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The digital extraction of detailed neuronal morphologies from microscopy 
data is an essential step in the study of neurons. Ever since Cajal’s work, the 
acquisition and analysis of neuron anatomy has yielded invaluable insight into the 
nervous system, which has led to our present understanding of many structural 
and functional aspects of the brain and the nervous system, well beyond the 
anatomical perspective. Obtaining detailed anatomical data, though, is not a simple 
task. Despite recent progress, acquiring neuron details still involves using labor-
intensive, error prone methods that facilitate the introduction of inaccuracies 
and mistakes. In consequence, getting reliable morphological tracings usually 
needs the completion of post-processing steps that require user intervention to 
ensure the extracted data accuracy. Within this framework, this paper presents 
NeuroEditor, a new software tool for visualization, editing and correction of 
previously reconstructed neuronal tracings. This tool has been developed 
specifically for alleviating the burden associated with the acquisition of detailed 
morphologies. NeuroEditor offers a set of algorithms that can automatically detect 
the presence of potential errors in tracings. The tool facilitates users to explore an 
error with a simple mouse click so that it can be corrected manually or, where 
applicable, automatically. In some cases, this tool can also propose a set of actions 
to automatically correct a particular type of error. Additionally, this tool allows 
users to visualize and compare the original and modified tracings, also providing 
a 3D mesh that approximates the neuronal membrane. The approximation of 
this mesh is computed and recomputed on-the-fly, reflecting any instantaneous 
changes during the tracing process. Moreover, NeuroEditor can be easily extended 
by users, who can program their own algorithms in Python and run them within 
the tool. Last, this paper includes an example showing how users can easily define 
a customized workflow by applying a sequence of editing operations. The edited 
morphology can then be stored, together with the corresponding 3D mesh that 
approximates the neuronal membrane.
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1 Introduction

Understanding the multilevel structure and function of the brain is still one 
of the greatest challenges in science. One of the first steps along the path leading 
to this goal is necessarily understanding neurons, the basic building blocks of 
nervous systems.
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Historically, the study of neuron anatomy has always provided 
fundamental insight into the nervous system, ever since the studies of 
Ramon Cajal (1888). Nowadays, new findings on neuron anatomy are 
still used in many research areas. For example, real and/or biologically-
plausible neuron morphologies are incorporated soon after their 
acquisition to simulation studies, which seek the replication of the 
behavior of live neuronal circuits and allow performing analysis of 
procedures that are otherwise impossible to be implemented (Froeter 
et al., 2014; Beul and Hilgetag, 2019). Other studies also highlight the 
importance of neuron anatomy, which strongly affects, not only the 
physiology of the individual cells, but also the connectivity options 
inside neuronal circuits, given the impact that dendritic and axonal 
arbor morphologies have in the synapses’ conformation process 
(Halavi et  al., 2008). Additionally, the morphological analysis of 
neurons was essential for categorizing neurons into different 
functional groups (Zeng and Sanes, 2017), and the study of neuron 
morphology has allowed the performance of comparative analyses 
among neurons acquired from different populations (DeFelipe et al., 
2002), differentiated by multiple factors such as age (Duan et al., 2003; 
Kabaso et al., 2009), presence of mental disorders and their treatments 
(Mavroudis et al., 2021), etc. For example, anatomical studies have 
allowed characterizing the effects that certain disorders, such as 
Alzheimer, have over neuron morphology (Knafo et al., 2009).

Regarding the study of neuron anatomy, morphological tracings 
are useful for analysis operations, providing compact descriptions that 
have been traditionally used for data interchange within the 
neuroscientist community (Ascoli et  al., 2007; Halavi et  al., 2008; 
Akram, 2018). Furthermore, these descriptions facilitate performing 
morphological quantitative feature and data acquisition procedures, 
which helps studying neuron variability (Scorcioni, 2008; Bria, 2015). 
There are also some tools for neuronal volumetric model visualization 
(Abdellah, 2018) or neuronal volumetric images (Peng, 2014; Bria, 
2015). However, obtaining good quality tracings is not always easy, as 
it is highly dependent on the quality of the microscopy images from 
which the tracings are acquired.

There are two main acquisition approaches: manual tracings over 
microscopy image stacks and the semi-automatic application of 
methods based on the automatic or supervised segmentation of these 
image stacks. Extracting traces manually is a labor intensive and time-
consuming task, where the workload placed on human operators 
facilitates the occurrence of errors (Dercksen et al., 2013). Several 
attempts have been performed for obtaining these tracings 
automatically (Bas and Erdogmus, 2011; Chothani et  al., 2011; 
Longair, 2011; Türetken et al., 2011; Wang et al., 2011; Zhao et al., 
2011; Arshadi, 2021). However, so far none of them has yet reached 
results comparable to those of an experienced technician; additionally, 
the new methods introduce new problems (Donohue and Ascoli, 
2011). As Peng et al. (2010) affirm, when tracings are automatically 
extracted, “sometimes searching for errors and correcting them may 
take a longer time than that needed for the manual tracing of the 
entire neuron.” Hence, no matter whether tracings are extracted 
manually or with some kind of automated procedure, there is always 
a need for tools that facilitate the process of finding and 
correcting errors.

