motor
neurons also colocalize Reelin and ChAT in macaque, ferret and rat spinal cord. The
different expression patterns might reflect a differential role for Reelin in the pathways
involved in the coordination of locomotor activity in the fore- and hind limbs.

Keywords: primates, spinal cord, motor neurons, nociception, reelin

INTRODUCTION

Reelin is a large extracellular matrix (ECM) molecule that is crucial for the neuronal migrations
involving the laminar organization of different brain regions and sympathetic preganglionic
neurons during development (Tissir and Goffinet, 2003; Jossin, 2004; Niu et al., 2004; Yip et al.,
2007; Krüger et al., 2010). In the adult forebrain, Reelin signaling has been associated with dendritic
growth and postsynaptic events during long-term potentiation (Goffinet, 1984; Haas et al., 2002;
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Hack et al., 2002; Ohshima et al., 2002; Weeber et al., 2002; Niu
et al., 2004; Cariboni et al., 2005). Other studies have suggested an
involvement of Reelin signaling in pain processing in the spinal
cord (Villeda et al., 2006; Akopians et al., 2008;Wang et al., 2012).
However, the distribution of cells expressing Reelin in the adult
spinal cord has been examined fragmentarily, and only in rodents
(Phelps et al., 1991; Kubasak et al., 2004; Villeda et al., 2006).
Here we describe and compare Reelin immunoreactivity in the
spinal cord of adult non-human primate (Macacca nemestrina),
carnivore (Mustela putorius) and rodent (Rattus norvegicus).
Our results suggest that Reelin is involved and conserved
in adult nociceptive pathways across phylogenetically separate
mammalian species. In addition, some neurons in proprioceptive
andmotor spinal pathways also express detectable levels of Reelin
in some species, but not in others.

MATERIALS AND METHODS

Animals and Anesthetic Procedures
Spinal cord tissue from three adult macaques (Macaca
mulatta), three adult pigmented ferrets (Mustela putorius
furo) and 12 Sprague–Dawley adult rats were used for
the present study. Procedures involving live animals were
carried out in accordance with the European Community’s
Council Directive 86/609/EEC, and NIH guidelines, and
approved by our University’s Bioethics Committee. Animals
were overdosed with sodium pentobarbital (80 mg/kg,
intraperitoneal), and subsequently perfused intracardially with
saline, followed by 4% paraformaldehyde in 0.1 M phosphate
buffer (PB; pH 7.4).

Perfusion and Histology
After perfusion, spinal cords were removed and tissue was
cryoprotected by immersing in 30% sucrose in PB for 24–48 h
at 4◦C. No post-fixation was made. Blocks at three levels of the
spinal cord were obtained (cervical, thoracic and lumbar) and
parallel series of 60 µm thick were cut on a freezing microtome.
Rexed’s (1954) and Paxinos and Watson’s (1998) criteria were
followed for the delineation of the laminas. Immunolabeled slices
were compared with adjacent slices stained for Nissl substance
with Cresyl Violet.

Immunohistochemistry
Two antibodies were used for the Reelin immunohistochemistry,
G142 (Calbiochem, 1:400) and CR50 (a gift of Dr. M. Ogawa,
RIKEN, Japan), both raised in mouse. A biotinylated rabbit
anti-mouse IgG (1:200, Chemicon) was used as the secondary
antibody. The sections were subsequently incubated in
avidin-biotinylated horseradish peroxidase complex (ABC,
Vector Laboratories, Burlingame, CA, USA) in 0.1 M PBS
for 1 h, and developed with 0.01% H2O2 + 0.04% 3,3′-
diaminobenzidine tetrahydrochloride (DAB). The sections
used for immunofluorescence were incubated with G142
(Calbiochem, 1:400) and goat anti choline acetyltransferase
(ChAT, Millipore; 1:200) and fluorescent secondary antibodies:
donkey anti-goat secondary antibody (Alexa Fluor 488,
Molecular Probes, 1:1,000) and donkey anti-mouse (Alexa

Fluor 647, Molecular Probes, 1:1,000). The omission of primary
antibodies was included as a control for immunolabeling
specificity. The sections were mounted onto gelatin-coated
glass slides and air-dried. Finally, ABC developed slices
were dehydrated in graded alcohols, cleared in xylene, and
cover-slipped with DePeX. Immunofluorescent slides were
cover-slipped with Mowiol.

