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COVID – 19 is a contagious disease caused by severe acute respiratory syndrome (SARS-
CoV2). The rate at which COVID – 19-virus spread from epidemic to pandemic within a
short period is quite alarming. As of July 2020, the Dashboard of the World Health
Organization (WHO) recorded over 15million COVID – 19 cases across 213 countries, with
mortality of over 620,000. The governments and healthcare agencies responsible for
mitigating the virus’s spread have adopted several strategies to end the pandemic.
However, all hands were on deck to establish the standard treatment modalities of
SARS-CoV-2 through inventing new drugs, vaccine candidates, or repurposing the
existing medicines and robust diagnostic tools, in addition to other technological
innovations. Therefore, nanotechnology’s employment would play a vital role in
bringing multidisciplinary ways of developing affordable, reliable, and powerful tools for
diagnosis, in addition to personal protection and effective medicines. Additionally,
nanosensors’ application would significantly aid the diagnoses of the COVID–19 even
on asymptomatic patients, and thus would be an essential means for determining its
prevalence. Likewise, nanoscale fibers can optimize personal equipment protection and
allow their reusability for medical and economic benefits. Accordingly, the literature was
intensively reviewed by searching for the combinations of the research keywords in the
official scientific databases such as Science Direct, PubMed, and Google Scholar. Hence,
this research highlighted the perspective contributions of nanotechnology in the war
against the COVID-19 pandemic.
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INTRODUCTION

June Almeda first identified the coronavirus family in 1963 while working at the Ontario Cancer
Institute in Toronto, Canada. The Scottish scientist saw some greenish dots embedded in a spike-like
structure under an electron microscope called corona in the Latin term, which means crown in
English (History and Culture, 2020). Viruses have been characterized by their pathogenicity and
rapid transmission from zoonotic to human beings, which has caused a wide range of diseases.
However, it was not confirmed whether or not the virus was zoonotic (Shereen et al., 2020). Severe
Acute Respiratory Syndrome (SARS-CoV) was the first outbreak of coronavirus in Spain in 2003 (Xie
and Chen, 2020). While the Middle East Respiratory Syndrome (MERS) was the second pandemic
that broke out in Saudi Arabia in 2012. Where it causes a serious range of illnesses in the Middle East
part of Asia (Cao et al., 2020). Recently, the outbreak of the COVID-19 pandemic in China’s Wuhan
market in December 2019 was first diagnosed as a pneumonia of unknown etiology (Biomedical and
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Pharmaceutical Sciences, 2020). However, the genomic sequence
investigation revealed its 80% genetic resemblance to SARS-CoV.
Consequently, the “International Committee on Taxonomy of
Viruses” (ICVT) named it SARS-CoV-2 (Siordia, 2020).
Moreover, COVID–19 identified as a single-stranded RNA
virus with an oval like shape and enveloped within a crown-
like structure of 60–140 nm in diameter (Woo et al., 2009; Walls
et al., 2020).

At present, the actual mechanism through which COVID–19
transmit is under investigation (Majumdar et al., 2020). However,
Liu J et al. reported the transmission from person to person by
direct body contact or droplet nucleus (aerosols) of the infected
person. Indirect transmission by contact with contaminated
surfaces is possible under certain conditions. Similarly, the
possibility of fecal-oral infection was evident following the
detection of COVID-19 in fecal swabs of both positively and
negatively testes people (Zhang et al., 2020a; Chan et al., 2020; Liu
et al., 2020; Xiao et al., 2020). Perhaps, some reports have
suggested that respiratory droplets are the primary sources of
transmission; in this instance, even asymptomatic patients could
be able to transmit the COVID-19 virus without their consent.
The droplet size may alter the means of the viral spread; the
droplets of 20 μm and more might be influenced by gravity,
making it falls to the objects. While the smaller ones that have a
diameter of less than 5–10 μm may evaporate to air and suspend
for more than 12 h, potentiating the possibility of airborne
transmission (Ge et al., 2020; WHO, 2020). Therefore,
Jayaweera M et al., reported that the infected person’s coughs
or sneezes could transmit airborne particles to a distance of more
than 20 feet (Bahl et al., 2020; Jayaweera et al., 2020; Yen et al.,
2020).

Currently, the treatment of COVID–19 remains challenging in
a global healthcare setting (Rojas et al., 2020).

Moreover, scientists have been working around the clock to
develop either novel or repurpose drugs and vaccines that could
treat the virus entirely or provide prophylaxis against it (Zhang
et al., 2020b) since there are no approved clinical protocols and
vaccines or medications to treat the infection (Wu et al., 2020).
Therefore, establishing a reliable assay that can accurately
diagnose SARS-CoV-2 in a suspected sample within a short
period is equally needed (Ozma et al., 2020). World Health
Organization (WHO) recommended the international
community to be conducting a wide-range of COVID–19
diagnostic tests to reduce the number of undetected cases
(WHO, 2011). However, setting up the proper testing protocol
of COVID–19 is essential for better understand the disease, its
prevalence, and preventive measures (Joshi and Bhansali, 2008;
Dicker et al., 2018). In this challenging time, nanotechnology’s
employment can significantly open pipelines that will provide a
breakthrough in the diagnosis, mitigation, prevention, and
management of SARS-CoV-2 infection (Sivasankarapillai et al.,
2020). According to the available literature, nano-formulations of
various metallic and metallic oxides have been used to inactivate
and prevent the transmission of different virus species (Li et al.,
2015). Nowadays, Synthetic nanofibres are used to make reusable
facemasks and Personal Protective Equipment PPE with the
highest protection affinity (Moin, 2020). Besides, several rapid

diagnostic tests of high precision and accuracy have been
developed using different nanomaterials to detect viral
presence within a few minutes (Zainol Rashid et al., 2020).
Also, theranostic NPs and optical biosensors can reliably trace
the viral genome present at a minute in the sample. Similarly,
nano-bio-interaction can serve as a powerful tool to elucidate the
viral life cycle in the host cell, facilitating the identification of new
molecules that could interfere with vital viral targets (Morse et al.,
2020). Researchers have developed small and ultra-sensitive
single nanowire biosensors that have gained much attention
due to their ultra-sensitive efficacy in pathogen detection
(Joshi and Bhansali, 2008). Silver-based nanoparticles (AgNPs)
have several biomedical applications ranging from drug delivery
optimization to low toxicity antimicrobial properties (Naqvi et al.,
2013; Burduṣel et al., 2018). Therefore, the concept of
nanotechnology can serve as an alternative way to adopt in
the global fight against the COVID-19 pandemic (Kim et al.,
2020a). However, more research is needed on nanotechnology to
explore its full potentiality in fighting the virus. This research
highlighted the significant contributions of nanotechnology in
preventing, diagnosing, and treating the pandemic COVID-19
infection.