There are different technological approaches for obtaining neuron 
tracings. In consequence, the complexity and heterogeneity of the 
tracings available to the scientific community is quite variable. But in 
any case, errors in the extracted tracings make subsequent analysis 

tasks more difficult, even producing erroneous analysis results (and 
this is true regardless of whether the tracings are extracted manually 
or (semi) automatically). In some cases, these errors can also prevent 
creating a mesh that approximates the membrane of the neuron 
described by that morphology tracing. Consequently, it can be stated 
that correcting tracing errors is an important step in the morphological 
analysis of neurons.

Commercial software such as Neurolucida (MicroBrightfield, VT, 
United  States), Amira (Thermo Fisher Scientific, Massachusetts, 
United States) or Imaris and Filament tracer (Bitplane AG, Zurich, 
Switzerland) help in the reconstruction process from microscopic 
images and provide tools for neuron analysis. G-Tree (Zhou et al., 
2009) is another tool to reconstruct a neuron from the stack of images 
where errors such as missing or misaligned neurites must be detected 
visually and can be corrected manually. A complete tool is the TREES 
toolbox (Cuntz et al., 2011) as it is open-source software in Matlab that 
allows visualizing a 3D polyline and prune branches, generating a 
cylinder structure from a real stack of images, and generate synthetic 
neurons. It offers statistical analysis tools and editing options. Other 
useful tools are neuTube (Feng et al., 2015), an open-source tool with 
capability of manipulating swc files that was designed for 
reconstructing neurons from a single tiff stack, and ShuTu (Jin et al., 
2019), that overcomes the limitation of a single tiff stack and is 
specialized in the reconstruction of dendrites imaged using bright-
field microscopy. SNT (Arshadi, 2021) and L-Measure (Scorcioni, 
2008) are useful available tools designed to quantify neuronal anatomy.

This paper presents NeuroEditor, a tool for postprocessing, editing 
and visualizing reconstructed neuronal morphologies. The proposed 
methods facilitate extracting more accurate digital tracings by 
allowing correcting the errors introduced during the acquisition 
process. This, in turn, allows obtaining more precise measurements 
and features from the extracted tracings, or even carrying out 
computations that would be unfeasible if only uncorrected tracings 
were available. The methods presented here, also allow the inclusion 
of information not previously acquired or even the estimation of 
elements that may not be present in original acquired tracings, such 
as the soma description or the dendritic arbor thickness. This 
facilitates standardizing and comparing data acquired in different 
periods of time or coming from different laboratories or acquisition 
methods, for example, to create a database of cell models for 
simulation environments. Users can program their own methods in 
Python and use them directly in the tool.

Additionally, this tool allows generating geometric models of the 
neuronal membrane surface, reconstructed from the improved and 
homogenized tracings. These 3D models can be  imported into 
standard 3D visualization tools to generate visualizations for 
dissemination or educational purposes, or they can be  used in 
scientific studies involving the cell membrane, such as connectivity 
analysis or synaptic transmission simulations.

2 Methods

As stated above, this paper presents NeuroEditor, an application 
that offers a powerful framework for analysis and visual exploration 
of neuronal morphological data. It has been explicitly designed for the 
improvement of neuronal tracings, allowing users to edit, correct and 
compress their input tracings, independently of how they were 
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generated or their specific features. This tool has been built upon other 
methods and tools previously developed in our group, including some 
that address the approximation of neuron membrane.

NeuroEditor’s visual environment simplifies the process of editing 
and correcting neuronal tracings. First, users are provided with 
representations of the original and modified tracings, being able to 
choose between different methods for visualizing the tracings and 
detecting and correcting errors. Also, the application offers a manual 
editing procedure, guiding users visually through the simultaneous 
representation of each neuron’s morphological tracing together with 
its reconstructed membrane, recovered and approximated from its 
tracing. Furthermore, since purely manual correction procedures tend 
to be  tedious and time-consuming, different methods for the 
automatic detection and correction of errors and for the general 
improvement of tracings are also included in the tool. Last, users have 
the possibility of extending NeuroEditor with new features, by 
programming their own algorithms using Python and directly use 
them within the tool, without having to recompile the code.

2.1 Tool overview

NeuroEditor provides a visual environment for the exploration, 
analysis and editing of morphological tracings stored using the .swc 
format (Cannon et al., 1998). Once the cell data has been loaded, users 
can visualize the acquired tracing together with the cellular membrane, 
which is automatically computed, starting from the available tracing 
points. For that, NeuroEditor provides full 3D navigation capabilities, 
letting users both get general overviews of the cells under study as well 
as focusing and observing specific details, as desired. NeuroEditor also 
lets users to manually select and edit any of the tracing nodes, enabling 
them to introduce corrections in the tracing data. Additionally, a set 
of automatic methods for adjusting the sampling resolution is included 
in the tool.

