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Atomic Switch Networks comprising silver iodide (AgI) junctions, a material previously
unexplored as functional memristive elements within highly interconnected nanowire
networks, were employed as a neuromorphic substrate for physical Reservoir
Computing This new class of ASN-based devices has been physically characterized
and utilized to classify spoken digit audio data, demonstrating the utility of substrate-based
device architectures where intrinsic material properties can be exploited to perform
computation in-materio. This work demonstrates high accuracy in the classification of
temporally analyzed Free-Spoken Digit Data These results expand upon the class of viable
memristive materials available for the production of functional nanowire networks and
bolster the utility of ASN-based devices as unique hardware platforms for neuromorphic
computing applications involving memory, adaptation and learning.

Keywords: atomic switch networks, memristive, neuromorphic, reservoir computing, in-materio

INTRODUCTION

Speech recognition is a seminal task in the field of artificial intelligence and natural language
processing. Typical algorithmic approaches to speech recognition break apart sections of raw speech
data and bin them into hidden Markov models manipulating Markov chains. While effective, these
approaches are more computationally intensive than some recently developed neural network
models, which may prove a more suitable compute framework for handling increasingly larger data
sets (Schatz and Feldman, 2018; Mustafa et al., 2019; Deshmukh, 2020). Artificial Neural Networks
(ANNs) have also been a promising avenue for more efficient speech recognition tasks which offer
the benefit of being trained for natural language processing and are believed to be a more suitable
candidate for handling the varied complexity of each person’s unique voice and accent.
Implementation of ANNs in modern computing hardware remains computationally burdensome
and often requires access to and utilization of high-performance computing clusters. A suitable
hardware architecture for local execution of complex tasks such as natural language processing must
be able to process dynamic, temporal data in real-time while remaining energy efficient. Memristive
materials have been identified as strong candidate for such applications as they offer an opportunity
to alleviate the bus latency between memory and processing elements in traditional von Neumann
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architectures while also performing in-memory computation
with reduced power consumption (Ielmini and Wong, 2018).
The nonlinear character of memristors, resulting from the
underlying physics of the material itself, is essential for
enabling simultaneous storage of data (memory) and
performance of complex tasks with it (processing) through a
relatively new technique known as evolution in-materio (Miller
and Downing, 2002; Harding and Miller, 2009; Miller et al., 2014;
Dale et al., 2017).

The growing field of evolution in-materio computing has
sought to optimize computational architectures via
evolutionary (search) algorithms (Harding and Miller, 2009;
Dale et al., 2017). The materials and architectures employed
vary with the desired facet of computation, but ideally these
materials are computationally and energetically efficient at
employing a litany of machine learning based algorithms.
Utilizing a single hardware element capable of exhibiting both
memory and processing alleviates the burden of busing
information between two separate hardware components,
reducing latency in computation (Mustafa et al., 2019). The
most robust currently known architecture that combines the
aforementioned elements is the mammalian brain, which has
been both a foundation and inspiration toward the development
of architectures which can efficiently process multi-input,
chaotic, and/or time-varying (temporal) datasets.

