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In situ imaging for direct visualization is important for physical and biological
sciences. Research endeavors into elucidating dynamic biological and nanoscale
phenomena frequently necessitate in situ and time-resolved imaging. In situ liquid cell
electron microscopy (LC-EM) can overcome certain limitations of conventional electron
microscopies and offer great promise. This review aims to examine the status-quo and
practical challenges of in situ LC-EM and its applications, and to offer insights into a novel
correlative technique termed microfluidic liquid cell electron microscopy. We conclude
by suggesting a few research ideas adopting microfluidic LC-EM for in situ imaging of
biological and nanoscale systems.
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INTRODUCTION

Central to nanoscale characterization of materials, especially those in biological milieu, is
direct visualization. Electron microscopy is a well-established technique that offers structural
information about a sample across meso- to subnanometer scales of spatial resolution (Williams
and Carter, 2009). Since its development, most samples examined have been thin, solid samples
in a static environment (Williams and Carter, 2009), and challenges arise for characterizing
biological samples in aqueous media using electron microscopies regardless of the modality. New
methodologies (de Jonge et al., 2010; Nishiyama et al., 2010; de Jonge and Ross, 2011; Yuk et al.,
2012; Yu, 2020) enjoy advantages such as minimized perturbances to biological specimens and high
spatial and temporal resolutions, thus opening new doors for in situ characterization.

In this review, we discuss recent developments in LC-EMs with a focus on biological and
nanometer scale samples. LC-EM equipment, spatial and temporal resolutions, and practical
considerations are discussed, with some applications highlighted. We discuss the advances in
microfluidic platforms in other imaging and scattering techniques and examine the possibility of
adopting microfluidic channels as liquid cells, creating microfluidic LC-EMs. We conclude with an
outlook in terms of the future applications of microfluidic LC-EMs specifically for imaging complex
biological and nanoscale systems.

IN SITU LIQUID CELL ELECTRON MICROSCOPY

The Liquid Cell
In situ LC-EM is a type of liquid-phase electron microscopy (de Jonge and Ross, 2011). Advances
in the past few decades have given new opportunities to image samples in liquids (de Jonge et al.,
2010; de Jonge and Ross, 2011; Yuk et al., 2012) via their encapsulation in electron-transparent,
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hermetically sealed enclosures, known as liquid cells. The liquid
cell enjoys high adaptability, where scanning, transmission, and
scanning transmission electron microscopy (SEM, TEM, and
STEM, respectively) modalities can be exploited (Figures 1A–C).

A typical liquid cell is composed of two membranes (or
“windows”) encapsulating the sample in an aqueous medium.
A commercial example is shown in Figure 1D. Situated in the
electron microscope, the membrane faces stringent materials
requirements: electron transparency, homogeneity in thickness
(de Jonge and Ross, 2011), stability under high vacuum (Williams
and Carter, 2009), as well as minimal susceptibility to charging or
thermal effects (Leijten et al., 2017). Typical materials for liquid
cells include thin films of silicon nitride (Si3N4) of 10–50 nm in
thickness (Mirsaidov et al., 2012; de Jonge and Peckys, 2016; Fu
et al., 2017; Wu et al., 2019) and multilayer graphene or graphene
oxide sheets of a few nm in thickness (Park et al., 2015; Textor
and de Jonge, 2018) (Figure 1E).

Spatial and Temporal Resolutions
LC-EMs suffer reduced resolutions (Figure 2) compared to
conventional electronmicroscopies due to exacerbated scattering
and absorption induced by the liquid cell membrane, the
membrane/liquid interface, and the aqueous medium. For LC-
SEM (Figure 1A), theoretical calculations (de Jonge and Ross,
2011) showed functional relationships between spatial resolution
d and liquid cell parameters:

dSEM ∝ t
3
2
Z
√

ρ

E
(1)

where t is the thickness of themembrane, Z is the atomic number,
E is the electron energy (in eV), ρ is the density of the sample. For
TEM and STEM, respectively,

dTEM ∝
CcT

E2
(2)

and

dSTEM ∝ lobject
√
T (3)

where Cc is the chromatic aberration factor attributable to
inelastic scattering of electrons by the liquid, T is the thickness
of the liquid layer [1–10µm (de Jonge et al., 2009; de Jonge
and Ross, 2011; Keskin et al., 2019)], and lobject is the dimension
of the object being imaged. Evidently, strategies to improve
spatial resolutions for LC-EMs include appropriate materials
selection for the liquid cell membrane, chromatic aberration
correction, and energy filtering. However, such strategies must be
weighed against electron dosage which should remain sufficiently
low as not to damage biological samples. Successes from time-
resolved imaging of inorganic materials using LC-EM show
promise for its use for in situ bioimaging. Step-by-step dynamics
of the nucleation and growth of metal nanoparticles (Yuk
et al., 2012; Loh et al., 2017) have been captured, along with
studies on interfacial dynamics of nanostructures during catalysis
(Matsubu et al., 2017) and dissolution/degradation processes in
battery materials (Leenheer et al., 2015). Millisecond-timescale
events, which cover most biologically relevant timescales, can

be resolved. The aforementioned list readily demonstrates the
adequate spatial and temporal resolutions of LC-EM which
can allow us to develop a mechanistic understanding of
dynamic nanoscale phenomena. Lessons learned from these
studies can be adapted for or shed light on characterizing soft,
biological matters.

