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This work represented the synthesis of Ce doped SnO2 nanoparticles by a wet

chemical method and was characterized by various characterization techniques. PXRD

confirmed the presence of the rutile phase for Ce doped SnO2 nanoparticles. SEM

image and elemental mapping showed agglomerated irregular shaped particles and

uniform distribution of 5% Ce ions within the SnO2 lattice, respectively. Ce doped SnO2

nanoparticles showed antimicrobial activity against E. coli and prevented the growth of

bacteria. The nanoparticles were found photocatalytic active and photocatalytic behavior

was elucidated by the degradation of Malachite Green dye under UV light irradiation.
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INTRODUCTION

There has been a continuous threat to health, food packaging, cosmetics, and many more
industries due to microbes and these industries highly depend on various antimicrobial agents
(Ananpattarachai et al., 2009). Contaminated surfaces, colonization, subsequent biofilm formation,
improper cleaning of equipments are found to be the primary carriers of microorganisms leading
to several foodborne and other outbreaks (Swaminathan and Smidt, 2007; Yemmireddy and Hung,
2017). Nanotechnology has its impacts on all fields of science related to nanomedicine, biomedical,
biosensor, development of smart cities, energy, environment, etc. (Kumar et al., 2019a; Bhawna
et al., 2020; Gupta et al., 2020a,b).

Nanoparticles have been long known for their antimicrobial behavior against gram-positive
and gram-negative bacteria, pathogens, and other microbes (Azam et al., 2012; Vargas-Reus et al.,
2012). Metal oxide nanoparticles serve as antimicrobial agents owing to their large surface area
(Raghunath and Perumal, 2017). Out of several metal oxide nanomaterials, scientists have more
interest in SnO2 nanoparticles because of their novel properties such as high chemical stability,
high transparency, and low electrical sheet resistance, etc. (Jarzebski andMarton, 1976a,b; Jarzebski
and Morton, 1976). The modified SnO2 also has great technical and scientific interests because
of its diverse applications, e.g., transparent conducting electrodes, gas sensors, as electrodes in
lithium-ion batteries, electronic devices, dye-based solar cells, H2 generation, etc. (Jiang et al.,
2017, 2018; Park et al., 2017; Xie et al., 2017; Wang et al., 2018; Bhawna et al., 2020). Other than
these applications, SnO2 has been seeking attention as an antimicrobial agent and has played an
essential role against the growth of various bacterial strains like Staphylococcus aureus, E. coli
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(Kumari and Philip, 2015; Vidhu and Philip, 2015; Phukan
et al., 2017). Green synthesis of SnO2 nanoparticles using Aloe
barbadensis miller showed antibacterial and antifungal activities
(Ayeshamariam et al., 2013). Apart from antimicrobial activities,
other important biological properties like anticancer, antitumor,
and antioxidant activities have also been reported using green
synthesized SnO2 nanoparticles (Kamaraj et al., 2014; Khan
et al., 2018). However, when doped with transition metal ions,
SnO2 disinfects microbes with good efficiency, i.e., Co-doped
SnO2 and Ag-doped SnO2 nanoparticles have shown potent
antibacterial activities (Chandran et al., 2015; Nasir et al., 2017;
Qamar et al., 2017; Ali et al., 2018). Only a few reports are
available on antimicrobial activities of Ce dopedmetal oxide NPs.
Ce-doped ZnO NPs showed antimicrobial activity against both
gram-negative and gram-positive bacteria (Rooshde et al., 2020).
Similarly, Ce doped CuO NPs completely eradicated the E. coli
and S. aureus bacteria (Jan et al., 2014) and Ce-doped ZrO2

NPs showed high antibacterial property against gram-positive
bacteria than gram-negative bacteria (Mekala et al., 2018).

Water is a crucial factor for the existence of life on earth and
clean water is the necessity of the hour. Consumption of water by
a rapid increasing population is leading to the depletion of major
aquifers. On the other hand, organic manufacturing industries
have been the target for disposing of their chemical wastes into
water bodies. According to research, the world’s dye production
of about 0.7million tons (>11%) is annually released as industrial
wastewater (Samadi et al., 2019). Among various known dyes,
Malachite green dye has its extensive uses worldwide. Besides its
use as a dye in silk, jute, leather, wool and paper industries; it is
also used as a food additive, coloring agent and as a disinfectant.
However, due to its carcinogenic effects on human health and
aquatic life, it has now become a controversial compound and
has been banned in many countries. Continuous efforts are being
made to recycle contaminated water containing bacteria, toxic
chemicals, dyes, heavymetals, etc. tomake it safe for drinking and
other purposes. Some conventional methods are- photocatalysis,
ozonation, Fenton’s reagent, electrochemical routes, membrane
filtration, coagulation, adsorption, ion-exchange, irradiation,
anaerobic and aerobic degradation, etc. (Gusain et al., 2019).
Though, metal oxides such as TiO2, SnO2, ZnO have been found
as better photocatalysts for the degradation of organic dyes in
aquoues solution. SnO2 as an n-type semiconductor has also
been reported for the degradation of various azo dyes. Besides
antimicrobial activities, doped SnO2 finds improved results in
photocatalytic activities. Ce doping has been known for bandgap
tailoring as well as lattice distortion in SnO2. There are various
methods reported in literature for the synthesis of Ce doped
SnO2 such as- sol-gel (Shide et al., 2010; Ahmed et al., 2019),
hydrothermal (Lian et al., 2017), co-precipitation (Bharathi et al.,
2017; Kumar et al., 2018), wet-chemical (Kumar et al., 2019b),
flame spray method (Kotchasak et al., 2018), etc. Kumar et al.
showed degradation of dyes such as methylene blue and methyl
orange using Ce doped SnO2 nanoparticles (Kumar et al., 2019b)
whereas Wu et al. degraded methyl orange dye using Ce doped
SnO2 (Shide et al., 2010).

