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The white matter is organized into “tracts” or “bundles,” which connect

different parts of the central nervous system. Knowing where these tracts

are located in each individual is important for understanding the cause

of potential sensorial, motor or cognitive deficits and for developing

appropriate treatments. Traditionally, tracts are found using tracer injection,

which is a difficult, slow and poorly scalable technique. However, axon

populations from a given tract exhibit specific characteristics in terms of

morphometrics and myelination. Hence, the delineation of tracts could,

in principle, be done based on their morphometry. The objective of this

study was to generate automatic parcellation of the rat spinal white matter

tracts using the manifold information from scanning electron microscopy

images of the entire spinal cord. The axon morphometrics (axon density,

axon diameter, myelin thickness and g-ratio) were computed pixelwise

following automatic axon segmentation using AxonSeg. The parcellation

was based on an agglomerative clustering algorithm to group the tracts.

Results show that axon morphometrics provide sufficient information

to automatically identify some white matter tracts in the spinal cord,

however, not all tracts were correctly identified. Future developments of

microstructure quantitative MRI even bring hope for a personalized clustering

of white matter tracts in each individual patient. The generated atlas and

the associated code can be found at https://github.com/neuropoly/tract-

clustering.
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Introduction

The spinal cord is part of the central nervous system, and one of its purposes is
to ensure communication between the peripheral nervous system and the brain. This
communication happens along axons, which are organized into “tracts,” “bundles” or
“funiculi” and form the white matter. Some pathologies, such as multiple sclerosis and
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spinal cord injury, yield to the degradation of white matter
axons and consequently their ability to send electric signaling.
This degradation in communication between the brain and
the peripheral nervous system can produce devastating motor
and/or sensory deficits. In this context, researchers like to better
understand the anatomy and physiology of the spinal cord,
notably the cyto- and myeloarchitecture of the various white
matter tracts. These tracts are defined based on which neuronal
population they originate from and synapse to. Each tract is
consequently associated with a particular function. For example,
the corticospinal tract, which is a descending tract (i.e.,: the
neuronal body is located in the supratentorial brain and the
action potential descends down the spinal cord), commands
muscles to execute motor functions. Hence, a degradation of
the corticospinal tract as seen in amyotrophic lateral sclerosis
patients, will lead to a loss of motor functions. It is therefore
relevant, from a diagnosis but also from a drug development
standpoint, to know where these tracts are located.

Traditionally, the tract location is obtained by staining
specific neuron populations: the contrast agent diffuses along
the associated axons, and the boundary of the white matter
tracts is visualized via optic microscopy and then documented
on a manual sketch. When atlases of white matter tracts are
built from several specimens of a given species, this tedious
process is repeated, and then results are qualitatively interpreted
to produce a spatially averaged map of the various tracts in
that given species. In addition to issues related to the staining
procedure – sometimes the contrast agent would diffuse to other
tracts–, these methods are extremely time consuming and biased
by the operator interpreting the microscopy scans and doing
the manual sketching. For these reasons, only scarce resources
are available on the precise location of white matter tracts
(Saliani et al., 2017). A popular white matter atlas for humans
is the eponym “Gray’s anatomy” atlas (Standring, 2008), and
an equivalent for rats would be the “Watson” atlas (Gulgun
et al., 2015). While daunting work was put in to generate these
precious resources, these atlases are not fully comprehensive and
are built from only a handful of specimens. For example, in
the Watson rat atlas not all the tracts were seen by the staining
techniques (in comparison with the mouse atlas from the same
authors), hence some tracts are missing in the atlas.