Practical Considerations
Beam Effects
Biological systems are highly sensitive to electron beam damage,
and structural and chemical alterations are commonly observed
(Mirsaidov et al., 2012; Schneider et al., 2014; de Jonge and
Peckys, 2016; Moser et al., 2018). This section, relevant to LC-
EMs, examines the beam effects to the liquid cell membrane, on
the liquid layer, as well as on the specimen.

For the liquid layer, electron-water interactions are inevitable
and should be minimized or at least understood to correctly
interpret collected images. Irradiating electrons can react with
water molecules to produce transient species such as solvated
electrons, hydrogen radicals H·, and hydroxyl radicals OH·

(Schneider et al., 2014) (Figure 3A, left and middle). Further
reactions also lead to pH variation (Figure 3A, right), which
proved detrimental for samples in an unbuffered medium even
though the pH change is localized within a sub-micrometer
region (Schneider et al., 2014). Radicals are highly reactive,
leading to alterations of the subcellular structures of the
biological specimen (Mirsaidov et al., 2012; Schneider et al.,
2014; de Jonge and Peckys, 2016). Bubbles may also form
and even grow during imaging (Klein et al., 2011; Wu et al.,
2019), compromising the spatial resolution and affecting the
behavior of the biological or nanoscale system (Mirsaidov et al.,
2012; Schneider et al., 2014; Tomo et al., 2017; Wu et al.,
2019) (Figure 3B). This makes retaining the spatial resolution
challenging when trying to image a crowded environment.
Tomo et al. (2017) have elucidated how bubbles—of either
water vapor or hydrogen gas—nucleate under irradiation by the
electron beam. They have found that higher electron energy
density leads to the formation of larger bubbles, as nanobubbles
increase in nucleation density which consequently coalesce via
Ostwald ripening. Strategies to minimize bubble formation
should focus on (i) uniform heat dissipation in the liquid cell
to minimize water vapor bubble formation and (ii) minimizing
radical formation or removing radical species in a sufficiently fast
manner to minimize hydrogen bubble formation.

Liquid cell membranesmade of Si3N4, graphene and graphene
oxide sheets possess relatively high stability under high vacuum
and electron irradiation (Park et al., 2015; Cho et al., 2016).
The use of graphene sheets, in particular, reduces beam damage
by radical scavenging (Cho et al., 2016). In fact, while it is
typically advised to maintain a low imaging time for biological
samples, graphene sheets ensure prolonged in situ imaging times
of up to tens of minutes (Yuk et al., 2012; Park et al., 2015;
Keskin and de Jonge, 2018; Narayanan et al., 2020). The use of
both graphene sheets as liquid cell membranes and free radical
scavengers (Schneider et al., 2014) can partially remediate one
major damaging mechanism to the liquid layer.
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FIGURE 1 | Configurations of LC-EMs. Schematic configurations of (A) LC-SEM, (B) LC-TEM, and (C) LC-STEM. Schematics are not to scale and are adapted from
de Jonge and Ross (2011) with permission from Macmillan Publishers Ltd (Springer Nature). Typical chamber vacuum values are reported (Williams and Carter, 2009).
(D) (Top) Photograph of an example of microchip with Si3N4 liquid cell window by Norcada Inc. (www.norcada.com). Printed with permission. The window shown has
a frame size of 5mm × 5mm and a window size of 0.25mm × 0.25mm, although other dimensions are available. (Bottom) A microfluidic liquid flow system by
Hummingbird ScientificTM (www.hummingbirdscientific.com). Printed with permission. (E) Schematic illustration of a static liquid cell where the liquid sample is
encapsulated by two graphene sheets. Figure reprinted from Yuk et al. (2012) with permission from AAAS.

Direct specimen damages due to high-energy electrons can
be compositional or structural (Bloebaum et al., 2006; Mirsaidov
et al., 2012; Moser et al., 2018). Mirsaidov et al. (2012) report
in situ carbonization of acrosomal bundles in water under high
electron dosage (Figure 3C). Past research in bioimaging and
quantitative elemental mapping of bone tissues also revealed
that there were significant changes in calcium, phosphorus and
carbon concentrations in specimens under conventional imaging
conditions (Bloebaum et al., 2006).

