
Frontiers in Neuroanatomy 01 frontiersin.org

NeuroEditor: a tool to edit and
visualize neuronal morphologies
Ivan Velasco 1, Juan J. Garcia-Cantero 1,2, Juan P. Brito 2,3,
Sofia Bayona 1,2, Luis Pastor 1,2 and Susana Mata 1,2*
1 Department of Computer Science, Universidad Rey Juan Carlos (URJC), Tulipan, Madrid, Spain,
2 Center for Computational Simulation, Universidad Politecnica de Madrid, Madrid, Spain, 3 DLSIIS,
ETSIINF, Universidad Politecnica de Madrid, Madrid, Spain

The digital extraction of detailed neuronal morphologies from microscopy
data is an essential step in the study of neurons. Ever since Cajal’s work, the
acquisition and analysis of neuron anatomy has yielded invaluable insight into the
nervous system, which has led to our present understanding of many structural
and functional aspects of the brain and the nervous system, well beyond the
anatomical perspective. Obtaining detailed anatomical data, though, is not a simple
task. Despite recent progress, acquiring neuron details still involves using labor-
intensive, error prone methods that facilitate the introduction of inaccuracies
and mistakes. In consequence, getting reliable morphological tracings usually
needs the completion of post-processing steps that require user intervention to
ensure the extracted data accuracy. Within this framework, this paper presents
NeuroEditor, a new software tool for visualization, editing and correction of
previously reconstructed neuronal tracings. This tool has been developed
specifically for alleviating the burden associated with the acquisition of detailed
morphologies. NeuroEditor offers a set of algorithms that can automatically detect
the presence of potential errors in tracings. The tool facilitates users to explore an
error with a simple mouse click so that it can be corrected manually or, where
applicable, automatically. In some cases, this tool can also propose a set of actions
to automatically correct a particular type of error. Additionally, this tool allows
users to visualize and compare the original and modified tracings, also providing
a 3D mesh that approximates the neuronal membrane. The approximation of
this mesh is computed and recomputed on-the-fly, reflecting any instantaneous
changes during the tracing process. Moreover, NeuroEditor can be easily extended
by users, who can program their own algorithms in Python and run them within
the tool. Last, this paper includes an example showing how users can easily define
a customized workflow by applying a sequence of editing operations. The edited
morphology can then be stored, together with the corresponding 3D mesh that
approximates the neuronal membrane.

KEYWORDS

visualization, neuron morphology, tracing, neuron editing, correction, mesh, 3D,
dendritic structure

1 Introduction

Understanding the multilevel structure and function of the brain is still one
of the greatest challenges in science. One of the first steps along the path leading
to this goal is necessarily understanding neurons, the basic building blocks of
nervous systems.

OPEN ACCESS

EDITED BY

Francisco Clasca,
Autónoma de Madrid University, Spain

REVIEWED BY

Paul H. E. Tiesinga,
Radboud University, Netherlands
Francesco Jamal Sheiban,
Polytechnic University of Milan, Italy

*CORRESPONDENCE

Susana Mata
 susana.mata@urjc.es

RECEIVED 22 November 2023
ACCEPTED 22 January 2024
PUBLISHED 14 February 2024

CITATION

Velasco I, Garcia-Cantero JJ, Brito JP,
Bayona S, Pastor L and Mata S (2024)
NeuroEditor: a tool to edit and visualize
neuronal morphologies.
Front. Neuroanat. 18:1342762.
doi: 10.3389/fnana.2024.1342762

COPYRIGHT

© 2024 Velasco, Garcia-Cantero, Brito,
Bayona, Pastor and Mata. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research
PUBLISHED 14 February 2024
DOI 10.3389/fnana.2024.1342762

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/journals/neuroanatomy
http://crossmark.crossref.org/dialog/?doi=10.3389/fnana.2024.1342762&domain=pdf&date_stamp=2024-02-14
https://www.frontiersin.org/articles/10.3389/fnana.2024.1342762/full
https://www.frontiersin.org/articles/10.3389/fnana.2024.1342762/full
mailto:susana.mata@urjc.es
https://doi.org/10.3389/fnana.2024.1342762
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://doi.org/10.3389/fnana.2024.1342762

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 02 frontiersin.org

Historically, the study of neuron anatomy has always provided
fundamental insight into the nervous system, ever since the studies of
Ramon Cajal (1888). Nowadays, new findings on neuron anatomy are
still used in many research areas. For example, real and/or biologically-
plausible neuron morphologies are incorporated soon after their
acquisition to simulation studies, which seek the replication of the
behavior of live neuronal circuits and allow performing analysis of
procedures that are otherwise impossible to be implemented (Froeter
et al., 2014; Beul and Hilgetag, 2019). Other studies also highlight the
importance of neuron anatomy, which strongly affects, not only the
physiology of the individual cells, but also the connectivity options
inside neuronal circuits, given the impact that dendritic and axonal
arbor morphologies have in the synapses’ conformation process
(Halavi et al., 2008). Additionally, the morphological analysis of
neurons was essential for categorizing neurons into different
functional groups (Zeng and Sanes, 2017), and the study of neuron
morphology has allowed the performance of comparative analyses
among neurons acquired from different populations (DeFelipe et al.,
2002), differentiated by multiple factors such as age (Duan et al., 2003;
Kabaso et al., 2009), presence of mental disorders and their treatments
(Mavroudis et al., 2021), etc. For example, anatomical studies have
allowed characterizing the effects that certain disorders, such as
Alzheimer, have over neuron morphology (Knafo et al., 2009).

Regarding the study of neuron anatomy, morphological tracings
are useful for analysis operations, providing compact descriptions that
have been traditionally used for data interchange within the
neuroscientist community (Ascoli et al., 2007; Halavi et al., 2008;
Akram, 2018). Furthermore, these descriptions facilitate performing
morphological quantitative feature and data acquisition procedures,
which helps studying neuron variability (Scorcioni, 2008; Bria, 2015).
There are also some tools for neuronal volumetric model visualization
(Abdellah, 2018) or neuronal volumetric images (Peng, 2014; Bria,
2015). However, obtaining good quality tracings is not always easy, as
it is highly dependent on the quality of the microscopy images from
which the tracings are acquired.

There are two main acquisition approaches: manual tracings over
microscopy image stacks and the semi-automatic application of
methods based on the automatic or supervised segmentation of these
image stacks. Extracting traces manually is a labor intensive and time-
consuming task, where the workload placed on human operators
facilitates the occurrence of errors (Dercksen et al., 2013). Several
attempts have been performed for obtaining these tracings
automatically (Bas and Erdogmus, 2011; Chothani et al., 2011;
Longair, 2011; Türetken et al., 2011; Wang et al., 2011; Zhao et al.,
2011; Arshadi, 2021). However, so far none of them has yet reached
results comparable to those of an experienced technician; additionally,
the new methods introduce new problems (Donohue and Ascoli,
2011). As Peng et al. (2010) affirm, when tracings are automatically
extracted, “sometimes searching for errors and correcting them may
take a longer time than that needed for the manual tracing of the
entire neuron.” Hence, no matter whether tracings are extracted
manually or with some kind of automated procedure, there is always
a need for tools that facilitate the process of finding and
correcting errors.