Interestingly, axons from a given tract exhibit specific
characteristics in terms of morphometrics and myelination. For
example, axons in the cuneatus (ascending tract in the dorsal
column) are known to be smaller and denser than that in the
spinocerebellar tracts (Duval et al., 2019). Hence, one could
wonder if the parcellation of the white matter tract could be
done (partly or entirely) based on their morphometry? This
hypothesis has already been investigated, notably by Assaf
et al. (2008), who used diffusion-weighted magnetic resonance
imaging to quantify the size and density of axons in the porcine
spinal cord. This voxel-wise mapping was followed by a k-means
clustering to regroup voxels exhibiting similar diffusion-related

metrics (and, indirectly, similar axon morphometrics). The
resulting clustering was convincingly close to the known
delineation of the white matter tracts based on traditional
staining techniques. Given the recent improvement on large-
throughput mapping of axon morphometrics in the spinal cord
using electron microscopy (Duval et al., 2019; Saliani et al.,
2019), one could wonder if automatic clustering from these
high resolution microscopy scans, aggregated across multiple
specimen, would produce reliable clusters that mimic the known
distribution of white matter tracts.

The objective of this study was to generate automatic
parcellation of the rat spinal white matter tracts using the
manifold information from scanning electron microscopy
images of the entire spinal cord (C1 to S4) obtained in 5 rats.
The axon morphometrics (axon density, axon diameter, myelin
thickness and g-ratio) were computed pixelwise following
automatic axon segmentation using AxonSeg (Zaimi et al.,
2016). The parcellation was based on an agglomerative
clustering algorithm to group the tracts. The generated atlas and
the associated code to be able to fully reproduce the atlas can be
found at https://github.com/neuropoly/tract-clustering.

Materials and methods

This study is a follow-up of a previous publication that
described the construction of a rat spinal cord atlas of
axon morphometry (Saliani et al., 2019). The animal/tissue
preparation, scanning and atlas creation steps are briefly
described in the first section below, but for more details the
reader is referred to the previous publication. The subsequent
sections focus on the histology-informed clustering of spinal
pathways.

Microscopy atlas creation

Animal preparation
All experimental protocols were carried out according to the

guide- lines of the Canadian Council on Animal Care regarding
the care and use of animals for experimental procedures.
The protocols were approved by the Animal Research Ethics
Committee of the Montreal Heart Institute. Every attempt
was made to minimize animal suffering and to reduce the
number of rats used.

The spinal cords of 5 sprague-dawley rats were used for
this study. Rats were anesthetized by perfusion and fixed with
a mixture of 3% paraformaldehyde and 3% glutaraldehyde.
Upon extraction, the spinal cords were post-fixed in the same
fixative solution and then cut into the separate 31 spinal
cord levels, from C1 to S4. These were then dehydrated in
varying concentrations of acetone baths and then stained with
2% osmium tetroxide (for myelin imaging). They were then
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embedded into an epon resin so that they could be adequately
prepared for imaging.

Microscopy imaging
The samples embedded in the resin were polished to obtain

a smooth surface finish of the area to be imaged (final grit
of 0.05 µm). The samples were coated with gold to improve
image contrast. Imaging was performed with a scanning electron
microscope (JEOL JSM7600F) at a 130 nm resolution. Each
spinal level was imaged as multiple sub-images of 8192 × 5632
pixels (the number of sub-images varied based on sample size)
and then stitched together at the end using in-house MATLAB
scripts and the Fiji software to obtain the whole image of the
level. This was done for all 31 levels of the rat spinal cord. The
quality of tissue preparation and imaging can be appreciated in
Supplementary Figure 1.

Segmentation of axons and myelin
Stitched images were processed with AxonSeg (Zaimi et al.,

2016) to generate masks of individual axons and myelin.
Metric maps of axon density, axon diameter, axon volume
fraction, g-ratio and myelin thickness were obtained from the
segmentation. These maps were generated at a 50 × 50 µm
resolution. Each pixel of this map represents the average value
of a given metric within the pixel, except for the axon volume
fraction, which corresponds to the axon count per pixel unit
surface.

Creation of axon morphometry template
White matter binary masks were created for each slice and

each rat in the downsampled space. Based on these masks, affine
and bsplineSyN transformations (Tustison and Avants, 2013)
were computed to co-register all rats together, on a slice-by-slice
basis, imposing right-left symmetry. The transformations were
then applied to the metric maps and these were averaged across
rats to obtain an average template of all the axon/myelin metrics.