Acceptable Electron Dosage
All aforementioned beam effects dictate the appropriate electron
dosage to be used to minimize specimen damage. Structural
damage to biological samples can begin to occur at a sub-
nanometer scale at a dosage of 1 e− Å−2 (de Jonge and Ross,
2011; Moser et al., 2018) (Figure 3D), which is significant for
imaging nanoscale structures such as small globular proteins. As
there exists no consensus on the acceptable electron dosage across
biological structures, it is generally suggested that samples be
imaged below an electron dosage of 10 e− Å−2, a typical tolerance

value for proteins (Kempner and Schlegel, 1979), in order to
resolve single-protein features. For tissues, room-temperature
chemical fixation can improve sample stability under relative
high dosages to around 100 e− Å−2 (Thiberge et al., 2004; de
Jonge and Ross, 2011). Yet it is not uncommon to observe altered
ultrastructure in tissues that have been chemically fixed, and a
decrease in extracellular space has been reported (Korogod et al.,
2015). Cryo-fixation can help preserve the ultrastructural features
of tissues (Korogod et al., 2015) whilst allowing the similar extent
of dosage delivery, i.e., around 100 e− Å−2 (Hurbain and Sachse,
2011). In any case, there is a compromise to be made between
damage and spatial resolution, as dictated by the electron energy
(Equations 1–2) (Williams and Carter, 2009).

Recent developments demonstrated a significantly increased
acceptable electron dosage when imaging biological samples.
Using multilayered graphene as static liquid cell membranes,
Keskin and de Jonge (2018) have shown that the structural
features of microtubule proteins can be resolved at the nanometer
resolution for an electron density of up to 720 e− Å−2.
We envision that, when employing a flow cell where the
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FIGURE 2 | Spatial and temporal resolutions. Map of spatial and temporal resolutions of various types of microscopies with sub-differentiation of electron microscopy
modalities. Shown right is the color scale for depth resolution. Black solid lines suggest either unavailability of depth resolution data or non-applicability to the
technique. Corresponding data references are as follows: conventional fluorescence and confocal microscopies (Pawley, 2006), pulsed laser microscopy (Bové et al.,
2016), super-resolution light microscopies (Göttfert et al., 2013; Agarwal and Machán, 2016; Chen et al., 2019), LC-SEM (Thiberge et al., 2004), LC-TEM/STEM (de
Jonge et al., 2019), cryogenic TEM (Diebolder et al., 2012; Fu et al., 2019), dynamic TEM (Lagrange et al., 2008; Egan et al., 2018), and ultrafast 4D EM (Fu et al.,
2017; Zhu et al., 2020).

sample under imaging is constantly replenished, damage will
not be cumulative such as for a static cell. This has been
validated by a few studies (Yang et al., 2011a,b). The potential
offered by microfluidic platforms will be discussed in the
later sections. Pulsed electron beams for modulated electron
dosage (VandenBussche and Flannigan, 2019) can also be
implemented into LC-EM to further reduce beam effects on
biological specimens.

Applications of in situ Liquid Cell Electron
Microscopy
In situ LC-EM has been used to study the biological structures
of proteins (Evans et al., 2012; Mirsaidov et al., 2012)
(Figures 4A,C) and even whole cells (de Jonge et al., 2009;
Park et al., 2015) (Figure 4B). One advantage of in situ LC-
EM is the ability to locate and image unstained and unlabeled
samples, as demonstrated by a few studies (Mirsaidov et al.,
2012; Hoppe et al., 2013). This results in minimized chemical
perturbance, approaching imaging samples in their native state.

Additionally, assemblies of macromolecular complexes can be
resolved. While the spatial resolution of cryo-EM exceeds most
achievable values of LC-EM modalities (Figure 2), freezing
may affect gross morphologies or sub-cellular structures. One
particular instance is the supposedly spurious stacking of
nanolipoprotein particles (Figure 4C) (Schneider et al., 2014),
a result of self-assembly due to cryo-EM sample preparation
and subsequently resolved by LC-EM. With recent advances in
research investigating the bio/nano-interfaces, dynamic studies
using LC-TEM have also been performed: Park et al. (2015)
imaged the translocation of gold nanoparticles within a canine
kidney cell (Figure 4D). Albeit that such dynamics are inferred
from static images, in situ LC-EM imaging can already shed
light on the internalization process of engineered nanomaterials,
such as nanoparticles, by cells. It should be noted that these
studies, while promising, remain less-than-ideal: using pure
water as the liquid layer is unphysiological as compared
to cellular environments. Taking proteins for example, most
proteins do not adopt the same conformation in water as
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FIGURE 3 | Classification and evaluation of electron beam damage to biological and nanoscale systems. (A,B) Damage to the liquid layer. (A) (Left) Concentrations of
beam-generated species as a function of imaging time at a dose rate of 7.5 × 107 Gy s−1. (Middle) Steady-state concentrations of beam-generated species in water
as a function of dose rate. (Right) Steady-state pH as a function of dose rate. Reprinted with permission from Schneider et al. (2014). Copyright 2014, American
Chemical Society. (B) In situ LC-TEM micrographs illustrating bubble formation: (top) a bubble forms and grows in an organic solution; (bottom) the bubbles interact
with a Au-CdS nanocluster. Reproduced from Wu et al. (2019) with permission from the Center National de la Recherche Scientifique (CNRS) and The Royal Society
of Chemistry. (C,D) Damages to the sample. (C) (a–b) Fluorescence image of S. pombe cells recorded (a) prior to electron beam exposure and (b) 5min into electron
beam exposure. (c–d) Corresponding LC-STEM images. Reprinted with permission from de Jonge and Peckys (2016). Copyright 2016, American Chemical Society.
(D) (Top) Electron micrographs of bacterium C. Metallidurans, imaged using increasing electron fluxes. The time between each acquisition was 20min. (Bottom) ×10
magnifications of the region boxed in red, where the edge of the cells (indicated using yellow arrows) move relative to the metal cluster with increasing electron influx
used. From Moser et al. (2018). Reprinted with permission from AAAS.