To the best of our knowledge, until now, no work has
been reported on antimicrobial behavior using Ce doped SnO2.

This work involves the facile synthesis of Ce doped SnO2

nanoparticles and reports its antimicrobial behavior against
microbes. It also represents photocatalytic degradation of
malachite green dye using Ce doped SnO2.

EXPERIMENTAL SECTION

Ce doped SnO2 nanoparticles were synthesized by a wet-chemical
method using hydrogen peroxide, as mentioned in our previous
report (Kumar et al., 2019b). Solutions of SnCl2.2H2O (Merck,
18ml of 0.5M) and CeCl3 (Merck, 6mL of 40mM) were mixed
and 30mL hydrogen peroxide was added into the mixture. Then,
the mixture was refluxed at 100◦C for 14 h. The white suspension
was cooled to room temperature, centrifuged, and was dried after
washing several times to remove dissolved impurities.

Characterization Details
The powder X-ray diffraction (PXRD) pattern was recorded
using Rigaku, Miniflex 600 X-ray diffractometer employing
monochromatized CuKα radiation. The Field Emission Scanning
Electron Microscope (FESEM) image of the SnO2 NPs was
recorded on a ZEISS Gemini SEM 500.

EVALUATION OF ANTIMICROBIAL
ACTIVITY

The Antimicrobial activity of Ce doped SnO2 nanoparticles was
carried out using Diffusion Susceptibility Test method (Bauer
et al., 1966). The bacterial strain, E. coli was inoculated in 5ml
LB Media (Luria-Bertani; HiMedia Laboratories) and was kept
at 37◦C and 180 rpm for overnight incubation. The overnight
incubated bacterial culture was diluted in 1:100 ratios with fresh
LB media. A zone of inhibition experiment was analyzed using
an LB Agar plate well-diffusion method. Then, the sterilized

FIGURE 1 | PXRD pattern of Ce doped SnO2.
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FIGURE 2 | SEM image and Elemental mapping of Ce doped SnO2.

well cutter was used for boring the LB Agar plate. The diluted
overnight bacterial culture of E. coli was spread on LB agar plate.
Thereafter, seven concentrations of Ce: SnO2 NPs, namely, 0.25,
0.50, 1, 2, 3, 4, and 5mg were poured into LB Agar wells. The well
in the center of LB agar plate did not contain Ce doped SnO2 NPs
and was used as a control. Thereafter, the LB agar plate with Ce
doped SnO2 NP was incubated at 37◦C for 16 h.

Photocatalytic Degradation of Pollutants
Photocatalytic degradation of dye was performed in an in-house
fabricated solar reactor under UV (λ < 400 nm) light by high
vapor pressure mercury lamp 125W (Osram, India) (Kumar
et al., 2011). In the photocatalytic activity, 0.1 g of Ce: SnO2

NPs were suspended into an aqueous solution of 100mL of
15µM MG dye, which was taken in the photoreactor. The dye
solution suspended with the catalyst was stirred for 30min in the
dark to attain the equilibrium and then the light was irradiated
over the solution. Each time, five mL volume were pipetted
out timely, centrifuged and the absorbance was noted using the
UV-visible spectrometer.

RESULT AND DISCUSSION

The Powder X-ray diffraction pattern of the synthesized Ce
doped SnO2 nanoparticles has been shown in the Figure 1. It
shows a rutile structure with tetragonal symmetry space group
P42/mnm [a = 4.680 (4) Å and c = 3.167 (4) Å] and shows clear
reflection at (110), (101), (200), and (211) crystallographic planes
corresponding to JCPDS file no. 41-1445 (Kumar et al., 2019b).
The absence of any other characteristic peaks rule out possibilities
of impurities or other species within the lattice represents high
phase purity. The broadness of the diffracted peaks depicts a small
size of crystals and the average crystallite size determined using
the Scherrer formula was found to be∼6 nm (Scherrer, 1912).