Registration of Watson spinal cord atlas
The Watson et al. (2009) white matter atlas of the rat spinal

cord was semi-manually digitized into discrete labels (one tract
corresponding to a label) and right-left symmetrized. A binary
white matter mask of the atlas was generated and then used to
estimate an affine and non-linear (bsplineSyN) transformation
between the Watson atlas and the axon morphometry template
generated above. This transformation was then applied to
individual labels in order to obtain Watson’s white matter tracts
in the space of the axon morphometric template. These tracts
were subsequently used as reference to validate the quality of
obtaining these tracts with a data-driven approach (i.e.,: from
the axon morphometric maps).

Figure 1 illustrates the workflow for animal/tissue
preparation and imaging.

Figure 2 illustrates the generated morphometric template,
which was inputted into the clustering algorithm (described

in the next section). The maps show a variation in the spread
of metrics based on the region and tract in the spinal cord.
For instance, the average axon density ranged from 78,000
axons/mm2 in the fasciculus gracilis to 168,800 axons/mm2 in
the dorsal corticospinal tract. The mean axon diameter ranged
from 1.1 in the dorsal corticospinal tract to 1.35 in the dorsal
column. The myelin thickness ranged between 0.35 and 0.5 µm,
and the myelin volume fraction ranged between 15 and 30%. We
hypothesized that this tract-specific ‘morphometric signature’
would produce a robust data-driven clustering that would
spatially delineate individual tracts, as described hereafter.

Slice-wise clustering

A first (and intuitive) attempt for the data-driven
clustering of spinal tracts consisted in inputting a 2D axial
slice (corresponding to one spinal level) for each of the
five morphometrics. Hence 31 clusterings were performed
independently (one for each spinal level).

Only voxels inside the white matter mask were considered
for the clustering. Each morphometric map was normalized
between 0 and 1 before entering the clustering.

Clustering of the morphometrics data was performed using
scikit-learn’s agglomerative clustering algorithm. The number
of clusters was varied between 5 and 11 (with an increment
of 1) to explore the impact of this parameter on the generated
clusters. A connectivity matrix was defined to enforce pixel-to-
pixel connection within the axial plane. Clusters were merged
by minimizing the variance of the Euclidean distance between
cluster candidates (linkage = ward, affinity = Euclidean).

Region-wise clustering

While the slice-wise approach described above seemed the
most faithful to the data, it produced unsatisfactory results (see
results section), which we attributed to noise and to the relatively
low number of samples. To obtain a more robust clustering, we
enforced additional spatial priors, namely: we aggregated slices
within each of the four spinal regions (cervical, thoracic, lumbar
and sacral), and we non-linearly co-registered slices together
within the same region to be able to define the connectivity
matrix along the superior-inferior axis in addition to the axial
plane. The approach is described hereafter.

Building on the anatomical knowledge that the spatial
distribution of tracts is relatively similar within a given region
(e.g., cervical, thoracic), we ran the clustering by aggregating
adjacent axial slices within a given region. But before doing that,
to account for the slight displacement of funiculi across slices, we
co-registered each axial slice to the slice located at the center of a
region. This co-registration was performed using ANTs’ bspline-
regularized SyN transformation on the axon density metric
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FIGURE 1

(A) Animal/tissue preparation. The rat is first perfused and fixed to extract the spinal cord. The spinal cord is fixed in a 3% PFA and 3% GA solution
for 2 days and washed in PBS for a subsequent 2 days before being stained with 2% Osmium tetroxide for 5 h. The cords are dehydrated in
varying acetone baths before being embedded in a resin at 60 celsius overnight. The samples are polished to a 0.05 um surface finish. (B) Image
acquisition and processing. The samples are imaged using a scanning electron microscope at 200X magnification for a 130 nm resolution. The
images are stitched together using Fiji with an in-house MATLAB script to obtain a high resolution image of the spinal cord. (C) Template
generation. A binary WM mask was created from downsampled maps for each sample, and put in a common space. The mask was then
centered and aligned in the same direction. Affine and BsplineSyn transformations were used to register samples. The template was generated
at each level, and was then concatenated into a single 4D NIfTI data structure. (D) Atlas registration. The Watson et al. spinal cord white matter
atlas was symmetrized. A binary WM mask was made for the Watson et al. atlas and the template. The atlas registration to template was
estimated based on the masks of white and gray matter of the atlas (source) and generated template (destination). WM tracts were registered by
applying the estimated warping fields to the atlas tracts. WM tracts were then put in the same space as the template using the transformation.
Modified with permission from Saliani et al. (2019).
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FIGURE 2