intracellularly (Bellissent-Funel et al., 2016). Moreover, to image
protein structures and to probe protein-protein interactions
in their native environment, additives such as hydrotropes
or cosolvents (Patel et al., 2017) are required to achieve
high, intracellular protein concentrations. These strategies will
lead to a step closer to imaging samples in the native
state; nevertheless, we must also consider the complications
that arise such as a decrease in spatial resolution due to
extensive scattering.

Caveats on Drawing Conclusions
In situ LC-EMs promise great opportunities for direct
visualization of biological structures as well as imaging dynamic
processes given the appropriate temporal resolution. However,
due to low-contrast and various beam damages, one may easily
fall into an “Einstein from noise” trap (Henderson, 2013):
spuriously attributing noise or beam-induced bubbles (Klein
et al., 2011; Wu et al., 2019) to a structural feature. In general,
one should always generate a statistically significant number
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FIGURE 4 | LC-EMs in imaging biological and nanoscale systems. (A) LC-TEM dark-field image of acrosomal bundles in water under an electron dosage of 35 e−

Å−2. Image reprinted from Mirsaidov et al. (2012) with permission from Cell Press. (B) LC-STEM dark-field image of the edge of a fibroblast cell, labeled with
gold-tagged epidermal growth factors. The labels are visible as bright punctate spots. Image reprinted from de Jonge et al. (2009) with permission from National
Academy of Sciences. (C) (Left) Cryogenic negative stain TEM image of nanolipoprotein particles; the triangular arrow indicates particle stacking. (Right) LC-STEM
dark-field image of nanolipoprotein particles. Both scale bars represent 20 nm. Images reprinted from Evans et al. (2012) with permission from Elsevier. (D) LC-TEM
snapshots of a gold nanoparticle in a hydrated kidney cell. Time interval between frames is 0.1 s. Reprinted with permission from Park et al. (2015). Copyright 2015,
American Chemical Society.

of images and evaluate possible beam damage mechanisms
before arriving at a specific conclusion. It is helpful to assess the
time-dependency of observed features and possibly correlate
to another technique. Consider imaging the cellular uptake of
gold nanoparticles depicted in Figure 4D. One must examine
the electron irradiation history (Moser et al., 2018) in order
to ascertain that the dynamics imaged is due to intracellular
movements rather than a radiation-induced artifact. This is
applicable for studying a range of dynamic biological processes
from biomineralization to virus-cell interactions. In addition,
thermal effects which influence the kinetics of dynamic processes
must be considered. Prolonged imaging can increase the
temperature of the liquid cell by a few degrees (Park et al.,
2015), which is sufficient to modify the Brownian motion of
small biological and nanoscale species at play. One may hence
falsely attribute “dynamics” due to enhanced Brownian motion
to an effect of added analyte(s). In this case, a temperature-
controlled chamber can be used to minimize relatively large
temperature variations.

We are still at an inchoate stage in understanding complex
biological systems in their native state. Since the minimum
electron dose to obtain contrast exceeds the lethal dose for
cell-lysis, which lies in the order of 10−3-10−4 e− Å−2, it is
unfeasible to image live cells using a LC-EM (de Jonge and
Peckys, 2016), whereas the viability of multiple cell lines has
been confirmed in microfluidic chambers upon an hour-long
exposure (Peckys and de Jonge, 2014). While in situ bio-imaging
has immense potential, we must keep in mind that in situ does
not equate in vivo or in operando. At this stage, it is best that
we relate additional in vivo characterization techniques with in
situ imaging.

MICROFLUIDICS: OPPORTUNITIES AND
CHALLENGES FOR LC-EM

Design of Microfluidic Systems
LC-EMs can use either static (de Jonge et al., 2010; Nishiyama
et al., 2010; Yuk et al., 2012) or flow cells (Ring and de
Jonge, 2010; Klein et al., 2011; Yu, 2020), hinting at the
potential of implementing microfluidic setups as part of the
LC-EM for dynamic process imaging. In fact, the prospects of
microfluidics in biological sciences has been suggested for over
a decade now (Whitesides, 2006). While much focus has been
onmicrofluidic-assisted fabrication and processing (Martin et al.,
2016), the potential of microfluidics in LC-EM remains to be
further explored.