Cellular Bio-Interaction of SARS-COV-2
All coronaviruses contain a specific region in ORFI
downstream that encodes viral replication, spikes
formation, and nucleocapsid. These spikes-glycoprotein
located at the outer part of the virus are responsible for
the virus’s attachment with the host’s cells (Yan et al.,
2020). It also contains a receptor-binding domain (RBD),
which acts as a binding pocket that enables the virus to bind
to several sections at a time. Other coronaviruses are
recognized and bind to carbohydrates or aminopeptidases
as a critical receptor for entry into the human body, while
SARS-CoV-2 binds to ACE2 with the help of exopeptidases,
which catalyzes the reaction (Baig et al., 2020). However, the
mechanism depends on the cellular proteases like human
airway trypsin-like protease (HAT), transmembrane protease
serine 2 (TMPRSS2), and cathepsins. The SARS-CoV-2-spike
protein exhibits van der walls force of attraction with the
RBD and the lysine residue of angiotensin-converting
enzyme ACE-2 recognizes the glutamate residue in the
host’s RBD region (ACE-2) (Tahir ul Qamar et al., 2020).
The life cycle begins when the Spike protein of the virus binds
to the cellular receptor of ACE2 (Devaux et al., 2020). A
conformational change occurs, which facilitates viral fusion
with the cell membrane through the endosomal pathway. The
virus releases RNA into the host’s cell and then translated it
into the viral replicas pyrophosphatase (inorganic)-1a
(ppa1a) and pyrophosphatase (inorganic)-1b (ppa1b),
which cleaved into tiny pieces by viral proteinases (Elfiky,
2020). The enzyme polymerase produces a series of
subgenomic and mRNA discontinuous transcription and
then finally translated into relevant viral protein. The
proteins are assembled into the Golgi apparatus’s virions
and endoplasmic reticulum. The replicated viruses were then
transported into vesicles and subsequently released out of the
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cell. (Dhama et al., 2020; Yan et al., 2020). The schematic
illustration of this mechanism has been summarized in Figure 1.

APPLICATIONS OF NANOTECHNOLOGY
FOR THERAPY AND DIAGNOSIS OF
COVID - 19
Nanotechnology is a powerful weapon for mitigating the fatality
and mortality of coronaviruses (Zhou et al., 2020). It could exert

its applicability both externally and internally of the host body.
Many evidence-based studies have previously proved the antiviral
effectiveness of many forms of nanotechnology-based
formulations, especially on the respiratory tract and Human
Immunodeficiency Virus (HIV) infections (Jackman et al.,
2016; Yadavalli and Shukla, 2017). Nanotechnology and
nanomaterials have been widely explored as diagnostic and
therapeutic agents in managing infectious diseases and could
be applied to COVID–19 treatment (Adesina and Akala, 2015).
The application of nanotechnology in diagnosing, mitigating, and

FIGURE 1 | Life circle of SARS-CoV-2 in a host’s cell.

TABLE 1 | Illustration of antiviral nanoparticles that inactivate different types of Viruses.

Composition Shape Size (nm) Coating Virus References

AgNPs Spheroid 2.08 BSA HIV-1 Lara et al. (2010)
Spheroid 25, 55, 80 Chitosan Monkeypox Rogers et al. (2008)
Not available 10, 15 Not available Hepatitis Chen et al. (2013)
Spheroid 10, 25 Polysaccharide Tacaribe Speshock et al. (2010),

Xiang et al. (2013)
Spheroid 35 PVP RVFV Borrego et al. (2016)
Spheroid 9.5 Organic H3N2 Xiang et al. (2013)
Spheroid 3.5, 12.9 Chitosan H1N1 Chen et al. (2016a)
Spheroid 5–25 Graphene oxide Coronavirus Lin et al. (2017a)
Branched chitosan
structure

21.2 ± 1.3, 2.2
to 3.6

Polyethylenemide Hybrid of
chitosan-polyarginin

H1N1 influenza Influenza A Petrova-Brodskaya et al. (2017)

TiO2 NPs Poly-shape 52.9 - H9N2 Cui et al. (2010)
C. Fullerene - Not available - H1N1 Ji et al. (2008)
Peptide-NPs Dendritic 2.4 and 29.8 - Influenza A Zhao et al. (2016)
Ivermectin-
NPs

Spheroid 60–140 IVM Zika Ketkar et al. (2019)

FeONPs Spherical 9, 12, and 32 - Antimicrobial agent Santoshi et al. (2015)
(CuONPs Crystalline 1 to 25 CuONPs-coated cotton fabric Inhibit replication of HIV-1 and

herpes simplex Virus
Ishida (2018), Sathiyavimal et al.
(2018)
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managing many SARS-CoV-2 related viruses has been
summarized in Table 1.

Plasmonic Photothermal Effect on
COVID–19
Ag and AuNPs or nanotubes have been reported to induce a
“Plasmonic photothermal effect” that could be achieved by
subjecting metals to intense solar irradiation, which makes
them emit light capable of viral inactivation at an optimum
wavelength (Govorov and Richardson, 2007). The AuNPs are
preferable to be used as a Plasmonic photothermal in-activator
because of their lesser toxicity than AgNPs (Loeb et al., 2018).
However, the concept of “Pulsed-laser irradiation systems” was
found to have shown the desirable selectivity in viral inactivation.
Loeb et al. demonstrated the case study that examined photonic
gold nanorods’ effectiveness in “Murine Leukemia Virus”
inactivation by striking the 250 µL viral sample with 805 nm fs
pulses at the energy of 7.5 mj at a repeated rate of 1 KHz for 10 s
under the temperature of 22°C. The result showed that photonic
gold nanotubes significantly reduced viral infectivity to less than
3.7-log, reducing the virus’s selectivity with high precision by
inducing no effect on co-inoculated antibodies (Nazari et al.,
2017).