Imaging and Data Analysis
DAB-stained sections were examined and photographed under
bright and dark-field illumination using a Nikon 600 Eclipse
microscope under 4–40× Wide-Diameter Plan-Apochomat
Nikon objectives. Images were acquired with a Nikon DXM
1200 Brightness and gamma adjustment of the images was made
using CANVAS X software.

To analyze double-labeled sections, pictures were carried
out on optical slices made with a Leica TCS-SPII spectral
confocal microscope by sequentially applying different laser
lines (Argon-Ion; Helio-Neon) to ensure complete channel
separation. This analysis was conducted in the three different
species in all spinal cord levels: cervical, thoracic and lumbar.
We examined single 3 µm-thick optical slice per ROI where we
determined co-localization by plotting the position of the labeled
cell profiles on the single-channel confocal images and then
overlaying the plots. Parallel tissue samples developed without
primary antibodies showed no immunolabeling. Rexed’s (1954)
and Paxinos and Watson’s (1998) criteria were used for the
delineation of the laminas and the nuclei.

RESULTS

Reelin Protein Pattern in the Dorsal Horn
The studied species hold Reelin immunoreactive neurons in
the superficial layers of the dorsal horn and are scattered
throughout deeper dorsal laminas throughout all spinal levels
(Figures 1A–H). Reelin immunoreactive cells are small and
round in laminas I–II in the three species (Figures 2A–E)
and, in non-human primates and carnivores, some of the
immunoreactive cells are bigger and resemble Waldeyer
cells, a specific population of lamina I projection neurons
conveying noxious information to the brain (Puskár et al.,
2001; Figures 2C,D). Moreover, we also observe strong
immunoreactive neuropil in the superficial layers of the dorsal
horn, which is most evident in the ferret (Figures 2A,C,D).
Reelin immunoreactive cells are also found in the lateral spinal
nucleus (LSN) in rats (Figure 1C).

Pattern of Reelin Protein in the Lateral
Horn
As for the dorsal horn, immunoreactive cells are found
throughout all levels in the lateral horn. Specifically, Reelin
immunoreactivity is present in the preganglionic neurons of
the intermediate lateral nucleus (ILN) in a non-human primate,
ferret and rat and immunolocalize with ChAT in the non-human
primates (Figures 3A–L, 4D–F). As for the ferret, Reelin
immunoreactivity is low or absent in the same nucleus when
lumbar levels are reached (Figures 1B,E,I, 3D–I, 4A,B).
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FIGURE 1 | Immunoreactivity to Reelin of cervical, thoracic and lumbar
sections in macaque, ferret, and rat. Reelin immunoreactivity pattern in the
cervical (A–C), thoracic (D–F) and lumbar (H–J) sections from macaque
(A,D,H), ferret (B,E,I) and rat (C,F,J) spinal cords. (I–X) refers to the different
Rexed’s laminae (I–X) throughout the different sections. VII∗: Clarke’s column.
Calibration bar: (A,H) 500 µm; (B–G,I,J) 250 µm.

On the other hand, Reelin-positive medium-sized cells are
present in lamina VII in all studied species although, the ferret
again the exception, large Reelin-positive cells are present in
the origin of the dorsal spinocerebellar tract, the Clarke nucleus
(VII*; Figures 1D,F, 3D–F, 4C).

Pattern of Reelin Protein in the Ventral
Horn
Large Reelin-immunoreactive cells are found in laminas VIII
and IX in a non-human primate, ferret and rat (Figures 1A–J,
3A–L, 4D–F). Immunoreactive speckled neurons in lamina IX
can be found in all studied species although the expression
levels of Reelin varies amongst species. The highest expression
is found in non-human primate at all levels (Figures 1A–J,
3A–C,G–L, 4E,F). In addition, these Reelin immunoreactive cells
colocalize with ChAT in lamina IX in all three studied species
(Figures 3A–C,G–O).