Morphometric maps from the rat spinal cord template (N = 5 rats). (Top Row) Coronal view metric map covering the entire spinal cord (from C1
to S4). (Bottom Rows) Selected axial views from each section of the spinal cord (Cervical, Thoracic, Lumbar, Sacral). Note that the scale of each
axial view was adjusted to fit the rectangle panel, so the relative size of the spinal cord across levels cannot be compared across axial views.

map. To ensure a smooth and robust transformation, instead
of directly registering each slice to the center slice, we instead
performed a step-by-step registration where the center-slice r is
registered with slice r + 1, then slice r + 1 is registered with slice
r + 2, and so on. Transformations were then concatenated and
applied to the corresponding slice. This algorithm is illustrated
in Figure 3. Following co-registration, morphometric data were
averaged along the superior-inferior axis, producing 2D slices
for each region (n = 4) and each morphometric (n = 5), so 20 in
total.

For convenient comparison with the Watson atlas, the
estimated warping fields were also applied to the digitized
Watson atlas. Then, as done for the morphometrics data, the
region-specific registered Watson slices were averaged together,
resulting in a single 2D axial slice per region. Technical note:
each tract was defined in a 4th dimension, so that averaging
across the 3rd dimension did not result in an “overlap” of
the tracts, i.e., each z-averaged tract ranged from 0 to 1
in order to estimate partial volume information, which was

subsequently used to produce colored maps of the atlas for
qualitative assessment.

Validation

A quantitative validation of the clustering results was tricky
to implement because there was no clear way to justify what
cluster to consider for computing a distance (e.g., Hausdorff)
or overlap (e.g., Dice) metric between the clusters and tracts
from the Watson atlas. Therefore, we opted for a qualitative
(visual) evaluation, as done in Assaf et al. (2008). Moreover, the
qualitative evaluation was augmented by quantitatively selected
colormaps and intensity: we generated 2D images showing the
clusters next to the Watson atlas, with matching color-coding
based on the level of overlap. When multiple clusters were found
within a given tract, the intensity level would be varied between
0.2 and 1, scaled with the amount of overlap with the Watson
tract.
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FIGURE 3

Step-by-step slice-wise registration. Slices from the morphometric template are non-linearly registered to their adjacent slice until reaching a
reference slice, which is defined as the mid-slice within a region (here the cervical region is shown). Then, transformations are concatenated in
a step-by-step fashion and the transformation corresponding to a given slice is applied to each morphometric map and to the Watson atlas.
This procedure is repeated for each region (cervical, thoracic, lumbar, sacral).

Results

Slice-wise clustering

Figure 4 shows, for each spinal level, the clustering results
(left hemi-section) and the Watson atlas (right hemi-section).
The color coding was topologically matched for convenient
comparison. Here, the number of clusters was set to 8, which
corresponds to the number of tracts in the Watson atlas. We
observe a somewhat good topological correspondence between
the generated clusters and that from the Watson atlas, notably
for the cuneate fasciculus (red) and the dorsal corticospinal
tract (cyan). Some smaller tracts (gracile, post synaptic dorsal
column, lateral spinal nucleus, rubrospinal) are not well
captured by the clustering. The ventral funiculus, which is a
large collection of ventral tracts from the Watson atlas, appears
parcellated on the generated clusters, and this parcellation is
not consistent across slices. This lack of consistency is possibly
related to noise from the histology data and to the ill-posed
problem of clustering.

Region-wise clustering

The inconsistencies observed with the slice-wise clustering
were tackled by aggregating slices within the same region
(cervical, thoracic, lumbar, sacral). To achieve this, we first non-
linearly registered slices pertaining to the same group. Figure 5
shows satisfactory results of this inter-slice registration for the
cervical region. Registration went equally well for the other three
regions.