Nano-Biosensors and Their Applications in
COVID–19 Diagnosis
The proper diagnosis is critical in tackling COVID–19 pandemics
infection (Zhuang et al., 2020). The vigorous testing operations of
approximately 20,000 people run daily in some countries, including
South Korea conduct (Morales-Narváez and Dincer, 2020). While
the German laboratories run about 400,000 coronavirus tests every
week (Richardson et al., 2020). This comprehensive testing possibly
attributes to their emergence among the most prosperous countries
that record the lowest COVID-19 mortality rate worldwide
(Hussain et al., 2020). However, the biosensor device is the
technology behind this massive testing ability. Moreover,
understanding the sensing mechanism in nano-dimensions is
essential in developing efficient biosensors (Das et al., 2016).
Biosensors have currently been employed to analyze the
microorganism’s biological structure or detect biomolecules
present at a minimum concentration in the sample (Polizzi,
2019). These biosensors are made up of three components,
namely (A) a “sensing bioreceptor” (signal producer) (B) “signal
transducer,” and (C) a “reader device” (Li et al., 2020a; Aminu
Shehu and Mukhtar, 2020). Perhaps, among the latest biosensing
diagnostic devices, a field-effect transistor (FET)-based biosensor
offers many benefits. Including the ability to conduct extremely
responsive and rapid tests using small amounts of analyses (Li et al.,
2020a), and it became beneficial for medical diagnosis (Hsiao et al.,
2009). Nevertheless, graphene shows the extraordinary properties
of having a wider 3-D area, high carrier mobility, and electronic
conductivity (Cooper et al., 2012) that make it a suitable means for
various sensing platforms (Geim and Novoselov, 2007). However,
Graphene-based (FET) biosensors can detectminute changes in the
environment and create an ideal sensing atmosphere for ultra-

sensitivity. Therefore, graphene-based FET-technology is very
appealing for sensitive immunological diagnostic applications
(Lei et al., 2017; Zhou et al., 2017). The surface receptors of
biosensors are similar to the specific RNA sequence of
COVID–19, making it easier for the biosensors to recognize the
presence of SARS-CoV-2 in the suspected sample. (Seo et al., 2020;
Aminu Shehu andMukhtar, 2020) As a result of the inconvenience
associated with the real-time polymerase chain reaction (RT-PCR)
assay, this includes the possibility of a false result. Scientists have
conducted several studies to find the right alternatives, among
others; Swiss scientists have developed a “dual-functional plasmon
biosensor” that works by applying two-dimensional (2-D) gold
nanoislands (AuNIs) and plasmonic photothermal (PPT) effects.
The sensor detects COVID-19 at a low concentration (0.22 pM) in
the suspected sample (Singh, 2014; Nguyen and Sim, 2015).
However, the sensor recognizes the SARS-CoV-2 RNA in high
precision by measuring the refractive index’s change because of the
interaction between the SARS-CoV-2-RNA and the DNA
receptors incorporated in gold nanoislands of the biosensors,
following the temperature changes due to the plasmonic
photothermal effect (American Chemical Society, 2020; Qiu et
al., 2020). Besides, J. Wang et al. have shown that SARS-CoV-2 can
be detected precisely and quickly using a dual-functional Plasmon
system. Therefore, the "localized surface Plasmon Resonance"
(LSPR)-based biosensors could be a reliable tool for COVID–19
diagnostics. The researcher also demonstrated that SARS-CoV-2
could be detected precisely and quickly using a dual-functional
Plasmon system. Therefore, the "localized surface Plasmon
Resonance" (LSPR)-based biosensors could be a reliable tool for
COVID–19 diagnostics (Jin et al., 2020a). Moreover, attention has
been paid to paper-based biosensors’ point of-care testing’ in
"point-of-care testing" because of their cheapness, practicality,
and excellent biopharmaceutical properties compared to chip-
based biosensors (Hu et al., 2017; Böhm et al., 2018; Choi et al.,
2019). However, V.X. Ting et al. have developed a Gold NPs based
biosensor for rapid detection of COVID-19; the biosensor uses
colorimetric techniques and enables the detection of SARS-COV-2
nucleic acid present at a minute (100 fM) in a particular sample
within 5 min (Aldewachi et al., 2018; Zhao et al., 2020a). S.A.
Layqah, et al. designed the Au-NP immunosensor to detect
COVID-19, and the biosensor was found to have used the spike
protein as a biomarker. The biosensor was shown to accurately
identify the COVID-19 in less than 20min (Layqah and Eissa,
2019). Graphene oxide nanoparticles (GO-NPs) have been
determined to inhibit the cellular entrance of COVID-19 by
blocking the viral spike protein (Ahmed et al., 2020a). Some
studies have shown the inhibitory effect of silver-graphene
nanoparticles against SARS-CoV-2 (Weiss et al., 2020). against
the virus COVID-19 (Lin et al., 2019; Choi, 2020). As summarized
in Table 2 and Figure 2.

COVID–19 Rapid Testing Using Different
Nanoparticles
Real-time polymerase chain reaction (RT-PCR) is the
conventional procedure for laboratory diagnosis of COVID-19,
as per the WHO guidelines (Jin et al., 2020b). This approach does
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not offer solutions to nonsuit ability for on-site detection and
procedure for the Isolation of lengthy nucleic acids. In addition to
this, a fake-negative report is also unavoidable due to many
factors, like faulty reagents, inaccurate sampling techniques, as
well as the lower sampling viral load (Li et al., 2020b). Scientists
have currently developed a novel COVID-19 testing protocols
that can visually detect coronavirus presence within a period of
10 min (Balfour, 2020). However, some researchers from the
University Of Maryland, School of Medicine (UMSOM),
United States, analyzed the samples obtained from the
suspected patient’s nasal swab and saliva, using a highly
sensitive molecule incorporated with gold nanoparticles
(AuNPs) to detect the COVID–19 viral RNA. On
examination, the samples that contained the viral antigen
reacted with gold nanoparticles (AuNPs) and changed the
color of the liquid reagent from purple to dark blue, while the
negative viral-antigen samples retain their purple colors (Balfour,
2020). In addition, these visual color changes could be the
simplest means of COVID–19 detection, just as they were
used in the diagnosis of HIV, influenza viruses et al. Similarly,
the reaction complex that occurs between AuNPs–coupled