There are different technological approaches for obtaining neuron
tracings. In consequence, the complexity and heterogeneity of the
tracings available to the scientific community is quite variable. But in
any case, errors in the extracted tracings make subsequent analysis

tasks more difficult, even producing erroneous analysis results (and
this is true regardless of whether the tracings are extracted manually
or (semi) automatically). In some cases, these errors can also prevent
creating a mesh that approximates the membrane of the neuron
described by that morphology tracing. Consequently, it can be stated
that correcting tracing errors is an important step in the morphological
analysis of neurons.

Commercial software such as Neurolucida (MicroBrightfield, VT,
United States), Amira (Thermo Fisher Scientific, Massachusetts,
United States) or Imaris and Filament tracer (Bitplane AG, Zurich,
Switzerland) help in the reconstruction process from microscopic
images and provide tools for neuron analysis. G-Tree (Zhou et al.,
2009) is another tool to reconstruct a neuron from the stack of images
where errors such as missing or misaligned neurites must be detected
visually and can be corrected manually. A complete tool is the TREES
toolbox (Cuntz et al., 2011) as it is open-source software in Matlab that
allows visualizing a 3D polyline and prune branches, generating a
cylinder structure from a real stack of images, and generate synthetic
neurons. It offers statistical analysis tools and editing options. Other
useful tools are neuTube (Feng et al., 2015), an open-source tool with
capability of manipulating swc files that was designed for
reconstructing neurons from a single tiff stack, and ShuTu (Jin et al.,
2019), that overcomes the limitation of a single tiff stack and is
specialized in the reconstruction of dendrites imaged using bright-
field microscopy. SNT (Arshadi, 2021) and L-Measure (Scorcioni,
2008) are useful available tools designed to quantify neuronal anatomy.

This paper presents NeuroEditor, a tool for postprocessing, editing
and visualizing reconstructed neuronal morphologies. The proposed
methods facilitate extracting more accurate digital tracings by
allowing correcting the errors introduced during the acquisition
process. This, in turn, allows obtaining more precise measurements
and features from the extracted tracings, or even carrying out
computations that would be unfeasible if only uncorrected tracings
were available. The methods presented here, also allow the inclusion
of information not previously acquired or even the estimation of
elements that may not be present in original acquired tracings, such
as the soma description or the dendritic arbor thickness. This
facilitates standardizing and comparing data acquired in different
periods of time or coming from different laboratories or acquisition
methods, for example, to create a database of cell models for
simulation environments. Users can program their own methods in
Python and use them directly in the tool.

Additionally, this tool allows generating geometric models of the
neuronal membrane surface, reconstructed from the improved and
homogenized tracings. These 3D models can be imported into
standard 3D visualization tools to generate visualizations for
dissemination or educational purposes, or they can be used in
scientific studies involving the cell membrane, such as connectivity
analysis or synaptic transmission simulations.

2 Methods

As stated above, this paper presents NeuroEditor, an application
that offers a powerful framework for analysis and visual exploration
of neuronal morphological data. It has been explicitly designed for the
improvement of neuronal tracings, allowing users to edit, correct and
compress their input tracings, independently of how they were

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 03 frontiersin.org

generated or their specific features. This tool has been built upon other
methods and tools previously developed in our group, including some
that address the approximation of neuron membrane.

NeuroEditor’s visual environment simplifies the process of editing
and correcting neuronal tracings. First, users are provided with
representations of the original and modified tracings, being able to
choose between different methods for visualizing the tracings and
detecting and correcting errors. Also, the application offers a manual
editing procedure, guiding users visually through the simultaneous
representation of each neuron’s morphological tracing together with
its reconstructed membrane, recovered and approximated from its
tracing. Furthermore, since purely manual correction procedures tend
to be tedious and time-consuming, different methods for the
automatic detection and correction of errors and for the general
improvement of tracings are also included in the tool. Last, users have
the possibility of extending NeuroEditor with new features, by
programming their own algorithms using Python and directly use
them within the tool, without having to recompile the code.

2.1 Tool overview

NeuroEditor provides a visual environment for the exploration,
analysis and editing of morphological tracings stored using the .swc
format (Cannon et al., 1998). Once the cell data has been loaded, users
can visualize the acquired tracing together with the cellular membrane,
which is automatically computed, starting from the available tracing
points. For that, NeuroEditor provides full 3D navigation capabilities,
letting users both get general overviews of the cells under study as well
as focusing and observing specific details, as desired. NeuroEditor also
lets users to manually select and edit any of the tracing nodes, enabling
them to introduce corrections in the tracing data. Additionally, a set
of automatic methods for adjusting the sampling resolution is included
in the tool.

The visual inspection of cell morphologies allows skilled users to
detect the existence of errors introduced during the acquisition stage.
However, this is a tedious and error prone task that can be assisted by
the automatic error detection and correction procedures provided by
NeuroEditor. For this purpose, the tool offers a set of tests that can
be run for checking the occurrence of a variety of common errors,
suggesting also possible correcting actions.

Finally, the tool can be easily extended by including user defined
methods programmed in Python. This capability allows users to
perform some operations, such as including new methods or
modifying the parameters of currently implemented algorithms. The
following sections give a detailed description of the tool functionalities.

2.2 Tracing data

NeuroEditor has been built upon NSOL, a library that provides
data structures for handling basic neuroscientific data, such as neuron
morphologies (Vg-Lab, 2015). Internally, the morphology includes the
descriptions of the soma and the set of neurites that integrate each
neuron: dendrites (such as basal and apical dendrites, if pertinent),
and axon. Each neurite is described by a set of points extracted along
its trajectory (referred to as nodes), where each point stores its spatial
coordinates and the neurite radius on that position. Special attention

is devoted to bifurcation points since they determine the branching
patterns of neurites. Also, the branches or sections are composed of
segments, where a set of segments or a section is found between two
bifurcation points. All this data can be recovered by NSOL from
morphological tracings stored in .swc file format (Cannon et al., 1998).

As output, NeuroEditor can save both the modified morphological
tracings and the 3D meshes approximating neuronal membranes; the
tracings are stored also as .swc files, and the 3D meshes, as .obj files.
These meshes are generated with NeuroLOTs, a library (Vg-Lab, 2020)
that allows the generation and visualization of meshes approximating
cell membranes using the approach presented in Garcia-Cantero
et al. (2017).