The morphology and elemental mapping of Ce doped
SnO2 nanoparticles was investigated through FESEM (Figure 2).
Irregularly shaped particles distributed unevenly over the lattice
surface has been shown through SEM imaging. Elemental
mapping shows the spatial distribution of elements within the
lattice and provides the evidence that Ce (yellow), Sn (purple),
and O (green) were homogeneously distributed within the
crystal lattice.
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After elucidation of the phase formation and morphology
of the formed nanoparticles, the concentration of Ce ions was
found to be 5% as determined through X-ray photoelectron
spectroscopy in our previous report (Kumar et al., 2019b). Also,
the presence of Ce3+ and Ce4+ ions was confirmed into SnO2

lattice, which caused charge imbalance and hence disorderness in
the lattice (Kumar et al., 2019b).

Analysis of Antimicrobial Activity
Antibacterial activity of Ce doped SnO2 NPs was observed
on LB Agar well-diffusion method (Dil and Sadeghi, 2018).
Antibacterial activity of the NPs was compared with the control
well (without NPs). The antibacterial activity of Ce doped SnO2

NPs was not observed at concentration 0.25–3mg (Figure 3).
Figure 3 suggested that the zones of inhibition were prominent
at two concentrations namely, 4 and 5mg, respectively and
was highest at 5mg concentration. The antibacterial activities
have been assessed through the diameter of the zone of
inhibition. At a concentration of 4mg or above, Ce doped
SnO2 NPs showed potent antibacterial activities (Table 1).
Previously, other metal ions doped with SnO2 like Co-doped
SnO2, Cu-doped SnO2, Fe-doped SnO2, and Ag-doped SnO2

nanoparticles have also been reported for their antibacterial
activities (Chandran et al., 2015; Nasir et al., 2017; Ali et al.,
2018; Baig et al., 2020; Sathishkumar and Geethalakshmi, 2020).
Generally, nanoparticles kill the bacteria through cell membrane

FIGURE 3 | Antibacterial activity of Ce-doped-SnO2 NPs.

disruption, free radical formation causing reactive oxygen species
responsible for antibacterial action (Sirelkhatim et al., 2015).

Photocatalytic Dye Degradation
The degradation of malachite green was performed
photocatalytically using Ce: SnO2 nanoparticles (Figure 4)
under UV light irradiation. It degrades malachite green dye
∼50% in 120min of light irradiation. When compared with
other metal oxides, it is found that undoped TiO2 NPs and F
doped TiO2 NPs photocatalytically degraded 99.9 and 54.26%
MG dye in 240min and 120min, respectively (Chen et al., 2007;
Panahian and Arsalani, 2017). Sn doped TiO2 has been reported
degrading 85% MG in 340min under light irradiation (Sayilkan
et al., 2007), while SnO2 NPs degraded 27% MG in 180min
under UV light irradiation (Kumar et al., 2016).

The probable mechanism for the degradation of malachite
green dye using Ce doped SnO2 NPs has been revealed in
Figure 5. Electrons were excited into the conduction band of
Ce doped SnO2 nanoparticles from its valence band on light
irradiation [bandgap = 3.80 eV (Kumar et al., 2019b)]. Electrons
were also injected into the conduction band of photocatalyst after
transfer from HOMO to LUMO of malachite green dye (Helaïli
et al., 2017). These electrons from two different sites then move
to the surface for surface reactions. The electrons at the surface
react with adsorbed/dissolved oxygen to produce Ȯ−

2 radical. The
concentration of the O2 molecule is responsible for the efficiency

FIGURE 4 | Adsorption of MG in dark and photocatalytic degradation of MG

in the presence of Ce doped SnO2 under UV irradiation.

TABLE 1 | Concentration and observation of zone of inhibition of Ce doped SnO2.

Concentration of Ce

doped SnO2 (mg)

0.25 0.50 1 2 3 4 5

Zone of

inhibition

No No No No Least Moderate Strong activity
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FIGURE 5 | Proposed malachite green degradation mechanism using Ce

doped SnO2 nanoparticles.

of degradation as these molecules scavenge the electrons in
the conduction band, preventing electron-hole recombination.
Moreover, holes in the valence band react with water molecules
or hydroxide ions to produce hydroxyl radicals (OH.) (Kumar
et al., 2016; Ma et al., 2018). The generated oxidizing agents
(superoxide radical anions and hydroxyl radicals) contributed
to the oxidative degradation of malachite green, which was
then converted into simple and less harmful products. The high
stability of Ce doped SnO2 NPs mentioned in the previous report

and hence, these nanoparticles can be reused without undergoing
any change in structure (Kumar et al., 2019b).

CONCLUSION

Facile and economical synthesis of Ce doped SnO2 NPs showed
potent antimicrobial properties so far. Also, nanomaterials were
able to degrade toxic organic pollutants like malachite green.
These nanomaterials could be used against bacterial infection as
well as for multidrug-resistant bacteria along with wastewater
treatment purposes.
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