The visual inspection of cell morphologies allows skilled users to 
detect the existence of errors introduced during the acquisition stage. 
However, this is a tedious and error prone task that can be assisted by 
the automatic error detection and correction procedures provided by 
NeuroEditor. For this purpose, the tool offers a set of tests that can 
be run for checking the occurrence of a variety of common errors, 
suggesting also possible correcting actions.

Finally, the tool can be easily extended by including user defined 
methods programmed in Python. This capability allows users to 
perform some operations, such as including new methods or 
modifying the parameters of currently implemented algorithms. The 
following sections give a detailed description of the tool functionalities.

2.2 Tracing data

NeuroEditor has been built upon NSOL, a library that provides 
data structures for handling basic neuroscientific data, such as neuron 
morphologies (Vg-Lab, 2015). Internally, the morphology includes the 
descriptions of the soma and the set of neurites that integrate each 
neuron: dendrites (such as basal and apical dendrites, if pertinent), 
and axon. Each neurite is described by a set of points extracted along 
its trajectory (referred to as nodes), where each point stores its spatial 
coordinates and the neurite radius on that position. Special attention 

is devoted to bifurcation points since they determine the branching 
patterns of neurites. Also, the branches or sections are composed of 
segments, where a set of segments or a section is found between two 
bifurcation points. All this data can be  recovered by NSOL from 
morphological tracings stored in .swc file format (Cannon et al., 1998).

As output, NeuroEditor can save both the modified morphological 
tracings and the 3D meshes approximating neuronal membranes; the 
tracings are stored also as .swc files, and the 3D meshes, as .obj files. 
These meshes are generated with NeuroLOTs, a library (Vg-Lab, 2020) 
that allows the generation and visualization of meshes approximating 
cell membranes using the approach presented in Garcia-Cantero 
et al. (2017).

2.3 Visualization

As commented above, NeuroEditor provides an interactive 3D 
environment for the inspection, editing, and repair of morphological 
tracings. For facilitating this task, NeuroEditor provides feedback to 
users regarding the results of the tracing modification process, 
allowing the comparison of the original and edited tracings. Being 
able to count with the interactive membrane mesh generation 
capabilities that NeuroLOTs provides, any modification carried out on 
the tracings can be  immediately incorporated into the membrane 
mesh generated by NeuroLOTs. The newly computed membrane can 
then be presented to the user, together with the original and modified 
tracings. Both tracings are displayed as sets of polylines, where each 
point of the tracing is represented by a sphere, whose radius coincides 
with the thickness of the neurite at that point, according to the tracing.

To facilitate the tracing editing process, the original and edited 
tracings can be  visualized side by side or even superimposed for 
comparison purposes. The polygonal mesh that approximates the cell 
membrane can also be laid over the tracing, applying transparency to 
allow viewing both structures simultaneously. Figure 1 shows a 3D 
visualization example, having the original tracing on the left and the 
modified tracing with the 3D mesh approximating the membrane on 
the right. The left panel in the figure presents all the configuration 
options that the user can tune to select which elements to visualize and 
to parameterize certain visual properties such as color and transparency.

Since the generation of the membrane mesh follows the approach 
presented in Garcia-Cantero et al. (2017), a synthetic yet plausible 3D 
soma shape can be visualized, even if the tracing does not provide 
sufficient information to recover its original anatomy. This 3D 
approximation can be computed following the deformation process 
described in Brito et al. (2013) and Garcia-Cantero et al. (2017) and is 
used only for the generation of the membrane mesh for its 
visualization. It must be pointed out that any computations performed 
for visualization purposes will not modify the tracing data, but any 
changes introduced by the tracing editing procedures will indeed 
modify the visualization presented to the users in real time, as well as 
introduce changes in the tracing data that can be saved in the edited 
version of the cell tracing.

2.4 Selection tools

NeuroEditor allows users to interactively select elements from each 
tracing in two different ways: navigating through the hierarchy of 
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morphological elements (left panel in Figure 2) or selecting the desired 
ones with the help of the mouse while navigating through the views 
depicting the morphological tracing (Figure 2, right panel). In the first 
case, the hierarchy of elements is represented in a tree viewer that 
initially shows the soma and the first order neurites of the cell under 
consideration. Each of these elements can be recursively expanded to 
show its sections and its tracing points (left panel, Figure 2).

This hierarchical structure allows performing fast selection 
operations at different scales, since clicking on a high-level entity 
automatically selects all of its descendant entities. This way, selecting 
a specific neurite implies selecting all of its sections and tracing points.

If the selection is performed with the mouse over the 3D tracing, 
multiscale selection is achieved by letting the user specify the mouse-
clicking behavior in terms of selection scale. This means that the user 

FIGURE 1

NeuroEditor 3D visualization properties panel and visualization window.