2.3 Visualization

As commented above, NeuroEditor provides an interactive 3D
environment for the inspection, editing, and repair of morphological
tracings. For facilitating this task, NeuroEditor provides feedback to
users regarding the results of the tracing modification process,
allowing the comparison of the original and edited tracings. Being
able to count with the interactive membrane mesh generation
capabilities that NeuroLOTs provides, any modification carried out on
the tracings can be immediately incorporated into the membrane
mesh generated by NeuroLOTs. The newly computed membrane can
then be presented to the user, together with the original and modified
tracings. Both tracings are displayed as sets of polylines, where each
point of the tracing is represented by a sphere, whose radius coincides
with the thickness of the neurite at that point, according to the tracing.

To facilitate the tracing editing process, the original and edited
tracings can be visualized side by side or even superimposed for
comparison purposes. The polygonal mesh that approximates the cell
membrane can also be laid over the tracing, applying transparency to
allow viewing both structures simultaneously. Figure 1 shows a 3D
visualization example, having the original tracing on the left and the
modified tracing with the 3D mesh approximating the membrane on
the right. The left panel in the figure presents all the configuration
options that the user can tune to select which elements to visualize and
to parameterize certain visual properties such as color and transparency.

Since the generation of the membrane mesh follows the approach
presented in Garcia-Cantero et al. (2017), a synthetic yet plausible 3D
soma shape can be visualized, even if the tracing does not provide
sufficient information to recover its original anatomy. This 3D
approximation can be computed following the deformation process
described in Brito et al. (2013) and Garcia-Cantero et al. (2017) and is
used only for the generation of the membrane mesh for its
visualization. It must be pointed out that any computations performed
for visualization purposes will not modify the tracing data, but any
changes introduced by the tracing editing procedures will indeed
modify the visualization presented to the users in real time, as well as
introduce changes in the tracing data that can be saved in the edited
version of the cell tracing.

2.4 Selection tools

NeuroEditor allows users to interactively select elements from each
tracing in two different ways: navigating through the hierarchy of

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 04 frontiersin.org

morphological elements (left panel in Figure 2) or selecting the desired
ones with the help of the mouse while navigating through the views
depicting the morphological tracing (Figure 2, right panel). In the first
case, the hierarchy of elements is represented in a tree viewer that
initially shows the soma and the first order neurites of the cell under
consideration. Each of these elements can be recursively expanded to
show its sections and its tracing points (left panel, Figure 2).

This hierarchical structure allows performing fast selection
operations at different scales, since clicking on a high-level entity
automatically selects all of its descendant entities. This way, selecting
a specific neurite implies selecting all of its sections and tracing points.

If the selection is performed with the mouse over the 3D tracing,
multiscale selection is achieved by letting the user specify the mouse-
clicking behavior in terms of selection scale. This means that the user

FIGURE 1

NeuroEditor 3D visualization properties panel and visualization window.

FIGURE 2

NeuroEditor user interface for the hierarchical selection or 3D mouse selection of elements. Highlighted nodes in the tracing (in light blue color)
correspond to the selected elements in the left panel (also in blue color).

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 05 frontiersin.org

can specify if clicking on a node may imply selecting only the node,
the whole section that includes that node or the whole neurite the
node belongs to (left panel in Figure 2).

In order to simplify the selection of multiple elements, selections
can be configured to be accumulative; this means that the result of a
selection is the combination of the newly selected elements plus any
other elements that had been previously selected.

2.5 Editing operations

The editing capabilities provided by NeuroEditor allow the
modification of different tracing features, which in turn results in the
improvement of the tracings quality. Several editing strategies have been
implemented, such as the manual editing of the tracing nodes properties,
the automatic simplification or refinement of the tracings, the automatic
detection and correction of a predefined catalogue of errors, and last, the
possibility of executing user written python code to modify the tracings.
The following sections explain these approaches in detail.

2.5.1 Manual editing of selected elements
Users can freely modify the position, rotation (disabled for single

node selections) and radius of any tracing node or group of nodes.
First, the nodes to be modified must be selected using any of the
selection tools previously described. Then, the editing panel (top of
right panel in Figure 3) will show the current position, rotation angle
and radius of the selected nodes, allowing users to type new values for
updating them.

In case of multiple selection (more than one single node selected),
then the editing panel will show the average values for each of the
properties. Editing an average value results in updating the single
values of all the selected nodes (proportionally) in order to obtain the
new average value.

2.5.2 Simplification and refinement operations
NeuroEditor provides several simplification and refinement

methods that can be applied to neuron morphological tracings. Each
method has its own parameters, and they are user-configurable
(bottom part of the right panel in Figure 3). If the user has selected a
set of nodes, the processing operations specified by the user will
be carried over the morphological sections whose nodes are
completely or partially included in that set. If no nodes were selected,
the methods will be run over the whole tracing.

Tracing simplification is advisable whenever the tracing
trajectories have been oversampled. Since the morphological sections
can be considered as equivalent to polylines, the simplification
algorithms used here follow strategies common for polyline
simplification (Shi and Cheung, 2006). Specifically, the following
simplification techniques are distributed with NeuroEditor: Nth point,
Radial distance, Perpendicular distance, Reumann-Witkam; Ophein,
Lang, and Douglas-Peucker (psimpl, 2024). Figure 4 illustrates the
effect of applying the Douglas-Peucker N or Perpendicular Distance
methods to an initially oversampled neurite section.

Refinement operations permit adding new morphological points
to a tracing for increasing its sampling density, something that may
be useful for adapting the tracing resolution to the needs of
compartment-based simulations. Given the tracing point density
(number of tracing points per unit of length), two refinement options
are already implemented in NeuroEditor:

 • Linear interpolation sampling. This option inserts new tracing points
in each segment until the tracing point density reaches the value
specified by the user. The neurite trajectories will not be changed,
although they will be defined using more morphological points.

 • Cubic interpolation sampling. This approach inserts the new
tracing points following a Hermite spline, smoothing therefore
the neurites’ trajectory.

FIGURE 3

NeuroEditor manual editing, simplification and refinement interface panel.

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 06 frontiersin.org

Figure 5 shows the effect of these two refinement approaches on
a neurite section. Cubic interpolation (Figure 5C) renders smoother
trajectories that are visually more pleasant.

2.5.3 Automatic detection and correction
Morphological tracings can be visually inspected for evaluating

the overall quality of the extracted skeletons and for detecting different
eye-catching undesirable artifacts. However, the process of visual
inspection is tedious and error prone. Automatic error detection
procedures improve error detection rates and user workload, also
facilitating the automatic application of sets of correction actions.

NeuroEditor provides a set of algorithms that allow automatic
identification of some kinds of potential errors. In addition, the tool
implements a set of actions that the user can carry out to correct them
(Figure 6). It must be noted that not all the potential errors are suitable
for automatic correction, since some of them require user supervision,
either for the evaluation of the situation or for deciding the most
appropriate solution. The following paragraphs present a catalog of the
errors that are automatically detected nowadays and their possible
solutions, which are already implemented in NeuroEditor. In addition
to these algorithms, users can implement their own methods, as it will
be explained in the section “User-defined operations.”