DISCUSSION

We examined the Reelin immunolabeling pattern in the adult
spinal cord of three widely used laboratory model species of

FIGURE 2 | Reelin labeling pattern in the dorsal horn of the spinal cord.
(A) High magnification of box in (B). (B) Dorsal horn of the spinal cord in a rat
cervical section. (C) Detail of the box in (E). (D) Dorsal horn of the spinal cord
in a ferret cervical section. (E) Dorsal horn of the spinal cord in a macaque
cervical section. I, II, III refers to Rexed’s laminae I, II and III, respectively.
Arrows point to immunoreactive cells resembling Waldeyer cells. Calibration
bar: (B,D,E) 100 µm; (A,C) 25 µm.

carnivore, rodent and non-human primate. Our observations
reveal a basic similar pattern of Reelin immunostaining in the
three species. Numerous Reelin-positive neurons are present in
the intermediate gray matter and the superficial dorsal horn
while the dorsal and ventral commissure close to the floor plate is
devoid of Reelin-positive cells. In addition, Clarke nucleus in rats
and primates contains Reelin-reactive cells and preganglionic
cells positive for Reelin are found in the ILN of all studied
species. Finally, some motor neurons in rats and primates show
a speckled intracellular staining pattern previously observed
for the motor neurons in the medulla of non-human primate
(Martínez-Cerdeño et al., 2002).

Specificity of the Reelin Immunolabeling
Here we confirm the reported distribution of Reelin in the
spinal cord from previous studies focusing on the function
and expression of Reelin during the development of the
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FIGURE 3 | Reelin and choline acetyltransferase (ChAT) immunostaining of the ventral horn in the rat, ferret, and macaque. (A–C) Spinal cord section of a rat at a
cervical level showing ChAT colocalization with Reelin immunoreactive cells in the IMM and lamina IX, the latest corresponding to motor neurons. In contrast, Reelin
immunoreactive cells do not coexpress ChAT in the IML. (D–F) Spinal cord section of a ferret at a cervical level showing that Reelin immunoreactive cells are not
positive for ChAt in the IML. (G–I) Spinal cord section of a ferret IML at the lumbar level. (J–L) Spinal cord section of a ferret at a lumbar level showing a faint
immunoreactivity for Reelin in the motor neurons of lamina IX. (M–O) Spinal cord section of a macaque at a thoracic level showing a strong immunoreactivity for
Reelin in the motor neurons of lamina IX and in the IML. VII, IX and X correspond to laminae VII, IX and X, respectively. IML, intermediolateral nucleus; IMM,
intermedio-medial nucleus. Calibration bar: (A–C) 50 µm; (D–F) 40 µm; (G–I) 50 µm; (J–L) 75 µm; (M–O) 50 µm.
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FIGURE 4 | High magnifications of the immunoreactive cells in the ventral
and lateral horn of the spinal cord in macaque and ferret. (A) Immunoreactive
cells in the intermediate lateral nucleus (ILN) of a ferret thoracic section. (B)
Small labeled neurons in the ILN of a lateral horn in a macaque thoracic
section. Arrows indicate immunoreactive neurons. (C) Labeled neurons in the
Clarke nucleus in lamina VI of a macaque thoracic section. (D) Reelin-positive
cells located in the intermediate zone (intermedio-medial cell column) in a
ferret lumbar section. (E) The speckled appearance of Reelin positive cells
located in the ventral horn of a macaque lumbar section. (F) Distribution of
Reelin positive cells located in the lamina IX in a macaque cervical section.
Calibration bar: (A–D,F) 100 µm; (E) 25 µm.

spinal cord in rodents (Yip et al., 2000, 2004, 2007; Phelps
et al., 2002; Kubasak et al., 2004; Villeda et al., 2006)
and extend it to the adulthood in rodents, carnivores,
and macaques.