FIGURE 2

NeuroEditor user interface for the hierarchical selection or 3D mouse selection of elements. Highlighted nodes in the tracing (in light blue color) 
correspond to the selected elements in the left panel (also in blue color).

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy


Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 05 frontiersin.org

can specify if clicking on a node may imply selecting only the node, 
the whole section that includes that node or the whole neurite the 
node belongs to (left panel in Figure 2).

In order to simplify the selection of multiple elements, selections 
can be configured to be accumulative; this means that the result of a 
selection is the combination of the newly selected elements plus any 
other elements that had been previously selected.

2.5 Editing operations

The editing capabilities provided by NeuroEditor allow the 
modification of different tracing features, which in turn results in the 
improvement of the tracings quality. Several editing strategies have been 
implemented, such as the manual editing of the tracing nodes properties, 
the automatic simplification or refinement of the tracings, the automatic 
detection and correction of a predefined catalogue of errors, and last, the 
possibility of executing user written python code to modify the tracings. 
The following sections explain these approaches in detail.

2.5.1 Manual editing of selected elements
Users can freely modify the position, rotation (disabled for single 

node selections) and radius of any tracing node or group of nodes. 
First, the nodes to be modified must be selected using any of the 
selection tools previously described. Then, the editing panel (top of 
right panel in Figure 3) will show the current position, rotation angle 
and radius of the selected nodes, allowing users to type new values for 
updating them.

In case of multiple selection (more than one single node selected), 
then the editing panel will show the average values for each of the 
properties. Editing an average value results in updating the single 
values of all the selected nodes (proportionally) in order to obtain the 
new average value.

2.5.2 Simplification and refinement operations
NeuroEditor provides several simplification and refinement 

methods that can be applied to neuron morphological tracings. Each 
method has its own parameters, and they are user-configurable 
(bottom part of the right panel in Figure 3). If the user has selected a 
set of nodes, the processing operations specified by the user will 
be  carried over the morphological sections whose nodes are 
completely or partially included in that set. If no nodes were selected, 
the methods will be run over the whole tracing.

Tracing simplification is advisable whenever the tracing 
trajectories have been oversampled. Since the morphological sections 
can be  considered as equivalent to polylines, the simplification 
algorithms used here follow strategies common for polyline 
simplification (Shi and Cheung, 2006). Specifically, the following 
simplification techniques are distributed with NeuroEditor: Nth point, 
Radial distance, Perpendicular distance, Reumann-Witkam; Ophein, 
Lang, and Douglas-Peucker (psimpl, 2024). Figure 4 illustrates the 
effect of applying the Douglas-Peucker N or Perpendicular Distance 
methods to an initially oversampled neurite section.

Refinement operations permit adding new morphological points 
to a tracing for increasing its sampling density, something that may 
be  useful for adapting the tracing resolution to the needs of 
compartment-based simulations. Given the tracing point density 
(number of tracing points per unit of length), two refinement options 
are already implemented in NeuroEditor:

 • Linear interpolation sampling. This option inserts new tracing points 
in each segment until the tracing point density reaches the value 
specified by the user. The neurite trajectories will not be changed, 
although they will be defined using more morphological points.

 • Cubic interpolation sampling. This approach inserts the new 
tracing points following a Hermite spline, smoothing therefore 
the neurites’ trajectory.

FIGURE 3

NeuroEditor manual editing, simplification and refinement interface panel.
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Figure 5 shows the effect of these two refinement approaches on 
a neurite section. Cubic interpolation (Figure 5C) renders smoother 
trajectories that are visually more pleasant.

2.5.3 Automatic detection and correction
Morphological tracings can be visually inspected for evaluating 

the overall quality of the extracted skeletons and for detecting different 
eye-catching undesirable artifacts. However, the process of visual 
inspection is tedious and error prone. Automatic error detection 
procedures improve error detection rates and user workload, also 
facilitating the automatic application of sets of correction actions.

NeuroEditor provides a set of algorithms that allow automatic 
identification of some kinds of potential errors. In addition, the tool 
implements a set of actions that the user can carry out to correct them 
(Figure 6). It must be noted that not all the potential errors are suitable 
for automatic correction, since some of them require user supervision, 
either for the evaluation of the situation or for deciding the most 
appropriate solution. The following paragraphs present a catalog of the 
errors that are automatically detected nowadays and their possible 
solutions, which are already implemented in NeuroEditor. In addition 
to these algorithms, users can implement their own methods, as it will 
be explained in the section “User-defined operations.”

 • Repeated nodes. This test checks whether two tracing nodes are 
overlapping, sharing the same 3D position. Whenever this 
situation occurs, one of these three correction actions can 
be taken: Notifying the error in the console output, removing the 
duplicate nodes, or repositioning one of the duplicated nodes 
into a new position, computed as the middle point of the incident 
segment (Figure 7).