antibodies and the enzyme-linked immunosorbent assay
(ELISA) in the presence of viral antigen results in a visual
color change from red to blue, and could therefore be a
promising alternative for coronavirus 2019 detection (Lagier
et al., 2020). Chao Huang et al. performed a rapid diagnostic
test using colloidal gold nanoparticle-based lateral-flow “AuNP-
LF” strips. They have tested the samples of both positive and
negative COVID - 19and compared the results with the
conventional diagnostic approach of real-time polymerase
chain reaction (RT-PCR) (Huang et al., 2020a). The study
concluded that a colloidal gold nanoparticle-based lateral-flow
(AuNP-LF) assay had owned an excellent IgM detection property
from a minute sample quantity (10–20 µL) shows high specificity
to COVID -19 detection within a short period of about 15 min
(Huang et al., 2020a). Moreover, the techniques became a
breakthrough for longer diagnostic procedures and being
simple, easy to handle, and reliable to confirm the presence of
SARS-CoV-2 (Huang et al., 2020a). Meanwhile, J. Ying et al., have
demonstrated an immuno-chromatographic assay using AuNPs
of varying sizes (14, 16, 35, and 38) nm, and assess their
conjugation affinities to antibodies under different

TABLE 2 | Summarized the application of various nanomaterial in the sensing system of SARS-CoV and other related viruses.

Biosensors Nanomaterial Viruses Mechanism for
detection

Limitations References

Electrochemical bio/
immunosensor

Au/Ag nanoparticle Influenza a virus To determine the variation of
electrical conductivity by
detecting the virus in the saliva
sample

Large-scale availability and it
require technical know-how

Mizuta et al. (2016),
Zhang et al. (2018), Liu
et al. (2019)

M1 parainfluenza
Rhinovirus the middle
east respiratory
syndrome (MERS)
SARS-CoV-2

Optical Bio/
Immunosensor

Gold nanoparticles
Au NPs

SARS-CoV; H5N1
influenza virus;

Optical The devices are expensive. The
fluorescent signal gets weak
quickly

Chen and Yin (2014),
Pereira et al. (2014),
Sharifi et al. (2019)

Human Immunosensor uses the
transduction of the light signal to
recognize the analytic sample

— —

Adenovirus;
Respiratory
Syncytial virus (RSV);
influenza

Thermal biosensor Quantum dots/Au
nanoparticles

SARS-CoV, MERS To measure the heat energy
released or absorbed from a given
sample

The biomolecule turned into a
colloid, then to nanocrystal’s

Campuzano et al.
(2019), Faria and
Zucolotto (2019), Choi
et al. (2020)

SARS-CoV-2

Piezoelectric
immunosensor

Gold nanoparticles
(AuNPs)

SARS-CoV, influenza Based on sound vibration called
acoustics biosensor

It is challenging to determine the
substance in a given solution

Wu (2007), Raghav and
Srivastava (2016),
Suresh et al. (2018)

Virus; adenovirus;
Rsv; MERS
MERS

Plasmonic Gold nanoparticles
(AuNPs)/carbon
nanotube

COVID-19 To detect the nucleocapsid (N)
protein in the saliva sample, an
essential protein of the COVID-19

It requires substantial financial
support, BSLIII laboratory
infrastructure, and industrial
partner

Murugan et al. (2020)

Fiber-optic — — — — —

Absorbance — — — — —

Biosensor (P-FAB) — — — — —

Colorimetric paper-
based biosensor

Gold nanoparticles
(AuNPs)

MERS SARS-CoV,
SARS-CoV-2

To convert signals from pathogen
to produce an amplified
colorimetric readout

The presence of low sensitivity,
instability in the environment,
and high cost of production

Yusuf et al. (2020)

Chip-based
biosensors

Gold nanoparticles
(AuNPs)

SARS-COV-2 Based on nucleic acid detection
by the colorimetric signal of loop-
mediated isothermal amplification
(LAMP)

It has a complicated fabrication
process. It requires highly skilled
personnel. There is a lack of
quantification

Tymm et al. (2020), Jin
et al. (2020b)
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environmental PH. In conclusion, the author discovered that the
size of AuNPs, optimum PH, and antibody concentration in the
sample are the factors that determine the effectiveness of the

diagnosis (Lou et al., 2012). Therefore, desirable antibody-
labeled-AuNPs could serve as a standpoint for the clinical
diagnosis of COVID-19. Nevertheless, the South Korean

FIGURE 2 | Schematic presentation of the different technologies used for the detection of COVID-19 (reprinted with permission obtained from reference
(Choi, 2020).
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TABLE 3 | Nanotechnology-based vaccines.

Sponsor Vaccine Description Stage Ct number Expected
date
of

completion

References

Modern, national
institutes of
health

mRNA-1273 mRNA
encapsulated in
lipid NPs, the
trial was
conducted on
18–55 years
healthy
volunteers for
63 days

Phase
1

NCT04283461 April 16,
2020

Amanat and
Krammer
(2020),
Moderna
(2020b)

Pfizer/BioNTech
and CureVac

INO-4800 A randomized
clinical study
involved 3 age
groups (65–85,
18 to 55 and
18–85 years of
age) conducted
in 3 stages,
each consist of
15 participants
in which the
vaccine
administered in
low moderate
and high
doses,
respectively

Phase
I/II trials

NCT04368728, NCT04380701 Jan. 23,
2023

Ahmed et al.
(2020b)

The university of
oxford and
AstraZeneca

ChAdOx1 ChAdOx1 has
been
administered to
6 rhesus
macaques
exposed to
heavy doses of
COVID–19. The
chimpanzee
adenovirus
vector vaccine
is dependent
on the vaccine.
The vaccine
should not be
used infection
avoidance,
even if it
decreased the
severity of the
diseases

Phase I
clinical
trial

NCT04324606 April 2020 Author
Anonymous
(2017),
Novavax
(2020)

CanSino
biological inc.
and beijing
institute of
biotechnology

Ad5-nCoV “mRNA-1273”
produced
antibody titters
more then the
levels observed
in convalescent
once, in every 8
initial
participants
between the
25–100 μg
dose cohorts of
the phase I trial

Phase
I/II trials

NCT04398147NCT04341389NCT0431312 May 18,
2020

U. S.
National
Library of
Medicine,
(2020b)

ChiCTR2000031809,ChiCTR2000032459 NCT04383574, NCT04352608
(Continued on following page)
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company (Sugentech IVD) has recently developed “SGTi-flex” kit for
COVID-19 IgG/IgMdetection in suspected samples using the AuNPs-
based immuno-chromatographic technique. The kit has visually
shown the presence of COVID-19 within the period of not more
than 10min. Hence, it provides the medium for the screening of
both symptomatic and asymptomatic patients (Nano theMagazine
for Small Science, 2020; South Korean Government, 2020).