Microfluidic devices have inlets and channels with at
least one dimension being <1mm (Amato et al., 2017; Wu
et al., 2020). These devices can be broadly classified into
chip-based microfluidics and capillary microfluidics (Solsona
et al., 2019) (Figure 5A) or can be categorized based on the
channel geometries to induce specific flow patterns such as
T-junction, co-flow, or flow-focusing (Li W. et al., 2018).
Numerous interesting geometries and designs have been
developed from microfluidic-based fabrication and processing of
multicompartmental nanoparticles (Wu et al., 2020) or complex
microcapsules (Amato et al., 2017). For LC-EM, chip-based
microfluidics would be of practical interest to most bioimaging
applications. The microfluidic design can be customized to
allow controlled mixing of multiple input materials and to
accommodate biological structures of different length-scales.
For miscible liquids, the microchannel allows a continuous
flow of analytes via diffusional mixing (Arter et al., 2020), i.e.,
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FIGURE 5 | Microfluidic systems and microfluidic LC-EM. (A) Chip-based and capillary microfluidic designs. Figure reprinted from Solsona et al. (2019), published by
The Royal Society of Chemistry. (B) Schematic showing different possible geometries of the microfluidic channel. Reproduced from Martin et al. (2016) with
permission from The Royal Society of Chemistry. (C) Flow behaviors in microfluidic channels. Shown on the right is a rough scale for categorizing the Reynold number
which characterizes the fluid mechanics of the liquid in the microchannel. Figure reprinted from Saliba et al. (2018), MDPI. (D) Schematic of a hypothetical design of
microfluidic channel containing two immiscible liquids for studying liquid-liquid interfacial phenomena. (E) Schematic setup of a microfluidic chamber for
LC-TEM/STEM (not to scale). The two Si3N4 chips are shown in a golden yellow color. Figure reprinted from Ring and de Jonge (2010) with permission from
Microscopy Society of America and Cambridge University Press.

achieved via passive mixing based on the physical design of the
microchannel alone (Figure 5B). Active mixing is possible by
applying suitable external stimuli such as electric or magnetic
fields, pressure, and acoustics (Solsona et al., 2019). Evidently,
the compatibility and applicability of these modes of mixing
with biological specimens will need to be assessed for individual
samples. Opportunities also arise where, by controlling the fluidic
dynamics, we can intentionally design the flow profiles of liquids
within the microchannels. Both laminar and turbulent flows can
be achieved (Figure 5C). Such has been exploited to mimic the
flow in biological environments, such as the blood flow within
brain capillaries (Shao et al., 2016) and flow in proximal tubules
(Duan et al., 2010). Besides analyte mixing, using immiscible
liquids may also hold applications. For instance, when two

immiscible liquids are introduced into the main microfluidic
channel, along with a third inlet with samples to be imaged
(Figure 5D), their behavior at the liquid-liquid interface can be
addressed under the correct conditions. Overall, control over the
microfluidic setup means spatial and temporal control of the
microenvironment containing the sample, proving advantageous
for imaging applications.

Implications and Consequences for
Biological Specimens
Downscaling to micro or sub-micrometer scales in microfluidics
allows for miniaturization, providing apparent advantages such
as reduced volumetric materials input and enhanced mass
and heat transfer due to increased surface-area-to-volume ratio
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(Whitesides, 2006). Moreover, such downscaling inevitably leads
to pronounced effects from properties such as viscosity, shear
stress, and surface tension. Their interplay directly determines
the transport phenomenon and sample behavior inside the
microchannel. Viscosity should be of little concern as the
concentration for biological samples can be carefully chosen
for imaging. At low concentrations, clustering of biological
and nanoscale entities is unlikely provided an appropriate
liquid medium has been selected. Thus, shear thickening is
unlikely even under confinement (Bian et al., 2014). Shear stress,
especially near the channel walls, may impact the behavior of
biological samples under flow. Without physical alterations, this
can offer opportunities for mimicking flow in blood capillaries.
For instance, a threshold of shear stress exists to trigger the
adhesion of von Willebrand factor fibers (Schneider et al.,
2007). Microfluidics can be designed to mimic and image
similar phenomena in situ in a time-resolved fashion. For other
applications, varying physical design of the channel may allow
different flow profiles to emerge, whereas chemically modifying
the inner walls of microchannels can impart properties such as
anti-fouling properties to resist protein adsorption under shear, a
common problem that has been observed in microfluidic devices
(Koc et al., 2008).

In situ Imaging Using Microfluidic
Platforms
Shown in Figure 5E is the Ring and de Jonge’s design of
microfluidic system for LC-TEM/STEM (Ring and de Jonge,
2010). Two oppositely-facing Si3N4 chips were used to assemble
themicrofluidic chamber, “sandwiching” the liquid specimen and
allowing liquid flow. More intricate designs to manipulate the
liquid flow, as discussed above, can be applied to study complex
biological and nanoscale systems. One particular advantage of
the deployment of microfluidic-based imaging is the capability
to image dynamic processes, which renders it far superior
to conventional microscopies. The liquid chemistry via the
microfluidic tubings can be precisely controlled (Knoška et al.,
2020) and altered (Mattern et al., 2020) in real-time to examine
the kinetics of complex biological processes. In introducing
species in aliquots, such as aggregation-inducers (Zheng et al.,
2003) or fluorescent dyes (Chen and Lee, 2010), kinetic processes
can be studied in detail. Moreover, since the sample is constantly
replenished, the beam damage will not be cumulative; this
reduces the overall sample damage and increases the imaging
times as needed. For optical microscopies and X-ray scattering,
tubing materials are typically polydimethylsiloxane with 1-
µm thickness (Firpo et al., 2015), inappropriate for LC-EMs.
Multilayered graphene oxide membranes used in LC-EMs are
both electron- and optically-transparent (Yulaev et al., 2016),
serving as a great candidate for microfluidic EM, rendering the
technique feasible.