 • Oversampling. This method analyzes if the distance between two 
consecutive tracing points is below a certain threshold, a situation 
that may suggest that the neurite trajectory is oversampled. This 
threshold can be  tuned using the customization capabilities 
provided by NeuroEditor. Presently, the oversampling threshold 
in the test is fixed to be equal to the sum of the segment nodes 
radii (this can be used as an automatic criterium for detecting 
oversampling, although other criteria can be introduced). The 
options presented to the operator for processing these errors are 
the same as those provided for correcting duplicate nodes: 
console output, removing nodes below the specified threshold or 
moving the node to the middle point of the segment 
under consideration.

 • Tracing points inside the soma volume. This test checks whether 
any of the tracing points that describe the neurite trajectory falls 
inside the soma volume. The soma volume is approximated by a 
sphere whose radius and center are computed from the soma 
description; tracing points inside this volume may lead to 
artifacts in the deformation process that the sphere will undergo 
while the cell membrane is being generated. This undesirable 
situation can be  induced by an inaccurate acquisition of the 
tracing or by the inexact initial approximation of the soma shape. 
In consequence, the possible actions provided for correcting this 
error are console output to let the user perform any manual 
adjustment, such as editing the soma description or the nodes’ 
properties; removing the nodes inside the soma volume or 
moving the nodes that are inside the volume to the soma surface.

 • Neurite initial segments too distant from the soma. NeuroEditor 
evaluates if the first tracing point of each neurite is within a 
reasonable distance from the soma by setting a distance threshold 

FIGURE 4

Effect of two different simplification methods. Top row: initial tracing (A1), its simplification after applying Douglas-Peucker’s algorithm (B1), and its 
simplification after applying the Perpendicular Distance algorithm (C1). Bottom row: 3D mesh approximating the membrane of the initial tracing (A2), 
and 3D membranes of the simplified tracings displayed (B2,C2).
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relative to the soma radius. Presently, this threshold has been 
fixed to a value of 4 times the soma radius. As before, this value 
can be changed by the user creating a customized method with a 
different threshold. The available actions to deal with this 
situation are console output to let the user perform any manual 

adjustment or editing the soma description and repositioning the 
first node of each neurite on the soma surface.

 • Sharp changes in neurite trajectories. This test checks if two 
consecutive segments represent an abrupt change in the direction 
of the neurite trajectory (Figure 8A). In case the angle between 

FIGURE 5

Effect of refinement methods. (A1,A2) Initial tracing and its corresponding 3D mesh approximating the cell membrane. (B1,B2) Refined tracing and 3D 
mesh computed applying linear interpolation. (C1,C2) Refined tracing and 3D mesh computed applying cubic interpolation. Both refinements are 
applied with a parameter of 0.5 points per unit of length.

FIGURE 6

NeuroEditor interface panel for automatic tracing error detection and correction, departing from a catalog of errors identified as frequent.
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the two segments is below certain threshold (90° in the 
implemented method), then three possible correcting actions are 
provided: console output; deleting the “outlier” node (keeping the 
first node of the first segment and joining it with the final node 
of the segment that forms a sharp angle with it; Figure 8B); or 
displace the “outlier node” to the middle point of the new 
segment that replaces the two original ones (Figure 8C).

 • Parent neurite’s radius smaller than child neurite’s radius. This 
test checks bifurcations to assess that the radius of each children 
segments is not larger than the radius of their parent neurite. If 
the parent’s neurite radius is smaller than any of the children’s 
radii, a warning is emitted, so that the user can decide the action 
to be taken: editing the radii and/or coordinates of the nodes, or 
approving it as being correct, for example.

 • Constant radii along the neurite. In case the radius does not vary 
for all the tracing points of a neurite, a console output is generated 
for users to decide the action to be taken.

 • Interpenetration in bifurcations. This test checks all the 
bifurcations in order to evaluate if the radii of the children’s 
neurites are coherent and do not generate collision between 
their corresponding membrane segments, something which 
results in membrane interpenetration problems. If this 
situation occurs, a notification is also generated in the 
application console.

In terms of performance, the total time taken by the tool to 
perform all automatic error detection tasks has been measured for 5 
neurons obtained from EBRAINS (2024) with different number of 
tracing points. The results are shown in Table 1. As can be seen, the 
tool performs these tasks in real time, taking only 63 ms to process a 
neuron with 19,300 tracing points. In addition, we have also measured 
the performance of the automatic error correction, where for the 
neuron with the highest number of tracing points (19,300) required 
only 10 ms.

FIGURE 7

This Figure illustrates the automatic detection and manual correction process of duplicated nodes. (A) The user selects the “duplicate nodes” test 
method and the “console output” action. (B) A notification of the detected repetition is notified in the application console; clicking on the notified 
node’s number selects the morphological point on the image and focuses the camera to obtain a close view. Now the user can decide either to 
remove the repeated node or to displace it to a different position.