 • Repeated nodes. This test checks whether two tracing nodes are
overlapping, sharing the same 3D position. Whenever this
situation occurs, one of these three correction actions can
be taken: Notifying the error in the console output, removing the
duplicate nodes, or repositioning one of the duplicated nodes
into a new position, computed as the middle point of the incident
segment (Figure 7).

 • Oversampling. This method analyzes if the distance between two
consecutive tracing points is below a certain threshold, a situation
that may suggest that the neurite trajectory is oversampled. This
threshold can be tuned using the customization capabilities
provided by NeuroEditor. Presently, the oversampling threshold
in the test is fixed to be equal to the sum of the segment nodes
radii (this can be used as an automatic criterium for detecting
oversampling, although other criteria can be introduced). The
options presented to the operator for processing these errors are
the same as those provided for correcting duplicate nodes:
console output, removing nodes below the specified threshold or
moving the node to the middle point of the segment
under consideration.

 • Tracing points inside the soma volume. This test checks whether
any of the tracing points that describe the neurite trajectory falls
inside the soma volume. The soma volume is approximated by a
sphere whose radius and center are computed from the soma
description; tracing points inside this volume may lead to
artifacts in the deformation process that the sphere will undergo
while the cell membrane is being generated. This undesirable
situation can be induced by an inaccurate acquisition of the
tracing or by the inexact initial approximation of the soma shape.
In consequence, the possible actions provided for correcting this
error are console output to let the user perform any manual
adjustment, such as editing the soma description or the nodes’
properties; removing the nodes inside the soma volume or
moving the nodes that are inside the volume to the soma surface.

 • Neurite initial segments too distant from the soma. NeuroEditor
evaluates if the first tracing point of each neurite is within a
reasonable distance from the soma by setting a distance threshold

FIGURE 4

Effect of two different simplification methods. Top row: initial tracing (A1), its simplification after applying Douglas-Peucker’s algorithm (B1), and its
simplification after applying the Perpendicular Distance algorithm (C1). Bottom row: 3D mesh approximating the membrane of the initial tracing (A2),
and 3D membranes of the simplified tracings displayed (B2,C2).

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 07 frontiersin.org

relative to the soma radius. Presently, this threshold has been
fixed to a value of 4 times the soma radius. As before, this value
can be changed by the user creating a customized method with a
different threshold. The available actions to deal with this
situation are console output to let the user perform any manual

adjustment or editing the soma description and repositioning the
first node of each neurite on the soma surface.

 • Sharp changes in neurite trajectories. This test checks if two
consecutive segments represent an abrupt change in the direction
of the neurite trajectory (Figure 8A). In case the angle between

FIGURE 5

Effect of refinement methods. (A1,A2) Initial tracing and its corresponding 3D mesh approximating the cell membrane. (B1,B2) Refined tracing and 3D
mesh computed applying linear interpolation. (C1,C2) Refined tracing and 3D mesh computed applying cubic interpolation. Both refinements are
applied with a parameter of 0.5 points per unit of length.

FIGURE 6

NeuroEditor interface panel for automatic tracing error detection and correction, departing from a catalog of errors identified as frequent.

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 08 frontiersin.org

the two segments is below certain threshold (90° in the
implemented method), then three possible correcting actions are
provided: console output; deleting the “outlier” node (keeping the
first node of the first segment and joining it with the final node
of the segment that forms a sharp angle with it; Figure 8B); or
displace the “outlier node” to the middle point of the new
segment that replaces the two original ones (Figure 8C).

 • Parent neurite’s radius smaller than child neurite’s radius. This
test checks bifurcations to assess that the radius of each children
segments is not larger than the radius of their parent neurite. If
the parent’s neurite radius is smaller than any of the children’s
radii, a warning is emitted, so that the user can decide the action
to be taken: editing the radii and/or coordinates of the nodes, or
approving it as being correct, for example.

 • Constant radii along the neurite. In case the radius does not vary
for all the tracing points of a neurite, a console output is generated
for users to decide the action to be taken.

 • Interpenetration in bifurcations. This test checks all the
bifurcations in order to evaluate if the radii of the children’s
neurites are coherent and do not generate collision between
their corresponding membrane segments, something which
results in membrane interpenetration problems. If this
situation occurs, a notification is also generated in the
application console.

In terms of performance, the total time taken by the tool to
perform all automatic error detection tasks has been measured for 5
neurons obtained from EBRAINS (2024) with different number of
tracing points. The results are shown in Table 1. As can be seen, the
tool performs these tasks in real time, taking only 63 ms to process a
neuron with 19,300 tracing points. In addition, we have also measured
the performance of the automatic error correction, where for the
neuron with the highest number of tracing points (19,300) required
only 10 ms.

FIGURE 7

This Figure illustrates the automatic detection and manual correction process of duplicated nodes. (A) The user selects the “duplicate nodes” test
method and the “console output” action. (B) A notification of the detected repetition is notified in the application console; clicking on the notified
node’s number selects the morphological point on the image and focuses the camera to obtain a close view. Now the user can decide either to
remove the repeated node or to displace it to a different position.

FIGURE 8

This figure illustrates the two options provided for the automatic correction of sharp changes in neurite trajectories. (A) Initial situation where the
segment j-k generates an angle below 90° with the previous segment j-i. (B) Node j is removed and a new segment is created from node i to node k.
(C) Node j is displaced to the middle point of the virtual segment that connects nodes i and k.

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 09 frontiersin.org

2.5.4 User-defined operations
In addition to the set of algorithms already implemented and

distributed in NeuroEditor, users can extend the tool functionality by
programming their own algorithms in the Python programming
language. This way, user-programmed algorithms can be iterated over
all the neuron sections, carrying out the user-defined functionality.
For this purpose, users just need to select the option “custom” in the
right panel in Figure 9, specify the file containing the code to
be executed and apply it similarly to any of the other methods
described in the previous section. There is no need to recompile the
code or to know the application architecture.

In order to develop a custom method, users need to specify the
tracing area section (the set of nodes) where the custom method will
be applied, as well as the algorithm to be run. The input section is
defined as a list of nodes (inNodes), and the outcome of any custom
method will be the list of modified nodes for the section that is being
processed (outNodes). The custom method will be able to access and
modify any of the nodes’ properties (position, radius and identifier).
Figure 10 shows an example of a user-written method, where all
tracing points are projected in the X-Y plane along the Z direction. It
must be noted that by creating the output list of nodes, the custom
method can also modify the sequence of nodes that define the section.

This example replicates every node in the input list and modifies
its z coordinate by setting it to 0, projecting therefore the nodes onto
the X-Y plane. After that, the modified node is appended to the output
list of nodes. The effect of running this custom method can
be observed in Figure 9B.

3 Processing neuronal tracings with
NeuroEditor

This section illustrates the combined application of some of the tool
features and capabilities by means of an example, in which real neuronal
data is used. In fact, the data used in this example come from the
morphological tracing repository NeuroMorpho (Halavi et al., 2012).
Many neuron morphological tracings, included in this and other
repositories, present several tracing errors derived from the different
acquisition techniques and procedures applied to acquire them.