This work focuses on the class of neuromorphic computing
devices known as Atomic Switch Networks (ASN), comprising a
highly interconnected network of memristive nanowire junctions
as shown schematically in Figure 1. Ongoing efforts to develop
memristive hardware for neuromorphic computing include not
only ASNs, but also patterned crossbar arrays, and nanoparticle
clusters (Moon et al., 2019; Du et al., 2017; Alibart et al., 2013;
Sattar et al., 2013; Tappertzhofen et al., 2012). ASN-based devices
provide a physical system with structure and functional dynamics
reminiscent of the mammalian brain (Srinivasa and Cruz-
Albrecht, 2012; Avizienis et al., 2012; Türel et al., 2004;
Calimera et al., 2013) that has previously been employed as a
computational material for applications in Reservoir Computing
(RC) (Lukoševičius and Jaeger, 2009; Schrauwen et al., 2007;
Snyder et al., 2012; Du et al., 2017; Goudarzi et al., 2014; Sillin
et al., 2013; Fu et al., 2020). The atomic switch is a nanoscale
electroionic element consisting of a Metal-Insulator-Metal
(MIM) junction whose properties can be manipulated via a
time-dependent input signal (Zhu et al., 2020; Kuncic et al.,
2020; Manning and et al., 2018; Manning et al., 2017). Individual
atomic switches have been shown to produce memristive,
nonlinear responses, exhibiting both short and long-term
memory as well as quantized conductance (Sattar et al., 2013;
Tappertzhofen et al., 2012; Terabe et al., 2005; Hasegawa et al.,
2010). For electrochemical metallization memristors filament
growth is dominated by cation transport through the
insulating medium as shown in Figure 1 and has been
experimentally observed in-situ (Guo et al., 2007; Yang et al.,
2012; Sun et al., 2019). These properties render atomic switches
and other memristive systems as ideal circuit elements for use
within a network architecture that can serve as a dynamic
physical reservoir used to solve complex computational tasks,

including speech recognition and natural language processing
(Kan et al., 2021; Zhong et al., 2021).

RC provides a framework for computing complex functions
using a dynamical system as a “reservoir” (Lukoševičius and
Jaeger, 2009; Hashmi et al., 2011; Lukoševičius et al., 2012; Sillin
et al., 2013). The RC framework is ideal for the processing of
dynamic, temporal real-time signals and can be used in many of
the same situations as recurrent feed-forward neural networks.
RC also offers advantages such as fault-tolerance and the
capacity for learning (Hashmi et al., 2011; Stieg et al., 2014).
Passing a time varying input through a dynamic reservoir
produces a higher dimensional representation of the signal
through nonlinear transformation, where different points on
the reservoir are measured and linearly combined to reproduce
an arbitrary output signal as shown in Figure 2. Training is only
performed on the linear readout coefficients (voltage readouts
are shown in Figure 3 and in Supplementary Figure S2
demonstrating a reproducible response over time); the
reservoir dynamics themselves are generally considered fixed.
Limiting training to the weights between the reservoir and
output layer alleviates the need to use gradient-descent based
methods, greatly minimizing the associated computational
burden.

As an alternative to simulation-driven RC, in-materio RC
leverages material complexity for computational purposes
(Teuscher, 2017; Konkoli et al., 2018; Tanaka et al., 2019;
Nakajima, 2020). Whereas early implementations of RC
simply utilized a body of a liquid acting as the dynamic
reservoir, more recent works harnessed the intrinsic properties
of complex physical systems, including ASNs, as the basis for a
computation (Lukosevicius, 2011; Lukoševičius et al., 2012;
Snyder et al., 2012; Goudarzi et al., 2014; Fu et al., 2020).
Software RC has historically been demonstrated as a suitable
method for a litany of complex tasks including pattern
classification, signal generation and temporal based logic tasks
(Tanaka et al., 2019). Hardware based approaches to RC
commonly leverage photonic interactions or memristor
dynamics, though photonic systems aren’t performing
computations in-materio in contrast to memristors
(Vandoorne et al., 2010; Tanaka et al., 2019). In-materio
approaches to traditional RC have recently garnered attention
as potential candidates to accelerate compute times while
achieving higher power efficiency. Recent in-materio studies
have demonstrated high accuracy in time-series analysis
(Moon et al., 2019; Zhong et al., 2021), handwritten digit
identification (Midya et al., 2019) and biosignal processing
(Kudithipudi et al., 2016).