AL Tomas et al., has invented two types of “strip lateral flow
immunoassays” (LFIA) in 2019 for the diagnosis of pneumocystis
pneumonia (P. jirovecii). These tools detect the presence of P.
jirceii antibodies with the help of AuNP- recombinant, synthetic
antigens (RSA) conjugation reaction. During the demonstrations,
both the kits have performed efficiently and were found to have
formed redlines in positive samples (Nagatani et al., 2006).
Moreover, these Kits are handy and could be conducted at the
bedsides, train stations, and airports. Meanwhile, the samples
were collected conveniently by fingertip pricking (Storhoff et al.,

1998; Nano the Magazine for Small Science, 2020). However, it
was evident that the sample collected via vein does not prioritize
those gathered using fingertip pricking, thus affirming the
system’s reliability and convenience (Nano the Magazine for
Small Science, 2020). Nevertheless, such a kind of antibody
test can detect SERS-CoV-2 accurately within a few minutes
(Tanaka et al., 2006). Z. Zhao et al., Developed carboxyl groups-
coated magnetic nanoparticles (pcMNPs)-based viral RNA
extraction system for the detection of COVID-19 (Zhao et al.,
2020b). Conversely, excellent water disparity is the most
promising feature of pcMNPs, making it widely applicable for
COVID–19 viral RNA diagnosis in direct RT-PCR (Gan et al.,
2020). Henceforth, the extraction procedure will significantly
reduce the time consume and specific requirements in current
COVID-19 diagnosis, particularly for early clinical diagnosis
(Zhao et al., 2020b). And this could resolve the problems
associated with RT-PCR based diagnosis technique. Zhenhua

TABLE 3 | (Continued) Nanotechnology-based vaccines.

Sponsor Vaccine Description Stage Ct number Expected
date
of

completion

References

China national
pharmaceutical
group
(sinopharm), in
association with
the “wuhan
institute of
biological
products” and
“beijing institute
of biological
products

The latest
investigation on
live attenuated
vaccines
provide partial
or complete
protection in
macaques
rhesus and
now being
tested clinical
trials

Phase
I/II trials

April 11,
2020

Among et al.
(2020), Reiss
(2020)

TABLE 4 | Status of some nanomedicine and vaccines in a clinical trial against COVID19.

S/
No

Candidate Clinical trial Sponsor References

1 AV-COVID- 19 Phase I/II AIVITA biomedical, inc Sheng and Christopher
(2016)

2 BNT162a, BNT1621b,BNT162b2,
BNT162c2

Phase I/II Biotech RNA pharmaceuticals GmbH Chauhan et al. (2020)
Thanh Le et al. (2020)

Ad5-nCoV Phase1 CanSinoBiologics Hua and Wu (2018)
3 NVX-CoV2373 Phase I/II Novavax Moderna (2020b)
4 CTII-nCoV Phase I/II Institute of biotechnology, “academy of military medical sciences”,

PLA of China
Huang et al. (2020b)

5 ChAdOx1 Phase I/II Jenner institute–the university of oxford
6 INO-4800 Phase I Inovio pharmaceuticals
7 SCB-2019 trimeric S-subunit protein Phase I/II Clover biopharmaceuticals AUS pty ltd
8 INO-4800 Phase I Inovio pharmaceuticals Tebas et al. (2021)
9 Oral bacTRL- spike Phase I

recruiting
Symvivo corporation Lara et al. (2011)

10 mRNA Phase III Pfizer and BioNTech (approved for emergency used) Thi et al. (2015)
11 mRNA-1273 Phase III Moderna (approved for emergency used) Nam et al. (2003)
12 LV- SMENP- DC Phase I Shenzhen geno- immune medical institute Gupta and Jain (2010)
13 Pathogen-specific aAPC Phase I Shenzhen geno- immune medical institute Skirtach et al. (2006)
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Chen, et al., has reported the efficiency of “lateral flow
immunoassay” (LFIA) in the detection of IgG antibodies
produces in human serum in response to COVID–19 infection
using “lanthanide-doped polystyrene nanoparticles” (LNPs). The
mouse of human anti-IgG antibody incorporated with self-
assembled lipid nanoparticles set to produce fluorescence
when the SARS-CoV-2 recombinant protein mix with specific
IgG on “nitrocellulose membrane” in a short period of 10 min
(Chen et al., 2020). However, this technique could also provide a
promising breakthrough for the rapid diagnosis of anti-COVID -
19 IgG in the suspected samples. Similarly, Lateral flow test strips
designed to detect IgG and IgM in the blood samples have been
widely used to detect COVID-19 (Li et al., 2020c). TianWen et al.,
developed a lateral flow immunoassay strip (LFIAs) that
selectively detects IgG antibodies against COVID-19’s
nucleocapsid protein in less than 20 min. The clinical
evaluation of this point of care POC assay shows a satisfactory
and cost-effective result that could serve as alternative means of
confirming SARS-CoV-2 suspected infections (Development of a
lateral, 2020).