The following subsections show a hypothetical workflow,
describing a sequence of steps for loading, inspecting, editing, and
correcting a morphological tracing. Obviously, this is just an example
involving decisions that should be taken by the real user depending
on his final goal.

The tracing used in this example belongs to a pyramidal neuron
from the anterior cingulate of the neocortex corresponding to an adult
human (02b_pyramidal1aACC–NeuroMorpho) that presents some
typical features such as an incomplete description of the soma and

oversampling in certain dendritic sections. This morphology will
be processed, combining manual editing of the soma description,
automatic detection of super-sampled sections, automatic adjustment
of the resolution and the execution of a user defined method for
setting a uniform thickness along the dendrites.

This processing pipeline exemplifies a possible sequence of
operations to correct and homogenize morphological descriptions that
can be subsequently used for further analysis or comparative studies.

3.1 Manual editing

Loading the morphological tracing into NeuroEditor is the first
step of the pipeline. Once the desired cell morphology is loaded into
the application, the user can manually modify any of the points that
comprise the neuron morphological tracing. This manual editing
operation can be visually guided by the neuron membrane mesh
representation, since this mesh is reconstructed immediately,
reflecting any modification applied to the neuron tracing.

After visually inspecting the morphology, the user could decide to
edit any of the elements describing the neuron. Let us assume that, in
this case, the shape of the soma is not satisfactory, and the user decides
to modify the description of the soma by editing its tracing points.
Figure 11 shows the result of the user modifications regarding the
tracing points that describe the neuron soma as well as the process
followed for introducing these modifications. First, the user is
presented with three aligned points with large radii describing the
soma (left) and decides to manually adjust their radii and their
positions in order to adjust the soma reconstructed mesh shape taking
in to account the neurites beginning positions. As mentioned before,
during this process the user can be seeing the mesh generated for the
soma while being interactively modified as he modifies the tracing
description to obtain the desired shape.

3.2 Automatic detection and correction of
tracing errors

After introducing manual modifications such as the soma
modification described above (in case the user decides to perform
any), he can continue processing the morphological tracing under
consideration by running any of the automatic procedures provided
by NeuroEditor, which have been specifically developed for correcting
frequent errors appearing in tracings. If the user decides to carry out
any of these procedures, then he can subsequently select the most
appropriate action for correcting each detected error.

For example, Figure 12 shows some results achieved after running
the Oversampling test on the selected neuron. In this case, the user is
presented with the nodes labeled as erroneous, highlighted in light
blue. The user is then able to decide which action will be taken on
those nodes, such as applying some automatic correction procedures
or deleting the considered nodes.

3.3 Resolution adjustment

The next step taken in this example is the re-sampling of the
tracing points. This process can use any of the different simplification

TABLE 1 Execution times of all automatic error detection algorithms for 5
different size neurons.

Neuron Tracing
points

Execution
time (ms)

53 Human hcca1 idab1 porta4 sec1 cel18 2,576 8

10 Human hcca1 idab1 porta5 sec1 cel7 5,629 20

11 human hcca1 idab 1 porta5 sec1 cel8 7,928 18

7 human hcca1 idab1 porta4 sec1 cel11 19,300 63

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 10 frontiersin.org

FIGURE 10

Example of custom method that sets coordinate z to 0 for each
tracing point.

or interpolation methods implemented in NeuroEditor. Remember
that the goal of these methods is to allow users to increase or decrease
the number of samples that define the tracing sections, in order to
adequate the tracing resolution to their specific needs.

For example, if the user wants to reduce the number of tracing
points that compose the morphological tracing, he can choose among
different options. In this case, the user has decided to automatically
reduce the number of tracing points by applying a “Nth simplification”
procedure, with n set to a value of 4. We refer to the points on the
tracing between two consecutive bifurcations as a section. This
simplification method discards three out of each four tracing points,
except for the first and last points in each section that are never
discarded. As a consequence of this process, only 562 of the original
1,249 tracing points are kept, resulting in an appreciable simplification
(please note that simplification takes part per section, keeping always
the first and last nodes in the section). Nevertheless, the neuron most
relevant morphological features are kept, as can be seen in Figure 13,
where the discarded nodes are represented in greenish yellow.

3.4 User defined correction method

The last step in the correction pipeline presented in this example
is the application of user-developed custom correction methods over
the tracing under consideration (as explained before, users can
introduce processing methods coded in Python). As in the previously
presented pipeline steps, the results of this custom-coded correction

are interactively reflected over the reconstructed mesh, giving users
immediate feedback for the visual validation of the applied corrections.

In this example case, the user wants to modify the radii of the
neurite tracing points to obtain a tracing with a uniform neurite radius
of value 1.0 (for example, for getting a representation where branching
patterns can be appreciated more clearly, without the influence of
neurite width). To achieve this, the user applies a special-purpose
custom correction method that sets the radius of each tracing point to
1.0. Figure 14 shows the resultant neuron morphology tracing and its
corresponding reconstructed mesh.

FIGURE 9

This figure illustrates the effect of executing the custom method defined in Figure 10. (A) Visualization of the original tracing and selection of the user-
written program to be applied. (B) Modified tracing where all the tracing points have been projected onto the XY plane with coordinate z  =  0.

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 11 frontiersin.org

Finally, the corrected tracings and their correspondent neuron
mesh reconstructions are ready to be used for studies or comparisons.
Both the neuron morphology tracings and the meshes can be saved
with all the applied changes. The tracings are saved in “.swc” format
and the meshes, in “.obj” format.

4 Discussion, conclusions, and future
work

The robust acquisition of the anatomy of neuronal cells is a
demanding task but an essential step for many subsequent studies
about the morphology, physiology, or connectivity of neurons. Also,
counting with accurate morphological data of real neurons from
specific populations is relevant in computational neuroscience and
other fields, such as neuro-inspired technologies, within the areas of
robotics, control, and computing (including neuromorphic systems).

Morphological tracings are a common representation that is
useful for describing neuron anatomy, serving as input to many of the
areas mentioned above. They can be extracted from microscope
images either manually or through automatic or semi-automatic
techniques, and they are frequently stored in neuron repositories.
However, we cannot overlook that raw tracings often require
correction and refinement stages, either to remove acquisition errors
or to adapt their features to the requirements of specific application
areas. This demands the execution of procedures that are often error-
prone and time consuming, usually requiring experienced operators
who have to make context-dependent decisions often based on
subjective judgment.