The clustering algorithm was applied using the registered
slices as inputs for all the metric maps. Figure 6 shows results
of the clustering for n = 8 and n = 10 clusters. Like for the

slice-wise clustering, the generated clusters are shown on the left
section of the spinal cord while the Watson atlas is shown on the
right section. Overall, the same two clusters (cuneate fasciculus,
dorsal corticospinal tract) are clearly delineated across all four
regions, with a particularly good topological correspondence
for the cervical and thoracic regions. The Gracile Fasciculus
(black) and the Post Synaptic Dorsal Column (green) appear
to be merged into the same cluster (light red) for the cervical
and thoracic regions. This merging could be caused by similar
morphometrics features between these two tracts, that the
automatic clustering was not able to distinguish. The sacral slice
seems a bit “noisy,” which could be due to the fact that tracts are
smaller in the lower spinal cord region.

To get a sense for how the fixed number of clusters affect the
results, Figure 7 shows clustering results when the number of
clusters was varied from 7 to 30. This result is presented for a
representative slice (C7 level). Visually, a better correspondence
is observed with a higher number of clusters. More specifically,
the gracile fasciculus (black) and the lateral spinal nucleus
(yellow) start to appear more consistently as the number of
clusters increase. However, even with a relatively high number
of clusters, the rubrospinal tract (purple) is hard to distinguish.
Interestingly, at 13 clusters and higher, the dorsal corticospinal
tract (cyan) is horizontally split between two clusters, suggesting
two different fiber populations within this tract.

Discussion and conclusion

We aimed to obtain a topological representation of white
matter tracts in the rat spinal cord using a data-driven
clustering method from axon and myelin morphometric
features computed from electron microscopy. In the following
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FIGURE 4

Results of the slice-wise clustering for each spinal level (set to 8 clusters). Clustering results are shown on the left side of each spinal cord, and
the Watson atlas is shown on the right side. Colors were chosen to topologically match between the two sides for easier assessment. Wherever
the clustering resulted in parcellated clusters (where the Watson atlas would only show one funiculi), the intensity across parcellated clusters
was varied (e.g., light blue, dark blue). The spatial scaling is kept the same.

FIGURE 5

(Top Row) Shows the individual slices for the cervical level for the metric map “Axon density”. The (Bottom Row) shows the registered levels. C4
was the reference slice for registration.

sections we interpret the results, discuss the limitations of the
method and present some perspectives.

Histology-driven clustering

The slice-wise clustering generated two clusters that were
relatively stable across slices and that corresponded well to the
topology of the Watson atlas, namely the cuneate fasciculus and
the dorsal corticospinal tract (See Figure 4). Other (smaller)
clusters were less consistent. We hypothesized that this lack
of consistency was mainly due to the noise in the histology
maps, and that more robust clustering would be obtained by
aggregating more slices together (see additional considerations
in the discussion below). The region-wise clustering did indeed
produce clusters that were more consistent across regions,
and with more clusters matching the topology of the Watson
atlas. Despite that, some smaller tracts (gracile, postsynaptic
dorsal column, lateral spinal nucleus, rubrospinal) were not well
captured by the clustering. The ventral funiculus, which is a

large collection of ventral tracts from the Watson atlas, appears
parcellated on the generated clusters, and this parcellation is not
consistent across slices.

This lack of consistency is possibly related to noise from
the histology data and/or to the ill-posed nature of clustering
(Rajapakshage and Pensky, 2020). Indeed, clustering assumes
that (i) a solution exists, (ii) the solution is unique and (iii) the
data provide sufficient information to reach the solution. In this
project, a core assumption was that tracts could be identified
from each other only based on their morphometric signature.
This immediately questions the choice of morphometrics that
were selected for this clustering work. Here, we included the
following metrics: axon density, axon diameter, axon volume
fraction, g-ratio and myelin thickness. This decision was based
on the qualitative and quantitative observation of the variability
of each of these metrics across spinal tracts. However, it is
possible that this choice was suboptimal, and that clustering
would benefit from removing some metrics or adding others.
For example, the g-ratio is relatively flat across tracts, so it
could potentially be removed from the analysis (hence reducing
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FIGURE 6

Results of the region-wise clustering. Clusters are shown for 8,
10, and 20 clusters for each region after they have been
registered to a reference slice within each region. The left half
shows the clustering results and the right half shows the Watson
atlas. The spatial scaling across regions is kept the same.