COVID - 19 TRANSMISSION PREVENTION
AND CONTROL USING DIFFERENT
NANOPARTICLES
Nanoparticles are single structure with at least one of their three
dimensions that exist as less than 100 nm in size. Moreover, the
chemical compositions of the nanoparticle can be organic or

inorganic. Recently, nanoparticles have become increasingly
essential and extensively utilized in the biopharmaceutical field
due to their unique biocompatibility, biochemical reactivity,
conductivity, and reduced toxicity (Vance et al., 2015).
Nevertheless, nanoparticles and nanomaterials have a broad
scope in healthcare and biopharmaceutical fields. As such,
they have been used in the optimization of drug delivery
systems, diagnosis, imaging tools, anticancer, antivirals,
protective and medical consumables, et al. (Pelaz et al., 2017;
Dilnawaz et al., 2018; Sim et al., 2018)

Virus Entry Prevention Using Nanoparticles
The treatment of specific viral strains is becoming increasingly
difficult because of the viruses’ frequent evolutions and
mutations. On the other hand, nanoparticles can play a vital
role in killing and preventing viral entry into the host’s cells due
to their unique characteristic of interfering with multiple antigens
or their surroundings. Nanoparticles such as carbon quantum
dots (CQD) and gold nanoparticles (AuNPs) were reported to
have been promising tools for preventing viral–cellular entry
(Szunerits et al., 2015). The study conducted by Loczechin A.
et al., have shown that boronic acid nanoparticles ligands
conjugated with carbon quantum dots (CQDs) have interfered
with the functions of COVID–19 Spike-proteins and found to
have been able to stop its cellular fusion mechanism significantly.
Moreover, inhibition of HIV entry using conjugated boronic acid
NPs was found to be efficient and successful (Fahmi et al., 2016).
Achraf A. et al. demonstrated an experiment by adding
nanoparticles to the coronavirus culture medium. Upon

FIGURE 3 | The schematic presentation of the interaction between the components of SARS-CoV-2 and various nanoparticles. GONP � Graphene oxide
nanoparticle AuNP � Gold nanoparticle COD-NP � Carbon oxide nanoparticle c BA-NP � Boric acid nanoparticle CuONP � Copper oxide nanoparticle AgNP � Sliver
nanoparticle ZnONP � Zinc oxide nanoparticle QDs � Quantum dots.
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examination, a considerable reduction in the cell-viral infection
and replication rate remarkably reduce. Therefore, nanomaterials
can now be employ as a powerful tool to prevent the replication of
the viral genome, owing to their nano size of 10nm, excellent
hydrophilicity, and high penetration efficiency (Itani et al., 2020).
A characteristic spheroid shape of antiviral nanoparticle has an
aspect ratio close to 1, with a range between 1–50 nm and an
average range of 23 nm smaller than that of SARS-Cov-2 viral
particles. Consequently, nanoparticles have gained a great
privilege to contest with the COVID-19 surface spike proteins.

Applications of Nanomaterials
Brabazon D et al. have extensively investigated the use of
nanomaterials in textiles and textiles. Fabrics coated with
nanoparticles could be used to enhance the protective effect of
Personal Protective Equipment (PPEs), such as lab coats and
reusable facemasks. These nanomaterials have been used for
UV protection, self-cleaning, fire-resistant clothing,
antimicrobials, antivirals (Brabazon et al., 2017) (Figure 2).
Therefore, the outbreak of the COVID-19 pandemic raises the
need to exploit such nanoparticles due to increased demand for
highly protective PPEs and facial masks. As a result, global
consumption of Ag nanoparticles increased to 350 tones per
year. (Siddiqi et al., 2018). Besides, wearable smart textiles for
detecting and sensing biomolecules have been studied, particularly
in the healthcare sector (Libertino et al., 2018). However, numerous
nanomaterials based coatings are being used currently for various
products. Silver, Bismuth, and titanium nanomaterials have been
employed for coating surfaces to provide significant protection
against microbial invasions (Brabazon et al., 2017). Nowadays,
silver base disinfectant is readily available for sanitization purposes
of healthcare-related facilities, and they have been found to have
inhibited the SARS-Cov-2 contaminated surfaces significantly
(Hebalkar et al., 2011). Furthermore, nanomaterials have been
used extensively for the protective optimization of air filters in the
health setting (Joe et al., 2016; Vaze et al., 2019) and wound
dressing materials’ production due to their ability to hasten the
wound healing process (Mishra et al., 2008; Ali and Ahmed, 2018).

NANOPARTICLES AND MECHANISM OF
ANTI- SARS-COV INFECTION

SARS-CoV related viruses, like all viruses, rely on host cells to
reproduce and obtain basic metabolic systems for survival. For
example, they use the host cell’s cellular machinery to replicate
their genetic materials. The investigation of nano systems and
their possible interaction mechanisms with viral components
may be advantageous for drug delivery enhancement by
allowing for surface charge modification of materials
(Uskoković, 2020).

Blockage of Viral-Cellular Entry and
Attachment
All viral infections require cellular attachment and entry.
Similarly, SARS-CoV 2 infection begins with S-protein binding

to the host’s ACE2 receptor. The attachment and fusion into the
cell are carried out by the two S-protein subunits (S1 and S2) u
sing its C and N-terminal domains. The S1 subunit is primarily
responsible for attaching the virus to the human ACE2 receptor
(Hoffmann, 2020). The S2 subunit, on the other hand, mediates
the fusion of virus across the cell membrane and endocytosis. The
S2 subunit’s function is aided by the proteins potential fusion
peptide (pFP), transmembrane domain (TM), and heptad repeat
N and C (HR-N and HR-C) (Ou et al., 2020). As a result,
inhibiting this mechanism could be a potential target for anti-
SARS-CoV2 drug development as well as treatment with
repurposed drugs, as in the case of chloroquine (Wang et al.,
2020). However, various NPs have the potential to interfere with
the viral-cellular interaction as demonstrated by Ting et al. The
author reported that cationic carbon dots (CDs) of approximately
1.6 nm size could interfere with the cellular fusion mechanism of
the prototypic ‘porcine epidemic diarrhoea virus’ SARS-CoV2
(PEDV) (Hu et al., 2020). The effectiveness of CD inhibition is
suggested to be due to viral charge neutralization caused by
electrostatic interaction between negatively charged PEDV and
positively charged cationic CDs. Furthermore, CDs may slow
cellular apoptosis by reducing cellular accumulation of reactive
oxygen species (ROS). Curcumin-modified AgNPs (cAgNPs)
were also tested for their ability to prevent viral-cellular entry
more effectively and safely. The cAgNPs have a significant
advantage of high surface area due to their nanosized form,
allowing them to interfere with the cellular entry process of
viral enveloped protein d. (Huang et al., 2019). Similarly, GO
in combination with AgNPs has demonstrated a high potential
for viral inhibition of cellular entry of both feline COV (FCoV)
and enveloped viruses (Yang et al., 2016). Huang et al. also
demonstrated that the mechanism of antiviral activity of
AuNPs is similar to that of GO–AgNPs (Chen et al., 2016b).
Porous silicon NPs (SiNPs), according to Osiminka et al., have an
affinity for inhibiting the cellular fusion mechanism of many
enveloped viruses, including the nCOV superfamily (Osminkina
et al., 2014).