The tool presented here is meant to be used after a first neuron
reconstruction has been made from the stack of images. Some other
tools also allow postprocessing, such as Filament editor (Dercksen

et al., 2013) which allows simultaneous visualization of complex
neuronal tracings and image data in a 3D viewer and interconnection
across sections, or Vaa3d (Peng, 2014) that allows pruning, calculation
of morphological features of a reconstructed neuron, and which also
has the very interesting feature of providing a reliability measure of
reconstructed segments/nodes based on the calculation of alternative
pathways. However, to our knowledge, NeuroEditor1 provides some
unique characteristics. First, it has been specifically designed to
facilitate and accelerate the processes of visualization, analysis, and
correction of neuronal morphological tracings. It allows the inclusion
of previously unacquired information or even the estimation of
elements that may not be present in the original acquired tracings,
such as the description of the soma or the thickness of the dendritic
arbor. This may be important, for example, for incorporating neurons
acquired from a repository to a multi-compartment simulation.
Regarding the soma generation, the tool follows the method proposed
in Brito et al. (2013) and Garcia-Cantero et al. (2017). However, in
NeuroEditor, both the points used as a basis in the method to generate
the soma and the generated soma itself can be edited, which allows
modification of the shape of the soma and its attachment to the first-
order dendrites. In addition, although we tend to obtain the
morphology as detailed as possible, we sometimes run into tools that
generate tracings that have a large number of irrelevant tracing points.
In these cases, if desired, NeuroEditor offers the possibility of
compacting and simplifying the neuron ad hoc. On the other hand,
the tool supports large-scale reconstructed neurons. Besides,
NeuroEditor provides an intuitive framework for the interactive
visualization of morphological tracings, allowing the simultaneous

1 https://vg-lab.es/neuroEditor

FIGURE 11

Modification of the soma description within the tracing. The left images show the original soma tracing in yellow with three tracing points and its
reconstructed mesh. The right images show in light blue the modified soma tracing, described now with the three points arranged in a triangle to
obtain a more accurate reconstructed mesh based on the neurites’ beginnings.

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy
https://vg-lab.es/neuroEditor

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 12 frontiersin.org

FIGURE 14

Neuron morphological tracing modified by the custom-developed method as described in this section, setting the thicknesses of all the tracing points
to 1.0. The mesh reconstructed from the modified tracing is depicted inside the mesh reconstructed from the original tracing, for comparison
purposes. On the left, the whole neuron is displayed, while the image on the right is a close-up view of the same neuron.

rendering of the original and edited/corrected tracings, displaying
them either side-by-side or superimposed. This option facilitates
comparing the original and edited tracings, allowing the assessment
of the modifications introduced on them. Additionally, a 3D mesh
approximating the neuronal surface can be generated on-the-fly. This

capability, not available in other tools so far, allows visualizing the
effect of the editing operations instantly, not only over the tracing, but
also over the neuronal membrane. Furthermore, NeuroEditor can
provide accurate approximations of the soma shape, computed from
the neurite distribution across its surface.

FIGURE 12

Automatic oversampling error detection. Oversampled nodes are located and highlighted in light blue, as shown in this figure. Different options are
offered to the user, who can decide then the most appropriate action to be taken with respect to these nodes.

FIGURE 13

Overall view of the cell tracing (left) and close view of the basal dendritic tree (right) after reducing the tracing resolution by applying a “Nth
simplification” procedure with a simplification factor of 4. The nodes discarded from the original tracing are shown in greenish yellow, and the nodes
kept in the modified tracing, in light blue.

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 13 frontiersin.org

NeuroEditor offers strategies for automatic error detection and
visual evaluation. On the one hand, users can get a list of nodes that
are likely to be erroneous and explore them with a simple click that
will focus the view on that particular node, informing what type of
error it might be for its manual correction. Alternatively, the tool can
automatically suggest and perform corrections of typical tracing
errors, as well as perform noncritical operations such as resampling
or smoothing the morphological tracings. Methods for automatic
error detection can be selected from the list of procedures supplied
with NeuroEditor, or can be specifically developed by the user, by
incorporating Python code to adapt the tool to the user’s specific
needs. This is a very relevant feature since the criteria applied for error
identification and the correction actions can vary widely under
different circumstances. However, the automatic error correction and
detection features are intended to be used on whole neurons, or at
least whole neuritic branches, and unexpected results may be obtained
for multiple orphan segments or isolated branches. Users can add their
own Python scripts following a given structure in a simple way,
without needing neither to know the architecture of the application
nor to recompile it. The combination of all these options allows the
flexible configuration of processing pipelines that associate the
automatic identification of errors with the execution of correction
actions, which may involve either the execution of automatic
correction methods or the generation of warnings so that users can
explore them and, guided by the tool, decide on the most appropriate
action in each case.

The development of tools for facilitating this post processing task
such as NeuroEditor is central for freeing skilled operators from
tedious work, reducing the review time and improving the quality of
the acquired tracings. In addition, the presented application includes
the generation of geometric models of the surface of the neuronal
membrane, reconstructed from the improved and homogenized
tracings. These three-dimensional generated models can be then used
in the functional simulation of neurons, the development of neuro-
inspired systems or the computation of morphological properties that
are not possible to obtain directly from the tracings.

As future work, we plan to include the visualization of the original
microscopy images, providing therefore a complete view of the whole
reconstruction process: The initial microscopy data, the original
tracing, the results of the tracing editing process and the neuronal
membrane reconstructed from the tracing and superimposed over the
microscopy image. The set of images generated this way would provide
a useful combination of information for assessing the results of the
tracing and editing procedures. Additionally, it would be useful to
count with tools that allow to quantify the differences between two
neurons. This would allow us to provide quantitative measures about
the resulting neuron when correcting errors or simplifying tracings.

Further work also includes the extension of the editing and
reconstruction operations to other filiform morphological structures that
suffer from similar problems, such as the brain vascular system, whose
description is obtained similarly to the neuron morphology tracings.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be

directed to the corresponding author. The code developed during
this research can be found in https://github.com/vg-lab/
NeuroEditor and in https://vg-lab.es/neuroEditor/ can be found
an executable for Windows 7, Ubuntu 16.04 and MacOs as well
as a manual and an explanatory video.

Ethics statement

Ethical approval was not required for the study involving humans
in accordance with the local legislation and institutional requirements.
Written informed consent to participate in this study was not required
from the participants or the participants’ legal guardians/next of kin
in accordance with the national legislation and the
institutional requirements.

Author contributions

IV: Software, Visualization, Writing – review & editing. JG-C:
Conceptualization, Visualization, Writing – original draft, Data
curation, Formal analysis, Investigation, Methodology. JB:
Conceptualization, Writing – original draft, Writing – review &
editing. SB: Writing – original draft, Writing – review & editing,
Conceptualization, Visualization. LP: Writing – original draft,
Writing – review & editing, Methodology. SM: Conceptualization,
Visualization, Writing – original draft, Writing – review &
editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. The
research leading to these results has received funding from the
Spanish Ministry of Economy and Competitiveness under grants
C080020-09 (Cajal Blue Brain Project, Spanish partner of the Blue
Brain Project initiative from EPFL), TIN2017-83132, as well as
from the European Union’s Horizon 2020 Framework Programme
for Research and Innovation under the Specific grant agreement
nos. 785907 (Human Brain Project SGA2) and 945539 (Human
Brain Project SGA3), for the Agencia Estatal de Investigación
(PID2019-108311GB-I00 / AEI / 10.13039/501100011033,
PID2019-106254RB-I00, and PID2020-113013RB-C21) and FPU
grant (FPU19/04516) to IV. This research has also received funding
from the European Union’s Horizon Europe Programme under
Specific Grant Agreements No. 101147319 (EBRAINS 2.0 Project)
and No. 101137289 (Virtual Brain Twin Project).