Additional functionalization of the microchannels can
provide prospective venues for experimental design. For
example, functionalizing the inner walls of the microchannels
with biotin, leveraging its well-known strong interaction
with streptavidin, can help understand similar multivalent

interactions in biomaterials and at bio/nano-interfaces. Strategies
for creating such functional microchannels, by chemically or
physically modifying the inner walls of the microchannels, have
been summarized in a recent review (Wang et al., 2019). As the
field progresses, additional functionalities of the microfluidic
platform such as electrophoretic manipulation (Huh et al., 2008;
Yasukawa et al., 2008; Unocic et al., 2014; Arter et al., 2020) can
be incorporated for more advanced characterization.

OUTLOOK

Toward Correlative and Multimodal
Imaging
Much progress has been made in the field of structural biology
via X-ray or neutron scattering characterizations (Neylon, 2008),
cryo-EM (Mäeots et al., 2020), model fitting, and molecular
dynamics simulations (Karplus and McCammon, 2002). The
gap between biophysicochemical analysis and direct visualization
can be further bridged using microfluidic LC-EM, leading to
correlative characterization. The microfluidic channel houses
a statistical distribution of all orientations of biological and
nanoscale structures; such allows a 3Dmodel to be reconstructed
using a computer algorithm, such as demonstrated by Chen et al.
(2013) on the imaging of DNA-gold nanoconjugates on a second
timescale. This is analogous to the well-developed single-particle
image processing algorithms for cryo-EM (Punjani et al., 2017).
To study the dynamics of proteins (Zheng et al., 2003; Chen
and Lee, 2010; Lutz-Bueno et al., 2016; Knoška et al., 2020)
and nanoparticles (Ghazal et al., 2016), microfluidic platforms
have been coupled to optical (Zheng et al., 2003; Sakai et al.,
2019), fluorescence microscopies (Chen and Lee, 2010; Ding
et al., 2016; Hua et al., 2016; Tian et al., 2019), cryo-EM
(Fuest et al., 2019; Mäeots et al., 2020), and small-angle X-
ray scattering (Lutz-Bueno et al., 2016; Anaraki et al., 2020).
Some examples include capturing the transient conformations of
DNA during self-assembly (Wang et al., 2020), imaging protein
crystallization (Zheng et al., 2003) (Figure 6A) or adsorption
(Yu et al., 2020), probing intracellular communication via
gap junctions (Chen and Lee, 2010) (Figure 6B), mapping the
dynamics of amyloid formation (Lutz-Bueno et al., 2016; Saar
et al., 2016) (Figure 6C), chemical and molecular mapping
of live biofilms (Ding et al., 2016) (Figure 6D), as well as
imaging biomineralization and bio-sedimentation (He et al.,
2019; Narayanan et al., 2020). Hydrated single cells can also
be manipulated in a microfluidic chamber and imaged in
a correlative fashion using super-resolution microscopy and
secondary ion mass spectrometry (Hua et al., 2016). Microfluidic
LC-EM can be coupled with other microscopies (such as confocal
microscopy), spectroscopies (such as X-ray spectroscopy), or
scattering techniques (such as lab-sized SAXS) to offer potentially
continuous and time-resolved correlative characterization of
dynamic biological processes and interactions between biological
entities and nanoparticles. Kinetic information may also be
extracted (Mäeots et al., 2020).

Appropriate sample preparation is essential to enable
multimodal imaging of the same sample across techniques.When

Frontiers in Nanotechnology | www.frontiersin.org 8 December 2020 | Volume 2 | Article 606253

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


Han and Porter Liquid Cell Electron Microscopy

FIGURE 6 | Microfluidic-based microscopy, scattering, and spectrometry techniques. (A) (Top, i–ii) Polarized light micrographs of bovine liver catalase (i) and glucose
isomerase (ii) in a microfluidic setup. (Bottom) Polarized light micrograph illustrating the crystallization of lysozyme inside microfluidic droplets. Reprinted with
permission from Zheng et al. (2003). Copyright 2003, American Chemical Society. (B) (i) Photolithographic mask of a microfluidic channel. (ii) Optical photograph of
HeLa cells in the microfluidic channel. (iii–iv) Fluorescence images of dye focusing over HeLa cells at the center of the channel using calcein/AM (iii) and DiI (iv). Scale
bar represents 200µm. Reproduced from Chen and Lee (2010) with permission from The Royal Society of Chemistry. (C) Nanostructure mapping of amyloid fibrils
with different average contour lengths L using microfluidic-based SAXS. Color saturation denotes asymmetric amplitude, white denotes symmetric amplitude, and the
color wheel categorizes molecular alignment. Reproduced from Lutz-Bueno et al. (2016) with permission from The Royal Society of Chemistry. (D) S. oneidensis MR-1
biofilms characterized by tight-of-flight secondary ion mass spectrometry (TOF-SIMS) in a microfluidic chamber. (Top, left) SIM image; (Top, right) correlated 2D image
of palmitic acid from the biofilm. (Bottom) 3D cluster analysis of palmitic acid from the biofilm. Reprinted with permission from Ding et al. (2016). Copyright 2016,
American Chemical Society.

using the same sample for correlative imaging, which is often
sought after if sample preparation proves time-consuming and
laborious, attention should be paid to determine the sequence in
which serial imaging or multimode characterizations are carried
out on a case-by-case basis. At the very least, destructive imaging
or analytical techniques should come last, and detailed planning
is contingent upon the structural level on which the damage can
be caused.