Computational neural models such as the perceptron and
support vector machine can also be used as reservoirs; however,
long convergence times can be a drawback depending on the task.
Material-based reservoirs have the benefit of efficiently
performing these tasks in-situ, enabling low-power, on-chip
computing (Loppacher et al., 2003; Kuzum et al., 2012; Bürger
et al., 2015). This alternative approach offers the opportunity to
employ neural networks and machine learning algorithms offline,
without the need to access servers, clusters and other high-
performance computing infrastructures.
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ASNs have been shown to represent uniquely suitable
class of materials for implementation of hardware-based RC,
namely complex network architectures with the requisite
material complexity (Avizienis et al., 2012; Stieg et al., 2014;
Nayak et al., 2010). These self-organized systems offer a
unique opportunity to produce highly interconnected
memristive networks, where a density of atomic switch
junctions of up to 108/cm30 has been previously reported.
The fabrication scheme, based on electroless deposition,
produces a diverse ensemble of silver nanowires with
varying lengths, widths and thereby junction dimensions.
This structural diversity in the material substrate imparts a
distribution of operational characteristics that improves the
capacity to perform non-linear transformations of input
signals.

Herein, we report the use of a newmemristive material, silver
iodide (AgI), as the functional element in the ASN framework
(Liang et al., 2007; Tappertzhofen et al., 2012; Cai et al., 2013).
Silver iodide can be robustly prepared in a brief vapor phase
reaction of iodine vapor with silver nanowires at room
temperature in contrast to the lengthy formation times at
elevated temperatures of previously reported silver sulfides.
This promising material provides voltage-controlled
resistance in both the bulk and when integrated into crossbar
architectures, rendering it suitable as a memristive material for
RC applications which require non-linear transformations and
quantized conductance states (Stieg et al., 2014). This work
expands the catalog of investigated ASNmaterials by fabricating

and testing AgI for non-linear, temporal computation through
the classification of spoken digits.

METHODS

Device Fabrication
The substrate for ASN devices, a multielectrode array enabling
spatiotemporal stimulation and monitoring, was fabricated using
standard thermally oxidized (500 nm) silicon wafers as the base
substrate. A 16-electrode grid of Pt (150 nm) was patterned by
photolithography and deposited using a negative photoresist (AZ
NLOF 2020) onto a Cr or Ti wetting layer (5 nm). Liftoff was
induced overnight in N-methyl-2-pyrrolidone (NMP) at 60°C.
Point contact electrodes were prepared using a patterned
insulating layer of SU-8 (400 nm) which was soft baked
(90°C), exposed to UV, post exposure baked (90°C), developed
for 3 min, and hard baked at 180°C for 30 min. An array of copper
(300 nm) seed sites with 5 × 5 μm spacing in a grid were patterned
onto inner point contact electrodes and deposited onto AZ NLOF
2020 via metal evaporation at 3 nm/s followed by lift-off
overnight in NMP (60°C). The resultant device platforms
consist of a stack of Si/SiO2/Cr/Pt-electrodes/SU-8/Cu-posts
(Supplementary Figure S1) and were stored in inert
atmosphere until bottom-up silver nanoarchitecture
construction (Sillin et al., 2013; Demis et al., 2016).

This substrate was placed into a 50 mm solution of silver
nitrate (AgNO3) for 30–60 min. Silver nanowires formed through

FIGURE 1 | Schematic diagram of an AgI-based ASN device, from nanowire junction to chip. (A) initial high resistance state of the system. (B) filament formation
process under an applied bias (C) completed silver filament short circuits between overlapping nanowires (low resistance state). Yellow-gray represents AgI. Dark-gray
represents Ag. Filament formation occurs as a gapless junction between Ag nanowires. (D) SEM image of the interconnected nanowire (scale bar � 20 um). (E) Optical
image of microelectrode array at center of the ASN device (scale bar � 360 um). (F) Optical image of a complete 16-electrode ASN device (scale bar � 5 mm).
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an electroless deposition reaction involving the reduction of
silver and the oxidation of copper through the following
reaction:

Cu0(s) + 2Ag+(aq)→Cu+2(aq) + 2Ag0(s)

The ordered copper posts (5 × 5 µm) directed a density-
controlled formation of interconnected silver nanowires,
whereby each ASN exhibited a unique structure determined
by the bottom-up fabrication of metal cations. Subsequent
silver iodide was formed in a nitrogen purged and sealed glass
chamber with the ASN chip suspended over a small iodine
pellet. Two different experimental techniques, one under
ambient conditions (5 min exposure time) and the other
with added heat (30°C, 2–3 min exposure time) were
employed with both techniques successfully iodizing the
silver nanowires.