Acknowledgments

The authors thank the Blue Brain Project and the EBRAINS
platform for providing the data used during the development
of the tool proposed in this study. The authors would like
to thank Daniel Mancebo Aldea for his work on the
simplification algorithms.

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy
https://github.com/vg-lab/NeuroEditor
https://github.com/vg-lab/NeuroEditor
https://vg-lab.es/neuroEditor/

Velasco et al. 10.3389/fnana.2024.1342762

Frontiers in Neuroanatomy 14 frontiersin.org

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnana.2024.1342762/
full#supplementary-material

References
Abdellah, M. H. (2018). NeuroMorphoVis: a collaborative framework for analysis and

visualization of neuronal morphology skeletons reconstructed from microscopy stacks.
Bioinformatics 34, i574–i582. doi: 10.1093/bioinformatics/bty231

Akram, M. N. (2018). An open repository for single-cell reconstructions of the brain
forest. Sci Data 5:180006. doi: 10.1038/sdata.2018.6

Arshadi, C. G. (2021). SNT: a unifying toolbox for quantification of neuronal anatomy.
Nat. Methods 18, 374–377. doi: 10.1038/s41592-021-01105-7, 374-377

Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). NeuroMorpho.Org: a central
resource for neuronal morphologies. J. Neurosci. 27, 9247–9251. doi: 10.1523/
jneurosci.2055-07.2007

Bas, E., and Erdogmus, D. (2011). Principal curves as skeletons of tubular objects.
Neuroinformatics 9, 181–191. doi: 10.1007/s12021-011-9105-2

Beul, S. F., and Hilgetag, C. C. (2019). Neuron density fundamentally relates to
architecture and connectivity of the primate cerebral cortex. Neuroimage 189, 777–792.
doi: 10.1016/j.neuroimage.2019.01.010

Bria, A. I. (2015). An open-source VAA3D plugin for real-time 3D visualization of
terabyte-sized volumetric images. In: IEEE 12th International Symposium on Biomedical
Imaging (ISBI), 520–523.

Brito, J. P., Mata, S., Bayona, S., Pastor, L., DeFelipe, J., and Benavides-Piccione, R.
(2013). Neuronize: a tool for building realistic neuronal cell morphologies. Front.
Neuroanat. 7:15. doi: 10.3389/fnana.2013.00015

Cannon, R. C., Turner, D. A., Pyapali, G. K., and Wheal, H. V. (1998). An on-line
archive of reconstructed hippocampal neurons. J. Neurosci. Methods 84, 49–54. doi:
10.1016/s0165-0270(98)00091-0

Chothani, P., Mehta, V., and Stepanyants, A. (2011). Automated tracing of neurites
from light microscopy stacks of images. Neuroinformatics 9, 263–278. doi: 10.1007/
s12021-011-9121-2

Cuntz, H., Forstner, F., Borst, A., and Häusser, M. (2011). The TREES toolbox—
probing the basis of axonal and dendritic branching. Neuroinformatics 9, 91–96. doi:
10.1007/s12021-010-9093-7

DeFelipe, J., Alonso-Nanclares, L., and Arellano, J. I. (2002). Microstructure of the
neocortex: comparative aspects. J. Neurocytol. 31, 299–316. doi:
10.1023/A:1024130211265

Dercksen, V. J., Hege, H.-C., and Oberlaender, M. (2013). The filament editor: an
interactive software environment for visualization, proof-editing and analysis of 3D
neuron morphology. Neuroinformatics 12, 325–339. doi: 10.1007/s12021-013-9213-2

Donohue, D. E., and Ascoli, G. A. (2011). Automated reconstruction of neuronal
morphology: an overview. Brain Res. Rev. 67, 94–102. doi: 10.1016/j.
brainresrev.2010.11.003

Duan, H., Wearne, S. L., Rocher, A. B., Macedo, A., Morrison, J. H., and Hof, P. R.
(2003). Age-related dendritic and spine changes in Corticocortically projecting neurons
in macaque monkeys. Cereb. Cortex 13, 950–961. doi: 10.1093/cercor/13.9.950

EBRAINS. (2024). EBRAINS. Available at: https://search.kg.ebrains.eu/
instances/2d3757b5-afc8-470d-988e-f382884cf382

Feng, L., Zhao, T., and Kim, J. (2015). neuTube 1.0: a new Design for Efficient Neuron
Reconstruction Software Based on the SWC format. eNeuro 2:ENEURO.0049-14.2014.
doi: 10.1523/ENEURO.0049-14.2014

Froeter, P., Huang, Y., Cangellaris, O. V., Huang, W., Dent, E. W., Gillette, M. U., et al.
(2014). Toward intelligent synthetic neural circuits: directing and accelerating neuron
cell growth by self-rolled-up silicon nitride microtube Array. ACS Nano 8, 11108–11117.
doi: 10.1021/nn504876y

Garcia-Cantero, J. J., Brito, J. P., Mata, S., Bayona, S., and Pastor, L. (2017).
NeuroTessMesh: a tool for the generation and visualization of neuron meshes and
adaptive on-the-Fly refinement. Front. Neuroinform. 11:38. doi: 10.3389/
fninf.2017.00038

Halavi, M., Hamilton, K. A., Parekh, R., and Ascoli, G. A. (2012). Digital
reconstructions of neuronal morphology: three decades of research trends. Front.
Neurosci. 6:49. doi: 10.3389/fnins.2012.00049

Halavi, M., Polavaram, S., Donohue, D. E., Hamilton, G., Hoyt, J., Smith, K. P., et al. (2008).
NeuroMorpho.Org implementation of digital neuroscience: dense coverage and integration
with the NIF. Neuroinformatics 6, 241–252. doi: 10.1007/s12021-008-9030-1

Jin, D. Z., Zhao, T., Hunt, D. L., Tillage, R. P., Hsu, C.-L., and Spruston, N. (2019).
ShuTu: open-source software for efficient and accurate reconstruction of dendritic
morphology. Front. Neuroinform. 13:68. doi: 10.3389/fninf.2019.00068

Kabaso, D., Coskren, P. J., Henry, B. I., Hof, P. R., and Wearne, S. L. (2009). The
Electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits
in macaque monkeys is significantly altered in aging. Cereb. Cortex 19, 2248–2268. doi:
10.1093/cercor/bhn242