Although this review specifically focuses on liquid cell EM,
where the sample is encapsulated or “sandwiched” in a liquid
medium, open specimen holders (Nishiyama et al., 2010) used
in atmospheric or environmental EM can also benefit from
the use of microfluidic platforms for in situ imaging. Several

studies have employed atmospheric or environmental EM for
correlative imaging of biological systems, including neuronal
networks (Sato et al., 2019a), secretory glands (Yamazawa et al.,
2016), and bacterial chains in a biofilm matrix (Raab and
Bachelet, 2017). The open-cell EM configurations use either low-
vapor-pressure liquid or differential pumping (Takeda et al.,
2015), and the microfluidics can adopt an open-channel-like
design to implement into the EM stages. One example of such
a hybrid microfluidic platform has been designed to couple
with secondary ion mass spectrometry (Yang et al., 2011a;
Yu et al., 2020). Due to the open-cell design, atmospheric
or environmental EM would face the general problems of
having limited options of the liquid medium and increased
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susceptibility to radiation damage compared to LC-EM. Yet
an improved resolution may be possible due to the disuse of
multiple layers of liquid cell membrane materials. Recent work
by Sato et al. (2019b) utilized a microfluidic chamber to directly
image calcium phosphate mineralization in fixed, unstained bone
tissues. Thus, there do exist possibilities for in situ bioimaging
when integrating microfluidic systems with open cells, not just
liquid cells.

Suggested below are a few areas of interest at the interface
between nanotechnology and biological sciences which
can benefit from the development of and advancement in
microfluidic LC-EM.

Future Work Applying Microfluidic LC-EM
Hydrotropic Mechanism in Protein Solubilization
Recently, Patel et al. (2017) reported that adenosine triphosphate
(ATP), a ubiquitous energy supplier within cells, behaves as
a hydrotrope which facilitates protein dissolution. In fact,
amphiphilic proteins maintain soluble and stable at high
concentrations inside cells (Brown, 1991), and its origin is poorly
understood. Microfluidic LC-EMs can be used to provide direct
visualization for the hydrotropic stabilization phenomenon. This
will facilitate the understanding of the operative mechanism of
hydrotropes as more biological hydrotropes become discovered.
It can have further implications in understanding protein-protein
interactions, or interactomes (Tian et al., 2011; Arter et al., 2020),
in vivo.

Cellular Uptake of Nanoparticles
There is a surge of interests in understanding the
pharmacokinetics of engineered nanomaterials, particularly
nanoparticles which are used in everyday cosmeceuticals or
deliberately introduced into the body as nanotherapeutics
(Cagno et al., 2017; Rees et al., 2019; Jones et al., 2020).
Microfluidic LC-EMs can be designed to accommodate a
constant flow of cells and image extracellular processes (e.g.,
nanoparticle aggregation, physical degradation and settling rates
in culture) and cellular uptake of relatively large nanoparticles
(e.g., >50 nm in size) with ms temporal resolution and without
much damage. Yet limitations in imaging resolution remain as
nanoparticle size cannot be too small, and sub-cellular features
may not be fully resolved. If necessary, confocal microscopy
can be coupled to microfluidic LC-EM to image stained cells or
antibody-decorated nanomaterials while obtaining a secondary,
fluorescence signal from proteins of interest. This design can
offer appreciable information about the dynamics of cellular
interactions of nanomaterials, allowing correlation with existing
studies on their pharmacokinetics (Rees et al., 2019).

Mechanism of Virucidal Nanoparticles
Monolayer-protected metal nanoparticles can be designed to
be protein-mimetic and serve as a prospective candidate for
non-toxic nanomedicines (Cagno et al., 2017; Jones et al.,
2020). More importantly, these nanoparticles are reported to
be broad-spectrum (Cagno et al., 2017; Jones et al., 2020),
hinting potential applications in treating patients afflicted by
emerging, novel viruses such as SARS-CoV-2 (Weiss et al.,

2020). Understanding fundamental supramolecular interactions
between viruses and biomimetic antiviral nanoparticles can
greatly assist materials design and their employment for
biomedical applications, tackling viral pandemics/epidemics
such as the COVID-19 pandemic. Microfluidic LC-EMs
can be used to introduce aliquots of such nanoparticle
suspension to a main channel containing viruses (Dukes et al.,
2013), allowing direct and real-time visualization of purported
virucidal mechanisms.