FIGURE 7

Results of clustering with a varying number of clusters (from 8
to 31) at C7 level. Clustering results are shown on the left half of
each spinal cord, while the Watson atlas is shown on the right
half.

the noise). To investigate the effect of selecting less metric
maps for the clustering, we rerun the slicewise clustering with
only the axon density and the axon volume fraction maps (see
results in Supplementary Figure 2). Interestingly, the clustering

result is fairly similar to that when using all five metric maps,
suggesting that some of the metrics used in the initial clustering
analysis are mostly contributing. Further work could focus on
the optimal choice of axon/myelin morphometrics for clustering
spinal tracts.

Another (strong) assumption is that each tract is considered
‘homogeneous’, i.e., the axons that compose them are assumed
to all have the same morphometrics (e.g., axon diameter of
800 nm, myelin thickness of 500 nm). We know very well this
assumption is wrong, because axons that compose a given white
matter tract exhibit a relatively wide range of morphometrics
(Saliani et al., 2017, 2019; Duval et al., 2019). For example,
Saliani et al. (2019) showed that the distributions of axonal
density clearly overlap across most tracts, as illustrated in
Figure 8. Interestingly, the dorsal corticospinal tract has a very
different distribution from the other tracts (much denser axons),
which likely explains the relatively good stability of that cluster

FIGURE 8

Violin-plot distribution of axonal density (number of axons per
2500 µm2 area) and axon diameter in the rat spinal cord at C1
level in the fasciculus gracilis (FG), the postsynaptic dorsal
column (PSdc), fasciculus cuneatus (FC), dorsal corticospinal
tract (dCST), lateral cervical nucleus (LatC), lateral spinal nucleus
(LSp), rubrospinal tract (RST) and the lateral and ventral funiculi
(LF/VF), as defined by the Watson atlas. While the metrics
median (red lines) and mean (black lines) vary across tracts, their
distribution clearly overlap. Modified with permission from
Saliani et al. (2019).
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in the present study. Similarly, axon diameter distributions
also overlap across multiple tracts. The implication, from a
clustering point-of-view, is that it makes the morphometric-
based separation of individual tracts particularly challenging,
because of the ill-posed nature of the problem.

The decision to perform region-wise clustering was twofold.
Firstly, without the region-wise aggregation, clustering results
appeared somewhat noisy and unreliable across adjacent slices,
hence motivating the aggregation of pixels sharing similar
anatomical features, even though we acknowledge this may be
an oversimplification in some parts of the anatomy, especially
in small tracts which shape and location is changing along the
rostro-caudal axis. The medium and bigger tracts, however,
show some levels of spatial overlap within a given region as
can be qualitatively observed in the Watson atlas. Secondly, it
has been quite common in the neuroanatomy community to
represent the topology of the spinal cord white matter within
the cervical, thoracic, lumbar and sacral. For example, the
Gray’s anatomy atlas of the human spinal cord only shows one
level per region (Standring, 2008). The work of Nathan et al.
(1990), which focuses on the corticospinal tract in humans,
does report that “the arrangement [of the lateral CST] is more
constant throughout the thoracic segments,” although, to be fair,
more topological variability is observed within the cervical
spinal cord (notably around the cervical enlargement). The idea
behind using non-linear bspline-regularized registration based
on the shape of the gray matter and spinal cord, however, is
somewhat supported, in the same article by Nathan et al., by
the observation that the “location of the lateral corticospinal
tract is influenced by the size and position of the anterior and
posterior horns as well as by the shape of the cord itself.”
However, this observation only concerns the CST, and other
tracts might be displaced differently than the CST. To sum
up, while we acknowledge that the proposed within-region
clustering is an oversimplification, especially for smaller tracts,
the slowly varying topology of the white matter tracts along
the rostro-caudal direction is not a new idea, and while the
region-wise aggregation is possibly too aggressive, the proposed
methodology could be adapted to apply the rostro-caudal
regularization between fewer slices (e.g., 3–5 adjacent slices,
instead of within a full region).