2Ag(s) + I2(g)→ 2AgI(s)

UV-Vis and XPS samples were prepared using transparent silver
thin films (20 nm). These films were deposited on glass cover
slides via a silver target in a Hummer 6.2 sputter system at 15 mA
from Anatech Ltd. (Hayward, CA, United States) under an argon
vacuum environment (80 mtorr).

Material Characterization
Optical and scanning electron microscopy (SEM) were used to
characterize the as-fabricated structure of the nanowire network.
SEM images were acquired using the JEOL JSM-7500F. X-Ray
photoelectron (XPS) and UV-VIS spectroscopy were employed
using transparent Ag thin film substrates with Ag as a control.
Absorbance spectra of thin films were collected using the HP
8453 spectrophotometer. XPS spectra were obtained on an AXIS
Ultra DLD XPS instrument from Kratos Analytical. The X-ray
source was Al Kα at 1,486.6 eV. Survey (1,200 eV) and high-
resolution scans were integrated over 4 and 16 sweeps,
respectively.

FIGURE 2 | Overview of a traditional software-based reservoir (top) in contrast to the ASN acting as an in-materio reservoir (bottom), in which 13 MFCC’s are
sequentially delivered to the ASN in the form of a time-varying voltage to a single electrode. Utilizing physical nodes enables hardware acceleration at a lower power cost.
Simultaneous, real-time voltage measurements are carried out at each of the remaining 14 electrodes and provided to an output layer for regression analysis.
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Electrical Characterization
Characterization of ASN devices involves the spatially defined
stimulation and monitoring of electrical activity throughout
the network in the form of current and voltage traces. All
input-output signals were generated/acquired using a
purpose-built software package developed in Labview in
conjunction with dedicated hardware manufactured by
National Instruments. A data acquisition card (DAQ)
(model PXIe-6368) was used to deliver input signals routed
through a shielded connector box (model SCB-68A) to the
ASN device. A source measurement unit (model PXIe-4141)
was used to measure current flow through the ASN at user-
selected electrodes, where acquired and applied signals were
routed using a 16 × 32 switch matrix terminal block (model
TB-2642B). Voltage traces were simultaneously monitored at
all 16 electrodes using the DAQ card. All components were
housed in a National Instruments chassis (model PXIe-1078)
with an embedded controller.

Prior to any FSDD output signals, each ASN was driven
through an initialization (activation) process in which the
electrodes were sequentially stimulated with 7 Hz triangle
waves. This process was repeated with increasing voltages
(0.01–1 V) to realize switching patterns within the network.
The switch matrix was employed in conjunction with the
DAQ to calculate the resistance of every electrode
combination prior to and after initialization, where successful
activation was characterized by a sharp reduction in the network-
wide parallel resistance as compared to the virgin metal system.
Current-voltage and voltage-voltage measurements utilized
triangle wave outputs from the DAQ card. The FSDD signal
outputs were also produced by the DAQ card at selected electrode
locations via the switch matrix.

Reservoir Computing
The AgI ASN’s were evaluated for their potential RC applications
through three different tests: non-temporal logic operations,
temporal logic operations and recall of previous inputs and
spoken digit classification. The non-linear XOR task was
chosen for all logic operations and the assessment of the
networks temporal properties as described in the
Supplementary Information.

Spoken digit classification was implemented in AgI ASN
devices via RC using the FSDD. The task was not performed
using raw audio data, but rather using Mel-Frequency
Cepstrum Coefficients (MFCCs) of the data, similar to
previously reported techniques. Each 8 kHz wave-format
sound file from the FSDD was zero-padded up to 1 s of
recording length and then converted into MFCCs using the
“python_speech_features” Python package. Mel-frequency
cepstrum is a short-term power spectrum of the sound
waves, using a linear cosine transform of a log power
spectrum and is a nonlinear mel scale of frequency that
approximates the human auditory response better than
standard linear spacing of frequency components.