Intrinsically Disordered Proteins and Their

Self-Assembly
Intrinsically disordered proteins (IDPs) and regions (IDRs)
represent an emerging and paradigm-shifting field of research
in life science and soft matter physics. In terms of individual
proteins, IDPs differ from folded, globular proteins in that they
enjoy high conformational flexibility and complexity (Oldfield
and Dunker, 2014; Li B. et al., 2018). This translates to enhanced
interaction densities and strengths (Uversky, 2013) through
multivalency effects, as well as a much larger conformational
energy landscape for a particularly-sequenced protein to explore.
In terms of their self-assembled structures, the self-assembly
of IDPs/IDRs is believed to drive intracellular liquid-liquid
phase separation (Uversky et al., 2008; Shin et al., 2018),
i.e., formation of membraneless organelles, a process that is
responsible for cellular compartmentalization. Moreover, this
self-assembling process bears pathological implications [such
as Alzheimer’s disease, Parkinson disease, and amyotrophic
lateral sclerosis (ALS)] (Uversky et al., 2008) as it links closely
to the formation of protein aggregates. Both areas remain
largely unexplored. While significant strides have been made
in visualizing liquid-liquid phase separation on a cellular level
using optogenetics, both static and dynamic characterization
of IDPs and their self-assembly at the single-protein level
are still needed. Microfluidic LC-EM can be used to control
specific liquid environments to trigger IDP self-assembly and to
complement studies involving single-molecule Förster resonance
energy transfer measurements (Ferreon et al., 2010) or cryo-
EM imaging (Li B. et al., 2018). This way, it may be possible
to identify transient states of IDPs, to capture conformational
switching (Choi et al., 2019) in IDPs and extract its kinetic
information, and to characterize the hierarchical organization
and dynamics during the self-assembly of IDPs. Consequently, an
improved understanding of IDPs and IDRs can better inform the
design of supramolecular nanomaterials to interact with complex
biological entities.

Perspectives
The examples described above demonstrate the potential
wide applicability of microfluidic LC-EM in biology and
nanomaterials science. Evident advantages of the technique
include ease of sample preparation (such as compared to cryo-
EM), ability to image dynamic processes and extraction of kinetic
information via precise control of the liquid environment, as
well as ease of implementation to other imaging or scattering
techniques for multimodal analysis. Yet certain challenges
remain and will need to be addressed. First, data acquisition
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and processing should be optimized for the respective imaging
modality, especially for video recording of dynamic processes,
as this dictates the eventual spatial and temporal resolution
of images/videos during analysis. Using an automated process,
2D projection of image snapshots can be grouped to create
class averages—a common procedure in structural biology—
and 3D reconstruction of single particles or macromolecular
complexes may be possible. Secondly, to better interpret imaging
results, respective electron beam damage to the sample and
the liquid layer must be understood and, more importantly,
quantified on a case-by-case basis. Control groups with only
the liquid medium should be imaged, and electron-dosage-
dependency of the dynamics imaged by microfluidic LC-EM
should be examined. Thirdly, alternative liquid cell membranes
could help. Besides graphene and graphene oxide sheets, it
has been suggested that various 2D layered nanomaterials
can be investigated for their suitability and applicability as
liquid cell membranes (Yu, 2020) with a focus on their
electron-transparency, vacuum stability, inertness, and radical-
scavenging capabilities. Such materials selection can improve
imaging resolution and possibly lessen electron beam damage.
From a research standardization and reproducibility point of
view, researchers must be comprehensive in reporting imaging
conditions in works using microfluidic LC-EM. At a minimum,
we recommend reporting information about the sample, about
the liquid layer (e.g., thickness and chemical composition),
about the microfluidic setup (e.g., membrane material, chamber
temperature if monitored and controlled, and flow rate),
as well as the electron microscopy imaging conditions (i.e.,
electron energy, electron energy density, irradiation time, and
accumulated dosage).

Various strategies exist to lessen the beam damage for
biological samples, allowing their structural features to be
resolved at the nanometer scale in situ. Microfluidic designs,

allowing liquid flow, may further reduce the beam damage
and can offer additional opportunities to create functional
microenvironments for manipulation of biological structures.
We anticipate that, when microfluidic platforms become
incorporated into LC-EMs, important dynamic processes in
biological and nanoscale systems can be addressed in a time-
resolved fashion. Microfluidic LC-EM could have the potential
to help elucidate fundamental phenomena in nature, such
as how naturally-occurring biological hydrotropes work and
how IDRs self-assemble in vivo and its implication for the
development of neurodegenerative diseases. At the bio/nano-
interface, the interactions between biological entities and
engineered nanomaterials can also be better understood via
correlative imaging with microfluidic LC-EM. Fluorescent tags
can be added to help image the binding process between antiviral
nanoparticles and different viruses. At a cellular level, cellular
uptake of nanomaterials and relevant extracellular processes can
be imaged, and their concerted effect can be better appreciated
in vivo using microfluidic LC-EM. With further perfection of
imaging systems and software, a future with imaging biological
and nanoscale systems in operando using microfluidic LC-EM
may be possible for a myriad of applications.
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