Knafo, S., Venero, C., Merino-Serrais, P., Fernaud-Espinosa, I., Gonzalez-Soriano, J.,
Ferrer, I., et al. (2009). Morphological alterations to neurons of the amygdala and
impaired fear conditioning in a transgenic mouse model of Alzheimer's disease. J.
Pathol. 219, 41–51. doi: 10.1002/path.2565

Longair, M. H. (2011). Simple neurite tracer: open source software for reconstruction,
visualization and analysis of neuronal processes. Bioinformatics 27, 2453–2454. doi:
10.1093/bioinformatics/btr390

Mavroudis, I., Petrides, F., Kazis, D., Chatzikonstantinou, S., Karantali, E., Ciobica, A.,
et al. (2021). Morphological alterations of the pyramidal and stellate cells of the visual
cortex in schizophrenia. Exp. Ther. Med. 22:669. doi: 10.3892/etm.2021.10101

Peng, H. B. (2014). Extensible visualization and analysis for multidimensional images
using Vaa3D. Nat. Protoc. 9, 193–208. doi: 10.1038/nprot.2014.011

Peng, H., Ruan, Z., Long, F., Simpson, J. H., and Myers, E. W. (2010). V3D enables
real-time 3D visualization and quantitative analysis of large-scale biological image data
sets. Nat. Biotechnol. 28, 348–353. doi: 10.1038/nbt.1612

psimpl. (2024). psimpl. Available at: https://psimpl.sourceforge.net/documentation.
html

Ramon Cajal, S. (1888). Estructura de los centros nerviosos de las aves. Rev Trim
Histol Norm Pat 1, 1–10.

Scorcioni, R. P. (2008). L-measure: a web-accessible tool for the analysis, comparison
and search of digital reconstructions of neuronal morphologies. Nat. Protoc. 3, 866–876.
doi: 10.1038/nprot.2008.51

Shi, W., and Cheung, C. (2006). Performance evaluation of line simplification
algorithms for vector generalization. Cartogr. J. 43, 27–44. doi: 10.1179/000870406x93490

Türetken, E., González, G., Blum, C., and Fua, P. (2011). Automated reconstruction
of dendritic and axonal Trees by global optimization with geometric priors.
Neuroinformatics 9, 279–302. doi: 10.1007/s12021-011-9122-1

Vg-Lab. (2015). NSOL—neuroscience objects library. GitHub repository. Available at:
https://github.com/vg-lab/nsol

Vg-Lab. (2020). NeuroLOTs. GitHub repository. Available at: https://github.com/vg-
lab/neurolots

Wang, Y., Narayanaswamy, A., Tsai, C.-L., and Roysam, B. (2011). A broadly applicable
3-D neuron tracing method based on open-curve Snake. Neuroinformatics 9, 193–217.
doi: 10.1007/s12021-011-9110-5

Zeng, H., and Sanes, J. R. (2017). Neuronal cell-type classification: challenges, opportunities
and the path forward. Nat. Rev. Neurosci. 18, 530–546. doi: 10.1038/nrn.2017.85

Zhao, T., Xie, J., Amat, F., Clack, N., Ahammad, P., Peng, H., et al. (2011). Automated
reconstruction of neuronal morphology based on local geometrical and global structural
models. Neuroinformatics 9, 247–261. doi: 10.1007/s12021-011-9120-3

Zhou, H., Li, S., Li, A., Huang, Q., Xiong, F., Li, N., et al. (2009). GTree: an open-source
tool for dense reconstruction of brain-wide neuronal population. Neuroinformatics 19,
305–317. doi: 10.1007/s12021-020-09484-6, 05-317

https://doi.org/10.3389/fnana.2024.1342762
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/articles/10.3389/fnana.2024.1342762/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnana.2024.1342762/full#supplementary-material
https://doi.org/10.1093/bioinformatics/bty231
https://doi.org/10.1038/sdata.2018.6
https://doi.org/10.1038/s41592-021-01105-7, 374-377
https://doi.org/10.1523/jneurosci.2055-07.2007
https://doi.org/10.1523/jneurosci.2055-07.2007
https://doi.org/10.1007/s12021-011-9105-2
https://doi.org/10.1016/j.neuroimage.2019.01.010
https://doi.org/10.3389/fnana.2013.00015
https://doi.org/10.1016/s0165-0270(98)00091-0
https://doi.org/10.1007/s12021-011-9121-2
https://doi.org/10.1007/s12021-011-9121-2
https://doi.org/10.1007/s12021-010-9093-7
https://doi.org/10.1023/A:1024130211265
https://doi.org/10.1007/s12021-013-9213-2
https://doi.org/10.1016/j.brainresrev.2010.11.003
https://doi.org/10.1016/j.brainresrev.2010.11.003
https://doi.org/10.1093/cercor/13.9.950
https://search.kg.ebrains.eu/instances/2d3757b5-afc8-470d-988e-f382884cf382
https://search.kg.ebrains.eu/instances/2d3757b5-afc8-470d-988e-f382884cf382
https://doi.org/10.1523/ENEURO.0049-14.2014
https://doi.org/10.1021/nn504876y
https://doi.org/10.3389/fninf.2017.00038
https://doi.org/10.3389/fninf.2017.00038
https://doi.org/10.3389/fnins.2012.00049
https://doi.org/10.1007/s12021-008-9030-1
https://doi.org/10.3389/fninf.2019.00068
https://doi.org/10.1093/cercor/bhn242
https://doi.org/10.1002/path.2565
https://doi.org/10.1093/bioinformatics/btr390
https://doi.org/10.3892/etm.2021.10101
https://doi.org/10.1038/nprot.2014.011
https://doi.org/10.1038/nbt.1612
https://psimpl.sourceforge.net/documentation.html
https://psimpl.sourceforge.net/documentation.html
https://doi.org/10.1038/nprot.2008.51
https://doi.org/10.1179/000870406x93490
https://doi.org/10.1007/s12021-011-9122-1
https://github.com/vg-lab/nsol
https://github.com/vg-lab/neurolots
https://github.com/vg-lab/neurolots
https://doi.org/10.1007/s12021-011-9110-5
https://doi.org/10.1038/nrn.2017.85
https://doi.org/10.1007/s12021-011-9120-3
https://doi.org/10.1007/s12021-020-09484-6, 05-317

	NeuroEditor: a tool to edit and visualize neuronal morphologies
	1 Introduction
	2 Methods
	2.1 Tool overview
	2.2 Tracing data
	2.3 Visualization
	2.4 Selection tools
	2.5 Editing operations
	2.5.1 Manual editing of selected elements
	2.5.2 Simplification and refinement operations
	2.5.3 Automatic detection and correction
	2.5.4 User-defined operations

	3 Processing neuronal tracings with NeuroEditor
	3.1 Manual editing
	3.2 Automatic detection and correction of tracing errors
	3.3 Resolution adjustment
	3.4 User defined correction method

	4 Discussion, conclusions, and future work
	Data availability statement
	Ethics statement
	Author contributions

	References