FIGURE 8

This figure illustrates the two options provided for the automatic correction of sharp changes in neurite trajectories. (A) Initial situation where the 
segment j-k generates an angle below 90° with the previous segment j-i. (B) Node j is removed and a new segment is created from node i to node k. 
(C) Node j is displaced to the middle point of the virtual segment that connects nodes i and k.
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2.5.4 User-defined operations
In addition to the set of algorithms already implemented and 

distributed in NeuroEditor, users can extend the tool functionality by 
programming their own algorithms in the Python programming 
language. This way, user-programmed algorithms can be iterated over 
all the neuron sections, carrying out the user-defined functionality. 
For this purpose, users just need to select the option “custom” in the 
right panel in Figure  9, specify the file containing the code to 
be  executed and apply it similarly to any of the other methods 
described in the previous section. There is no need to recompile the 
code or to know the application architecture.

In order to develop a custom method, users need to specify the 
tracing area section (the set of nodes) where the custom method will 
be applied, as well as the algorithm to be run. The input section is 
defined as a list of nodes (inNodes), and the outcome of any custom 
method will be the list of modified nodes for the section that is being 
processed (outNodes). The custom method will be able to access and 
modify any of the nodes’ properties (position, radius and identifier). 
Figure  10 shows an example of a user-written method, where all 
tracing points are projected in the X-Y plane along the Z direction. It 
must be noted that by creating the output list of nodes, the custom 
method can also modify the sequence of nodes that define the section.

This example replicates every node in the input list and modifies 
its z coordinate by setting it to 0, projecting therefore the nodes onto 
the X-Y plane. After that, the modified node is appended to the output 
list of nodes. The effect of running this custom method can 
be observed in Figure 9B.

3 Processing neuronal tracings with 
NeuroEditor

This section illustrates the combined application of some of the tool 
features and capabilities by means of an example, in which real neuronal 
data is used. In fact, the data used in this example come from the 
morphological tracing repository NeuroMorpho (Halavi et al., 2012). 
Many neuron morphological tracings, included in this and other 
repositories, present several tracing errors derived from the different 
acquisition techniques and procedures applied to acquire them.

The following subsections show a hypothetical workflow, 
describing a sequence of steps for loading, inspecting, editing, and 
correcting a morphological tracing. Obviously, this is just an example 
involving decisions that should be taken by the real user depending 
on his final goal.

The tracing used in this example belongs to a pyramidal neuron 
from the anterior cingulate of the neocortex corresponding to an adult 
human (02b_pyramidal1aACC–NeuroMorpho) that presents some 
typical features such as an incomplete description of the soma and 

oversampling in certain dendritic sections. This morphology will 
be processed, combining manual editing of the soma description, 
automatic detection of super-sampled sections, automatic adjustment 
of the resolution and the execution of a user defined method for 
setting a uniform thickness along the dendrites.

This processing pipeline exemplifies a possible sequence of 
operations to correct and homogenize morphological descriptions that 
can be subsequently used for further analysis or comparative studies.

3.1 Manual editing

Loading the morphological tracing into NeuroEditor is the first 
step of the pipeline. Once the desired cell morphology is loaded into 
the application, the user can manually modify any of the points that 
comprise the neuron morphological tracing. This manual editing 
operation can be  visually guided by the neuron membrane mesh 
representation, since this mesh is reconstructed immediately, 
reflecting any modification applied to the neuron tracing.

After visually inspecting the morphology, the user could decide to 
edit any of the elements describing the neuron. Let us assume that, in 
this case, the shape of the soma is not satisfactory, and the user decides 
to modify the description of the soma by editing its tracing points. 
Figure 11 shows the result of the user modifications regarding the 
tracing points that describe the neuron soma as well as the process 
followed for introducing these modifications. First, the user is 
presented with three aligned points with large radii describing the 
soma (left) and decides to manually adjust their radii and their 
positions in order to adjust the soma reconstructed mesh shape taking 
in to account the neurites beginning positions. As mentioned before, 
during this process the user can be seeing the mesh generated for the 
soma while being interactively modified as he modifies the tracing 
description to obtain the desired shape.

3.2 Automatic detection and correction of 
tracing errors

After introducing manual modifications such as the soma 
modification described above (in case the user decides to perform 
any), he can continue processing the morphological tracing under 
consideration by running any of the automatic procedures provided 
by NeuroEditor, which have been specifically developed for correcting 
frequent errors appearing in tracings. If the user decides to carry out 
any of these procedures, then he can subsequently select the most 
appropriate action for correcting each detected error.

For example, Figure 12 shows some results achieved after running 
the Oversampling test on the selected neuron. In this case, the user is 
presented with the nodes labeled as erroneous, highlighted in light 
blue. The user is then able to decide which action will be taken on 
those nodes, such as applying some automatic correction procedures 
or deleting the considered nodes.

3.3 Resolution adjustment

The next step taken in this example is the re-sampling of the 
tracing points. This process can use any of the different simplification 

TABLE 1 Execution times of all automatic error detection algorithms for 5 
different size neurons.