The clustering algorithm asked for a fixed number of clusters
to be generated. We started with 8, based on the number of tracts
identified in the Watson atlas. Increasing the number of clusters
(up to 30) produced better delineation of some tracts that were
otherwise not captured with a smaller number of clusters. This is
not surprising, given that more clusters enable adjacent regions
with subtle morphometric differences to be separated. However,
fixing a high number of clusters also defeats the purpose of
automatically finding one and only one cluster associated with
an individual tract.

The previous considerations naturally bring up the question
of validation. As mentioned in the methods section, a
quantitative validation of the clustering results would have been

convoluted due to the exploratory nature of the present work.
For example, computing a spatial similarity metric between the
clusters and tracts from the Watson atlas would be inherently
biased toward the arbitrary pairing between a given cluster and
a given tract. As we observed, some tracts are represented by
several clusters (especially in the ventral funiculi), therefore it
is unclear how to best compute a spatial similarity in those
instances. Instead, we opted for a visual interpretation of the
produced clusters, aided by a color-coding and intensity leveling
computed from the overlap between the produced clusters and
each of the tracts from the Watson atlas.

Future work could also explore inputting spatial prior
to the clustering algorithm for making the clusters more
stable and reliable. For example, spatial priors based on the
existing Watson atlas (and/or other atlases) would enforce the
identification of tracts that are difficult to identify solely based
on their morphometrics.

Histology technique

There exist different histology techniques with their pros
and cons. Optical microscopy can provide a full coverage
of the slices but at a limited resolution (∼200 nm). The
other extreme, transmit electron microscopy, can provide
nanometric resolution, but only on small spatial windows (about
50 µm × 50 µm) taken sparsely across the tissue, hence it
does not provide a full picture. Blockface transmit electron
microscopy can mitigate this covering issue, but at the cost of a
more complex and expensive imaging setup. Scanning electron
microscopy falls in the middle, with the possibility to achieve
50–100 nm resolution while covering the entire tissue. In this
project we opted for scanning electron microscopy. While we
were able to obtain morphometric maps of the entire spinal
cord cross section across all spinal levels, the resolution was
somewhat limiting in our ability to precisely and accurately
delineate axon and myelin tissue, biasing quantities such as
myelin thickness and g-ratio (Saliani et al., 2019). Also, it is very
likely that very small myelinated axons (with internal diameter
smaller than 200–300 nm) were missed by the segmentation
algorithm and hence not accounted for in all metrics. Moreover,
histology sections can be hampered by all sorts of artifacts
such as improper fixation (inducing degradation of the myelin
sheath), poor penetration of osmium, improper polishing,
intensity bias across scanning electron microscopy sub-images
and bad focus (Cohen-Adad, 2018).

Image processing

The segmentation of individual axons and surrounding
myelin sheath originated from a previous study, which relied
on the AxonSeg software (Zaimi et al., 2016). We acknowledge
the limitation of this fully automated histology segmentation
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tool, where a non-negligible amount of axons were poorly
segmented (false negatives, false positives, “leaky” segmentation
or sub-segmentation). However, the number of segmented
instances is very high: with about 250 axons per 2500 µm2

(see Figure 8), and about 50,000 voxels in the white matter of
the rat-atlas (Saliani et al., 2019), it sums up to 125,000,000
segmented axons and the same amount of segmented myelin,
which realistically cannot be manually verified/corrected. While
the AxonSeg software has since been superseded by more
performant methods based on deep learning (Zaimi et al.,
2018), every fully automatic has some levels of failures that will
unfortunately bias the produced morphometric maps.