The specificity of the monoclonal antibodies used in the
present study has been extensively characterized and reported
in previous studies by our group addressing the distribution
of Reelin in the adult brain of Sprague–Dawley rats, ferrets
(Mustela Pistorius) and non-human primates (Macaca mulatta;
de Bergeyck et al., 1997; Martínez-Cerdeño and Clascá, 2002;
Martínez-Cerdeño et al., 2002, 2003; Ramos-Moreno et al., 2006),
the same animal models that are used in the present work for
characterizing the distribution of Reelin in the spinal cord. These
monoclonal antibodies are two IgGs that are directed to adjacent
but non-overlapping amino acid critical sequences for protein
function in the Reelin F-spondin-like region (Ogawa et al., 1995;
Del Río et al., 1997; Nakajima et al., 1997; de Bergeyck et al., 1998;
Borrell et al., 1999; Utsunomiya-Tate et al., 2000; Ichihara et al.,
2001; Quattrocchi et al., 2002) and possess high affinity for the
full-length protein and processed forms in rodents and primates

(de Bergeyck et al., 1998; Impagnatiello et al., 1998; Hong et al.,
2000; Lacor et al., 2000). Therefore, it is unlikely that the two
monoclonal IgGs would react with a protein other than Reelin.
Finally, the omission of the primary antibody yielded no labeling.

The speckled pattern of Reelin immunoreactivity observed
in motor neurons in our study resembles that of the Golgi
apparatus, previously described as an elongated and irregular
pattern in layer V cortical neurons in rat and primates and
confirmed by electron microscopy studies (Martínez-Cerdeño
et al., 2002; Ramos-Moreno et al., 2006). Previous studies
have suggested that Reelin protein may be found in: (1) the
endoplasmic reticulum and Golgi complex of synthesizing
neurons (Pappas et al., 2001; Martínez-Cerdeño et al., 2002);
(2) in membrane-bound vesicles within axons as it is transported
for secretion (Derer et al., 2001; Martínez-Cerdeño et al.,
2002, 2003; Pappas et al., 2003); (3) in the ECM and
attached to cell membranes of synaptic neuropils after secretion
(D’Arcangelo et al., 1997; Pappas et al., 2001; Dong et al.,
2003); (4) re-internalized after binding to receptors in target
cells (D’Arcangelo et al., 1999; Morimura et al., 2005); and
(5) the intercellular space (Sáez-Valero et al., 2003; Ignatova
et al., 2004). However, we cannot exclude the possibility of other
options for the subcellular localization of Reelin in the spinal
cord neurons (specifically, that of Reelin re-internalization,
see below).

Reelin Presence in the Spinal Cord in
Different Species
Present results confirm previous observations in pre- and
postnatal rodent’s spinal cord (Phelps et al., 2002; Kubasak et al.,
2004; Villeda et al., 2006) and extend the available data to adult
non-human primates, carnivores and rodents. For example, we
observe the high concentration of diffuse extracellular Reelin
reactivity and Reelin-positive cells in laminae I, II in all studied
species where nociceptive information is relayed (Chaouch and
Besson, 1986; Aziz et al., 2009). The first evidence for a possible
role of Reelin in nociception comes from the reeler mouse
where the anatomical abnormalities were suggested to have
functional consequences and be responsible for the significant
reduction in mechanical sensitivity and the pronounced thermal
hyperalgesia described in the mutant (Villeda et al., 2006). Reelin
pathways involved in nociception in adulthood concluded that
the Reelin-Dab1 pathway contributes to acute and persistent pain
(Akopians et al., 2008; Wang et al., 2012).

Our work also confirms the presence of Reelin in the
adult ILN in rodents and extends its presence to the ILN of
adult carnivores and non-human primates. However, Reelin
colocalized with ChAT only in macaques, thus it can be
concluded that Reelin is present in preganglionic ILN cells only
in non-human primates. The exclusion of preganglionic cells as
a Reelin source has been previously reported during the spinal
cord development in rodents, where the preganglionic cells have
been reported to not express the Reelin mRNA but to express the
VLDLR andAPOEReelin receptors (Yip et al., 2000, 2004; Phelps
et al., 2002; Lee and Song, 2013). In the adult, preganglionic
cells are involved in the regulation of the endocrine system
and smooth muscles. The different expression of Reelin between
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species is likely to reflect the species differences between primates
and other mammals regarding the different regulation of the
physiology between species, which has been reported previously
(Phillips et al., 2014). A species difference is also supported by
the augmented gene expression of genes in the primate’s central
nervous system (Naumova et al., 2013) which can include Reelin
(discussed in Martínez-Cerdeño et al., 2002). That Reelin can be
part of the modulation of smooth musculature in primates but
not in other species should be tested. The absence of Reelin in
knock out mouse models has been reported to be responsible
for the impairment of vessel morphogenesis and function (Lutter
et al., 2012).