Neuron Tracing 
points

Execution 
time (ms)

53 Human hcca1 idab1 porta4 sec1 cel18 2,576 8

10 Human hcca1 idab1 porta5 sec1 cel7 5,629 20

11 human hcca1 idab 1 porta5 sec1 cel8 7,928 18

7 human hcca1 idab1 porta4 sec1 cel11 19,300 63
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FIGURE 10

Example of custom method that sets coordinate z to 0 for each 
tracing point.

or interpolation methods implemented in NeuroEditor. Remember 
that the goal of these methods is to allow users to increase or decrease 
the number of samples that define the tracing sections, in order to 
adequate the tracing resolution to their specific needs.

For example, if the user wants to reduce the number of tracing 
points that compose the morphological tracing, he can choose among 
different options. In this case, the user has decided to automatically 
reduce the number of tracing points by applying a “Nth simplification” 
procedure, with n set to a value of 4. We refer to the points on the 
tracing between two consecutive bifurcations as a section. This 
simplification method discards three out of each four tracing points, 
except for the first and last points in each section that are never 
discarded. As a consequence of this process, only 562 of the original 
1,249 tracing points are kept, resulting in an appreciable simplification 
(please note that simplification takes part per section, keeping always 
the first and last nodes in the section). Nevertheless, the neuron most 
relevant morphological features are kept, as can be seen in Figure 13, 
where the discarded nodes are represented in greenish yellow.

3.4 User defined correction method

The last step in the correction pipeline presented in this example 
is the application of user-developed custom correction methods over 
the tracing under consideration (as explained before, users can 
introduce processing methods coded in Python). As in the previously 
presented pipeline steps, the results of this custom-coded correction 

are interactively reflected over the reconstructed mesh, giving users 
immediate feedback for the visual validation of the applied corrections.

In this example case, the user wants to modify the radii of the 
neurite tracing points to obtain a tracing with a uniform neurite radius 
of value 1.0 (for example, for getting a representation where branching 
patterns can be appreciated more clearly, without the influence of 
neurite width). To achieve this, the user applies a special-purpose 
custom correction method that sets the radius of each tracing point to 
1.0. Figure 14 shows the resultant neuron morphology tracing and its 
corresponding reconstructed mesh.

FIGURE 9

This figure illustrates the effect of executing the custom method defined in Figure 10. (A) Visualization of the original tracing and selection of the user-
written program to be applied. (B) Modified tracing where all the tracing points have been projected onto the XY plane with coordinate z  =  0.
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Finally, the corrected tracings and their correspondent neuron 
mesh reconstructions are ready to be used for studies or comparisons. 
Both the neuron morphology tracings and the meshes can be saved 
with all the applied changes. The tracings are saved in “.swc” format 
and the meshes, in “.obj” format.

4 Discussion, conclusions, and future 
work

The robust acquisition of the anatomy of neuronal cells is a 
demanding task but an essential step for many subsequent studies 
about the morphology, physiology, or connectivity of neurons. Also, 
counting with accurate morphological data of real neurons from 
specific populations is relevant in computational neuroscience and 
other fields, such as neuro-inspired technologies, within the areas of 
robotics, control, and computing (including neuromorphic systems).

Morphological tracings are a common representation that is 
useful for describing neuron anatomy, serving as input to many of the 
areas mentioned above. They can be  extracted from microscope 
images either manually or through automatic or semi-automatic 
techniques, and they are frequently stored in neuron repositories. 
However, we  cannot overlook that raw tracings often require 
correction and refinement stages, either to remove acquisition errors 
or to adapt their features to the requirements of specific application 
areas. This demands the execution of procedures that are often error-
prone and time consuming, usually requiring experienced operators 
who have to make context-dependent decisions often based on 
subjective judgment.

The tool presented here is meant to be used after a first neuron 
reconstruction has been made from the stack of images. Some other 
tools also allow postprocessing, such as Filament editor (Dercksen 

et  al., 2013) which allows simultaneous visualization of complex 
neuronal tracings and image data in a 3D viewer and interconnection 
across sections, or Vaa3d (Peng, 2014) that allows pruning, calculation 
of morphological features of a reconstructed neuron, and which also 
has the very interesting feature of providing a reliability measure of 
reconstructed segments/nodes based on the calculation of alternative 
pathways. However, to our knowledge, NeuroEditor1 provides some 
unique characteristics. First, it has been specifically designed to 
facilitate and accelerate the processes of visualization, analysis, and 
correction of neuronal morphological tracings. It allows the inclusion 
of previously unacquired information or even the estimation of 
elements that may not be present in the original acquired tracings, 
such as the description of the soma or the thickness of the dendritic 
arbor. This may be important, for example, for incorporating neurons 
acquired from a repository to a multi-compartment simulation. 
Regarding the soma generation, the tool follows the method proposed 
in Brito et al. (2013) and Garcia-Cantero et al. (2017). However, in 
NeuroEditor, both the points used as a basis in the method to generate 
the soma and the generated soma itself can be edited, which allows 
modification of the shape of the soma and its attachment to the first-
order dendrites. In addition, although we  tend to obtain the 
morphology as detailed as possible, we sometimes run into tools that 
generate tracings that have a large number of irrelevant tracing points. 
In these cases, if desired, NeuroEditor offers the possibility of 
compacting and simplifying the neuron ad hoc. On the other hand, 
the tool supports large-scale reconstructed neurons. Besides, 
NeuroEditor provides an intuitive framework for the interactive 
visualization of morphological tracings, allowing the simultaneous 