Sekimukai, H. Et al. reported that gold nanoparticles AuNPs
act as both an adjuvant and an antigen carrier for immunization.
It is believed to be amajor adjuvant in the SARS-CoV vaccine that
inactivated by ultraviolet radiation. Nasrollahzadeh M et al.
performed preliminary tests on mice by immunizing them
with a dose of 0.5 μg of spike protein after being infected with
the mouse-adapted virus. The adjuvant protein of gold
nanoparticles contributes to a strong IgG reaction but does
not improve the vaccine’s efficacy or reduce eosinophilic
infiltration. The result obtained in this study of the gold
nanoparticle-adjuvant S protein can lead to a promoted
antigen-specific IgG response against SARS-CoV
(Nasrollahzadeh et al., 2020; Salleh et al., 2020).

Schlecht S, et al. discovered that AuNPs functionalized with
sialic acids could inhibit the cellular entry of the Influenza A virus.
The mechanism of inhibition involved the blocking of the viral
surface protein (hemagglutinin), which is responsible for the
recognition of sialic acid on host cells. According to Stone JW
study, functionalized AuNPs with a diameter of 14 nm are more
efficient in blocking the influenza A virus than those with a
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diameter of 2 nm, which have a less significant outcome (Kim
et al., 2020b). Fujimori et al. investigated the antiviral potential of
copper iodide nanoparticles (CuINPs) against the 2009 pandemic
Influenza A virus. CuINPs can generate reactive oxygen species
(ROS), which cause viral degradation and inactivation by acting
on essential viral proteins such as neuraminidase and
hemagglutinin (Abo-Zeid et al., 2020).

Inhibition of Viral Replication
The copper surface is very susceptible to modern SARS-CoV-2,
which is responsible for the current COVID-19 pandemic.
Copper nanoparticles (CuNPs) have antiviral properties that
act by blocking papain-like protease-2, a protein that requires
replication of severe acute respiratory coronavirus syndrome
(SARS-CoV). Oxidized Cu oxide (CuO) nanoparticles
(CuONPs) are commonly used as catalysts to improve the
ability of CuONPs to minimize the use of viruses (Sekimukai
et al., 2020). On the other hand, Ting Dut et al. reported that
turmeric-based cationic carbon dots nanoparticles interact with
coronavirus by inhibiting viral proliferation; Curcumin-based
cationic carbon dots may inhibit the synthesis of negative-
stranded RNA and virus budding as well as the aggregation of
reactive oxygen species by viruses. The structure of the surface
protein in viruses has been altered to prevent viral entry. It may
also inhibit viral replication by promoting pro-inflammatory
cytokines and interferon-stimulating genes (ISGs) (Du et al.,
2018a; Raha et al., 2020). Meanwhile, Jiangong Liang et al.
observed that Treatment with Ag2S NCs prohibited the viral
budding and negative-strand RNA formation. The formation of

IFN-stimulating genes (ISGs) and the expression of pro-
inflammatory cytokines are positively regulate the inhibition of
viral infection and coronavirus proliferation (Lin et al., 2017b).
the positive surface charge of carbon-based QDs could be used for
sequestering the S protein of SARS-CoV-2. Besides, cationic
surface charges of QDs interact with the virus’s negative RNA
chain, contributing to reactive oxygen species formation in the
COVID - 19. The introduction of desired functional groups with
quantum dots may effectively interact with COVID - 19 entry
receptors and affects genomic replication (Du et al., 2018b). The
schematic presentation of these interactions was presented in
Figure 3.

Silver nanoparticles (AgNPs) are used as effective antiviral
therapy for SARS-CoV-2 with fewer adverse reactions. The
mechanism by which AgNPs interact with COVID–19 is
minimal because of the complexity of the COVID–19 structure.
Silver nanoparticles interact with COVID–19 in two ways: 1) They
bind to the virus’s outer layer, thereby inhibiting the attachment of
the virus to the receptor cells. 2) They attach to the DNA or RNA
virus, thereby inhibiting viral replication within the host cells.
Some studies suggested that AgNPs act by binding to the spike
glycoprotein virus, thereby inhibiting the virus’s attachment to the
cells. The release of silver ions could reduce the ambient pH of the
respiratory epithelium, where the COVID-19 virus tends to
become more acidic and hostile to the virus (Figure 4;
Manivannan and Ponnuchamy, 2020). Because CoVs mutate so
quickly, treating human infections remains difficult. In this regard,
oczechin, A. et al. developed carbon quantum dots nanoparticles
(CQDs-NPs) of approximately 10 nm size from a citric acid/

FIGURE 4 | Multiple pathways through with AgNPs mitigate COVID–19 ‘A’ is the reusable facemask coated with Silver nanoparticles AgNPs ‘B’ Inhibition of
COVID-19’s Spike protein attachment with ACE2 receptors, preventing the cellular entrance. ‘C’ Escarpment of COVID-19 from the endosome ‘D’Membrane fusion and
uncoating ‘E’ release of viral genome ‘F’ Immunostimulation ‘G’ Strength immune system inhibit cellular entrance of SARS-CoV-2 by preventing the ACE2 receptors and
Spike protein attachment.
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ethylene diamine precursor and modified them with boric acid.
They were discovered to inactivate the HCoV-229E virus in a
concentration dependent manner (EC50 of 52- 8-g mL1)
(Łoczechin et al., 2019a). Furthermore, the author synthesized
CQDs-NPs directly from 4-aminophenylboronic acid with no
post-synthetic modifications. The CQDs synthesized using the
direct method have the potential for viral inactivation at much
lower concentrations, with an EC50 of 5.2 0.7 g mL1 compared to
the modified one. The author proposed that the interaction
between the functional groups of CQDs and the host’s receptor
could be a mechanism for both viral inactivation and replication
inhibition. (Łoczechin et al., 2019b). As illustrated schematically in
Figure 5.