Default settings were used, resulting in an array of MFCCs
where each 25 ms window of signal was parameterized by 13
MFCCs. Windows were offset by 10 ms, resulting in 1,287 total

coefficients. To reduce device thrashing, the resulting MFCC
array was flattened and fed to the network one at a time. The
entire temporal sequence of the lowest-frequency coefficient
was passed first, then the next-lowest-frequency coefficient’s
values, and so on. The resulting 1,287 Hz signal (shown in
Figure 2) was sent to an input electrode, 14 electrodes were
measured, and another electrode was grounded. Both the input
and 14 read electrodes were recorded at 1 kHz. For RC, the
resulting voltage streams were sampled at the end of sub-
windows of computation, and the entire collection of sampled
recordings was linearly regressed to indicate which digit was
spoken (see Figure 4). Twelve unique spoken digit recordings
were used, characterized by two speakers, saying three digits,
two unique times. The FSDD speakers were “Jackson” and
“Theo”, the digits spoken were zero, one, or two, and the first
two instances of each digit were used. As a baseline,
regressions were performed on only the input electrode’s
voltage reading (“input only” mode) as well as on the full
electrode suite of the input electrode and the 14 readout
electrodes (“reservoir” mode).

RESULTS AND DISCUSSION

Material and Device Characterization
Silver nanowire networks like those shown in Figure 1B were
reliably produced based on previously developed protocols.
The network functionalization process requires conversion of
silver nanowire junctions to silver iodide. The protocol for the
formation of silver iodide was validated using UV-Vis and
X-ray Photoelectron Spectroscopies (XPS). Figure 4 provides
representative visible absorption spectra of as-prepared Ag
and AgI thin films. Ag thin films prepared by desktop
sputtering exhibited a Surface Plasmon Resonance (SPR),
suggesting the presence of silver islands within the film
(Bharathi Mohan et al., 2007). These results are in line with
previous reports which have demonstrated that silver exposed
to iodine decreases SPR intensity coupled with a buildup of
excitons. An absorbance peak around 420 nm has been
previously reported and longer exposure to iodine at
ambient temperature yielded a red-shifted maximum, which
has been associated with the formation of larger AgI particles
(Bharathi Mohan et al., 2007; Gnanavel and Sunandana, 2008).
XPS results shown in Figure 5 confirmed the presence of
characteristic peaks for iodide 3d5/2 and 3d3/2 core level
energies previously reported in metal iodides at binding
energies of 620 and 631 electron volts (eV) which are
absent in silver control samples (Kato and et al., 2015).
While both functionalization protocols successfully
produced AgI, the heated method was used for all ASN
devices due to quicker sublimation of solid iodine.

To confirm the viability of AgI networks as a physical
substrate for in-materio RC, the spatially distributed
nonlinear characteristics of the ASN were examined.
Voltage traces acquired at each of the 14 measurement
electrodes enabled the analysis of Lissajous plots (V-V) as
shown in Figure 6. AgI devices demonstrated distributed
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nonlinear dynamics throughout the entirety of the nanowire
network as a consequence of their highly interconnected
nature, where a stable and reproducible nonlinear
transformation of the input signal was observed. Different
switching regimes emerge throughout the network (Figure 6)
demonstrating different dynamics dominating spatial regions,
suggesting there is a combination of switching dominated
(blue, green plots) and capacitance dominated (red, pink)
regions distributed throughout the network under an
applied bias at any given electrode combination. The
switching for mechanism for AgI junctions is accepted to
arise from the formation metallic filaments between the
insulating material classifying them as electrochemical
metallization cells (Guo et al., 2007; Yang et al., 2012; Sun
et al., 2019; Yang et al., 2013). The memristive properties of

individual AgI junctions have been well characterized by
Tappertzhofen et al. (2012), Sánta et al. (2020) and clearly
demonstrate pinched hysteresis in their I-V curves. The
unique dynamics observed in ASNs are the result of
coupled memristive switching events among many
interconnected junctions, where measurements at a point
electrode capture the dynamics of an ensemble of
memristive elements rather than a single one.
Consequently, Lissajous plots of ASN device operation do
not commonly produce the characteristic pinched hysteresis
loops associated with individual memristive junctions. This
capacity for the non-linear transformation of time-varying
signals and temporal datasets renders the AgI nanowire
network ideal for the performance RC-based speech
recognition tasks.