1 https://vg-lab.es/neuroEditor

FIGURE 11

Modification of the soma description within the tracing. The left images show the original soma tracing in yellow with three tracing points and its 
reconstructed mesh. The right images show in light blue the modified soma tracing, described now with the three points arranged in a triangle to 
obtain a more accurate reconstructed mesh based on the neurites’ beginnings.
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FIGURE 14

Neuron morphological tracing modified by the custom-developed method as described in this section, setting the thicknesses of all the tracing points 
to 1.0. The mesh reconstructed from the modified tracing is depicted inside the mesh reconstructed from the original tracing, for comparison 
purposes. On the left, the whole neuron is displayed, while the image on the right is a close-up view of the same neuron.

rendering of the original and edited/corrected tracings, displaying 
them either side-by-side or superimposed. This option facilitates 
comparing the original and edited tracings, allowing the assessment 
of the modifications introduced on them. Additionally, a 3D mesh 
approximating the neuronal surface can be generated on-the-fly. This 

capability, not available in other tools so far, allows visualizing the 
effect of the editing operations instantly, not only over the tracing, but 
also over the neuronal membrane. Furthermore, NeuroEditor can 
provide accurate approximations of the soma shape, computed from 
the neurite distribution across its surface.

FIGURE 12

Automatic oversampling error detection. Oversampled nodes are located and highlighted in light blue, as shown in this figure. Different options are 
offered to the user, who can decide then the most appropriate action to be taken with respect to these nodes.

FIGURE 13

Overall view of the cell tracing (left) and close view of the basal dendritic tree (right) after reducing the tracing resolution by applying a “Nth 
simplification” procedure with a simplification factor of 4. The nodes discarded from the original tracing are shown in greenish yellow, and the nodes 
kept in the modified tracing, in light blue.
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NeuroEditor offers strategies for automatic error detection and 
visual evaluation. On the one hand, users can get a list of nodes that 
are likely to be erroneous and explore them with a simple click that 
will focus the view on that particular node, informing what type of 
error it might be for its manual correction. Alternatively, the tool can 
automatically suggest and perform corrections of typical tracing 
errors, as well as perform noncritical operations such as resampling 
or smoothing the morphological tracings. Methods for automatic 
error detection can be selected from the list of procedures supplied 
with NeuroEditor, or can be specifically developed by the user, by 
incorporating Python code to adapt the tool to the user’s specific 
needs. This is a very relevant feature since the criteria applied for error 
identification and the correction actions can vary widely under 
different circumstances. However, the automatic error correction and 
detection features are intended to be used on whole neurons, or at 
least whole neuritic branches, and unexpected results may be obtained 
for multiple orphan segments or isolated branches. Users can add their 
own Python scripts following a given structure in a simple way, 
without needing neither to know the architecture of the application 
nor to recompile it. The combination of all these options allows the 
flexible configuration of processing pipelines that associate the 
automatic identification of errors with the execution of correction 
actions, which may involve either the execution of automatic 
correction methods or the generation of warnings so that users can 
explore them and, guided by the tool, decide on the most appropriate 
action in each case.

The development of tools for facilitating this post processing task 
such as NeuroEditor is central for freeing skilled operators from 
tedious work, reducing the review time and improving the quality of 
the acquired tracings. In addition, the presented application includes 
the generation of geometric models of the surface of the neuronal 
membrane, reconstructed from the improved and homogenized 
tracings. These three-dimensional generated models can be then used 
in the functional simulation of neurons, the development of neuro-
inspired systems or the computation of morphological properties that 
are not possible to obtain directly from the tracings.

As future work, we plan to include the visualization of the original 
microscopy images, providing therefore a complete view of the whole 
reconstruction process: The initial microscopy data, the original 
tracing, the results of the tracing editing process and the neuronal 
membrane reconstructed from the tracing and superimposed over the 
microscopy image. The set of images generated this way would provide 
a useful combination of information for assessing the results of the 
tracing and editing procedures. Additionally, it would be useful to 
count with tools that allow to quantify the differences between two 
neurons. This would allow us to provide quantitative measures about 
the resulting neuron when correcting errors or simplifying tracings.

Further work also includes the extension of the editing and 
reconstruction operations to other filiform morphological structures that 
suffer from similar problems, such as the brain vascular system, whose 
description is obtained similarly to the neuron morphology tracings.
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