NANOTECHNOLOGY-BASED DRUGS AND
VACCINES FOR COVID - 19 TREATMENT

The absolute genomic similarity between the previous pandemic
coronaviruses and SARS-COV2 could greatly help achieve success
in vaccines and drug development against the pandemic COVID
-19 (Sharma et al., 2019). Nanoparticles are loaded with a range of

antigenic moieties using physical or chemical entrapment. Perhaps
they have better loading and delivering precise antigen efficiency to
the targeted cell than conventional approaches (Pearson et al.,
2017). More importantly, nanocarriers’ nanosized structure
enhances their delivery efficiency, bypasses the biological barrier
restrictions, and improves their tissue targeting specificity.
Furthermore, they provide flexible administration routes such as
oral, intranasal, subcutaneous, and intramuscular routes (Pati et al.,
2018). Currently, nanotechnologies have played a significant role in
developing four vaccines approved for emergency use against
COVID-19 satisfactory completion of phase 2 clinical trials.
However, Moderna and Pfizer/BioNTech vaccines were
designed by encapsulating the mRNA of SARS-CoV-2 in Lipid
Nanoparticles (LNP). Similarly, the Russian Scientist developed the
two vaccines received emergency licenses from the Russian
Ministry of Health to be used against COVID-19. These
vaccines have been reported to achieve higher stability and
safety for human use (Table 3 and Table 4; Raha et al., 2020;
Du et al., 2018a; Lin et al., 2017b; Du et al., 2018b; Manivannan and
Ponnuchamy, 2020; Łoczechin et al., 2019; Sharma et al., 2019;
Pearson et al., 2017; Pati et al., 2018; U. S. National Library of
Medicine, 2020a; Moderna, 2020a).

FIGURE 5 | Schematic presentation of the Impact of CQDs, prepared by hydrothermal carbonization, on interaction of HCoV-229E virus and host cells: (a)
Inhibition of S protein and host receptor interaction. (b) Inhibition of HCoV-229E-RNA genome replication. Reprinted and manipulated with the permission of references
(Łoczechin et al., 2019b).
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Benefit and Challenges of Using
Nanomedicines in Mitigating COVID – 19
Generally, nanomedicine changes the paradigmof healthcare delivery
owing to its potential therapeutic effectiveness. Moreover, they have a
wide range of applications in therapeutics, diagnosis, and overall
healthcare delivery (Singh et al., 2018). The developmental aspects of
nanotechnology and its clinical applications are understudying.
Perhaps, there are enormous challenges that need to be addressed
in exploring their clinical significance. Therefore, specialists’ hands
need to be on deck to optimize their full potentiality in all aspects of
medical space (McNamara and Tofail, 2017). We summarised the
clinical benefits and challenges associated with the use of
nanomaterials were for themanagement of viral infections inTable 5.

CONCLUSION

This study suggested that nanotechnology could serve as a promising
alternative to reduce the spread of COVID–19 across multiple
techniques. Besides, it greatly optimizes viral diagnosis by making
it possible to detect viral genomepresence in aminute sample quantity

within a short period. It is also possible to diagnose COVID-19 in
asymptomatic patients. It can, therefore, reduce the chances of viral
transmission. Several nanoparticles and nanomaterials have also been
found to possess the unique properties of viral inactivation, block
its entrance mechanism, and inhibit several vital proteins responsible
for viral attachment and intercellular replication. However,
Nanotechnology has potentially accelerated the process of novel
drugs and vaccine designation and delivery against COVID–19.
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TABLE 5 | Antiviral nanomaterials, applications, and limitations.

S/
NO

Nanoparticles Anti-antiviral
activity

Application Limitations References

1 Hydrogen peroxide.
H2O2 nanoparticles

Stopping the active of SARS-COV-2
BY breaking down the structure of the
virus

Reduce oxidative stress Generate radicals of highly
reactive hydroxyl

Ghaffari et al. (2019)

2 Ag (silver)
nanoparticles

Cell membrane destruction and DNA
damage

Virucidal agents The mechanism of inhibition is
not yet understood

3 Lipid-based
nanoparticles

SiRNA ebola virus Inhibition of viral replication Production is costly Huh and Kwon (2011)

4 Manganese Human immunodeficiency virus (HIV) Maintain the balance of redox reaction
Increase the rate of mutation of HIV

Unrecorded Antoine et al. (2012)

5 Solid lipid
nanoparticles

Hepatitis B virus Decrease toxicity, with the improved
drug-release profile

Poor loading capacity and high
cost of production

Savrasova et al.
(2011), Ingle et al.
(2014)

6 Gold nanoparticles Inhibit and destroy viral particles
directly. Attenuating infectivity of
influenza a virus

Detection of the virus. High specificity
in drug release to target site

Formation of protein binding
complex called “corona”

Trends in IT Value
(2008), Jeyaraj et al.
(2019)

7 ZnO-NPs H1N1 influenza virus inhibition Biosensing, antigenic, bio imaging,
and tissue engineering

Biodegradable and
immunogenic “PEGylated with
ZnO-NPs” is alternative

Dehghan et al. (2013),
Sulkowski et al.
(2013)

8 Silver (ag) Inhibit replication of viruses. E.g.
simple harpies’ virus. Hepatitis B

Cancer treatment, biosensor,
biomolecules, and labels of the cell

Induced cytotoxicity in a
mammalian cell

Mohajer et al. (2014)

9 FeO, and CUO Detection of influenza virus Antiviral, biosensors Low detection limit Heidari et al. (2017)
10 Platinum

nanoparticles
Detection of influenza virus Antioxidant, antiviral In vivo toxicity Bimbo et al. (2013),

Pierantoni et al. (2015)
11 PEGylated IFN and

ribavirin nanoparticles
Hepatitis c virus Liver cirrhosis Low limit of tolerance Faria and Zucolotto

(2019), Lynn et al.
(2015)

12 Nano spheres
nanoparticles

Hepatitis B, herpes simplex virus, and
influenza

Inhibition of viral replication, high drug
loading capacity. Neuroprotective
function

High dose requirements Dash et al. (2011)
Handling requirements Lee et al. (2018)

13 Silicon nanoparticles HIV, Herpes simplex virus, monkey
poxvirus respiratory syncytial virus,
and hepatitis B virus

High delivery of antiviral to infected
cells

Cytotoxicity Liu et al. (2015), Cai
et al. (2017)

Immunosensors
Bioanalytical research

14 Chitosan HIN2 influenza Micro molecules delivery. Include
vaccines and protein across the nasal
mucosa and oral system

Low aqueous barrier properties Dash et al. (2011)
H1N1, H3N2, H5N1 influenza
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