In addition to segmentation issues, other processing
steps could have introduced undesired bias. Notably, the
various filtering, inter-rat co-registration, downsampling to
50 µm resolution, and pixel-wise metric aggregation methods
performed when building the metric maps which is described
in Saliani et al. (2019), the co-registration between adjacent
slices for the within-region clustering, and the right-left
symmetrization to maximize shared information during
clustering. In particular, the choice of 50 µm resolution for
the metric maps (Saliani et al., 2019) results in a compromise
between having sufficient axon count to obtain a reliable axon
and myelin volume fraction estimates, and having sufficiently
small pixel sizes to be able to resolve fine anatomical features.
In the context of this clustering work, where the goal was
to retrieve white matter bundles that are at least several
hundreds of µm2 (see Saliani et al., 2017 for a review on axon
morphometry in the rat spinal cord), this working resolution
was likely sufficient. However, for other work looking at subtle
variations within bundles, finer resolution might be desirable.

Watson rat atlas

The ground truth used to validate the clustering results was
the rat atlas of the spinal cord (Watson et al., 2009) (a.k.a. the
“Watson” atlas), which is not without flaws. Firstly, this atlas
was created from a single rat, hence does not represent the
possible inter-specimen variability. Secondly, the white matter
tracts were identified and manually drawn, based on multiple
evidence from previous studies that relied on cellular injection
of staining agents (Kayalioglu, 2009; Watson and Harvey, 2009).
Moreover, some tracts are missing, as stated by the authors:

“We were not able to identify the majority of long tracts in
these spinal cord sections. However, their presumed position
can be located with reference to Chapters 10, 11, and 12. The
tracts we were able to identify were the dorsolateral fasciculus,
the gracile fasciculus, the cuneate fasciculus, the postsynaptic
dorsal column pathway, the rubrospinal tract, and the dorsal
corticospinal tract.” (Watson et al., 2009).

The “missing” tracts from the Watson atlas include the
ventral and lateral spinothalamic tracts and the spinocerebellar
tracts (ascending), the medial and lateral vestibulospinal
tracts and the reticulospinal tract (descending). It is
possible that our clustering method did identify some
of these tracts (or at least in part), although without a
proper ground truth one can only speculate. Another –
possibly more interesting – approach, would be to turn the
problem around, and instead of aiming at validating the
clustering method based on hard-to-obtain cellular tracking
techniques, the idea would be to expand our knowledge
of the white matter tracts distribution by combining the
traditional with the cluster-based techniques. There is an
undeniable lack of knowledge about how white matter
tracts are organized and distributed in the spinal cord
across species. Including histology-driven clustering is
potentially a useful technique to increase this knowledge.
The open-source analysis pipeline published with this
study could be useful to further develop and study white
matter anatomy in rats and other species. Although this
pipeline was applied to microscopic images, it can equally
be used on other imaging modalities, including MRI,
which offers quantitative measures of axons and myelin
(Seiberlich et al., 2020).

Conclusion

Axon/myelin morphometrics computed from histology
of white matter tissue provide sufficient information to
automatically identify some white matter pathways in the
spinal cord. The identified tracts correspond to those where
axons exhibit very different morphometric features compared
to other tracts. However, not all tracts were correctly
identified. An inherent limitation to the histology-informed
clustering of white matter tracts is that the distribution
of morphometrics overlaps between tracts. In other words,
a ‘tract’ as neuroscientists commonly referred to (i.e., a
spatially defined bundle of axons that originate or end at
specific nuclei pools in the central nervous system), can be
composed of multiple axon populations (e.g., small and large
axons) that share common traits across tracts, making it
thus challenging to retrieve their delineation solely based on
the axon morphometrics. Another important consideration
is that a white matter tract, while traditionally defined
as a convex and non-overlapping object (e.g., an isolated
“blob” in a trans-sectional slice), is not that convex and
isolated: tracts in fact overlap with each other, and axons
from two different tracts can cross each other, as commonly
seen in the brain (Jeurissen et al., 2019). Despite these
limitations, a coarse delineation of spinal tracts is useful,
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for example when interpreting clinical symptoms based on
abnormal white matter appearance on MRI scans. Future
developments of microstructure quantitative MRI even bring
hope for a personalized clustering of white matter tracts in each
individual patient.
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