Likewise, present results confirm the presence of Reelin
positive cells in Clarke’s column in rodents and extend
it to primates, but not to carnivores. Clarke’s column is
involved in proprioception and is involved in Friedrich’s ataxia
(Haines, 2008). Patients suffering from this disease develop
ataxia, dysarthria, muscle weakness or paralysis, and skeletal
defects, thus resembling features described in the reeler mutant
(D’Arcangelo et al., 1995). Reelin immunoreactive interneurons
in the lamina VII intermediate zone may play a role in limb
coordination (gait control), as this is the typical function
described to be for this lamina (Blumenfeld, 2010). Nevertheless,
it is noteworthy that Reelin is only present in Clarke’s nucleus in
primates and rodents. The latest could again reflect a different
physiology between species. In primates and rodents but not
in carnivores, spinocerebellar afferents are found in Clarke’s
nucleus in the sacral and coccygeal segments, which receive a
powerful input from passive movements of the tail (Milne et al.,
1982; Kayalioglu, 2009).

Finally, motor neurons in the non-human primate ventral
horn clearly contain Reelin, while the staining is faint in adult
rats and carnivores. PreviousmRNA studies in rodent spinal cord
during postnatal stages and development showed that motor
neurons do not express Reelin (Phelps et al., 2002; Kubasak
et al., 2004). A possible explanation for Reelin expression in the
adult motor neurons could be the reinternalization of the Reelin
protein and anterograde axoplasmic transport. The hypothesis
that Reelin can be re-internalized by neuronal cells from other
sources has been previously suggested upon observations of
long-distance effects of Reelin (Martínez-Cerdeño et al., 2003;
Ramos-Moreno et al., 2006; Jossin et al., 2007). On the other
hand, the above-mentioned mRNA expression studies were
performed in developmental and postnatal stages and we cannot
exclude the possibility that Reelin mRNA starts to be expressed
in the adult motor neurons. Moreover, poor sensitivity of the
probe used for the detection of mRNA or low performance of
the probe on thick tissue sections cannot be ruled out (Femino
et al., 1998; Speel et al., 1999; Ramos-Moreno et al., 2006).
Only negative results using PCR amplification can effectively rule
out the presence of low, but biologically significant, numbers
of mRNA transcripts and, because of post-transcriptional
regulatory mechanisms, low mRNA levels do not directly imply
low protein levels (Gygi et al., 1999; Tian et al., 2004). Of note
is that protein and mRNA abundances are determined by the
relationships between the rates of the processes producing and
degrading the participating molecules. In mammals, mRNAs are

produced at a much lower rate than proteins are (Vogel and
Marcotte, 2012). Structural proteins, such as ECM proteins, are
in addition, longer-lived thus requiring less mRNA (Vogel and
Marcotte, 2012). This supports the notion that a low abundance
of Reelin mRNA should not exclude a possible high content of
Reelin protein. A study of Reelin mRNA expression in the adult
would be of interest.

One way or another, Reelin seems to be present in pathways
involved in synchronizing lumbar and cervical pattern generators
and hence the coordination of locomotor activity in the fore-
and hind limbs (Brockett et al., 2013). The latest support the
motor symptoms observed in animals lacking the Reelin protein
(D’Arcangelo et al., 1995; de Bergeyck et al., 1997). Moreover, our
data support the notion of an increased presence of Reelin in the
central nervous system of primates, this being involved in motor
pathways that, according to our present data, can be playing a
role for controlling both smooth and striated musculature as well
as being involved in the coordination ofmovements. Reelin could
thus lead to novel strategies for treating ataxias.
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