FIGURE 3 | (A) The workflow for RC-based speech recognition using ASN-based devices involved encoding and separation of raw audio data - spoken digits -
data into overlapping windows, each of which was converted into 13 MFCCs. Individual MFCCs were arranged to minimize input thrashing and then delivered as input
voltage to a single electrode of the ASN device. Output data, in the form of voltage traces, was collected at all remaining electrodes. (B) The raw FSDD audio signal of
“Jackson” speaking the digit zero and its subsequent conversion to a voltage signal (C). The resultant 14 voltage recordings and their unique responses are overlaid
in (D) with additional detail provided in Supplementary Material.
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AgI Atomic Switch Networks-Based
Reservoir Computing
AgI nanowire networks were evaluated for their RC potential
in spoken digit recognition as shown schematically in
Figure 4. To effectively benchmark the value of the
nanowire network in the performance of a spoken digit
classification task, linear regression was performed in two
ways. First, linear regression of the input voltages only -
defined as “Input Only”-was carried out in the absence of
the physical reservoir. Second, the full reservoir
system–defined as “Reservoir” - employed regression of
both the input signal and all device outputs. Inclusion of
the input signal allows the regression to more accurately
discern correlations between the transformed output signals
and the input itself. FSDD digits encoded as MFCCs and
passed to the network as a temporal sequence at 1,287 Hz
were successfully classified as shown in Figure 7. A sufficient
number of training examples were found to stabilize the
reservoir’s behavior, and evaluating testing data on only a
single array of readout coefficients was found to be valid
(Scharnhorst et al., 2017).

The target function was regressed by dividing the measured
electrode data into N segments and using the last data point from
each segment, this post-processing of voltage traces is done
offline. For the “input only” mode, this means that N � 80
used 80 values in the regression. For the “reservoir” mode, this
means that N � 80 used 80 × 15 � 1,200 values in the regression.
To determine the accuracy at each N value, 12-fold cross-
validation was employed using 11 of the audio files as training
data and the 12th audio file as testing data. Each file was delivered
to the device multiple times on a loop, aggregating far more than
twelve tests to compute the accuracy. Nonetheless, there were
only 12 unique data streams used. As a result, this problem

suffered from significant overfitting, indicated by the “input only”
results decreasing in accuracy as more points were used for the
regression. This overfitting manifested as significant noise in the
accuracy; N � 100 might give an accuracy as high as 100%, while
N � 101 would give an accuracy of 54%. To account for this, the
space of points N tested was divided into windows of size 25, and
the average and standard deviation of accuracy within this
window is shown in Figure 7. For instance, the mean and
standard deviation shown at N � 100 indicate the statistics for
N ∈ {88, ..., 112}. The ASN reservoir also demonstrated highly
accurate results across a wide range of input voltages (0.5–10 V),
suggesting potential utility of these devices for low-power
applications.

These results clearly demonstrate the added stability provided
by the ASN reservoir, evidenced by consistent accuracy at higher
points of regression in the reservoir. The ASN’s robustness and
versatility was demonstrated by its capability to discern spoken
digits when stimulated by both high and low voltage signals
without a significant loss in accuracy. The ASN also provided a
moderate benefit in accuracy, even before the input-only lines
began overfitting. The lack of overfitting on the reservoir lines
could be interpreted as a side-effect of the temporal, non-linear
properties of the reservoir. This is corroborated by the fact that
the reservoir lines achieved higher accuracy than the input only
lines, a phenomenon that could not be achieved without non-
linear or temporal behavior. Rather than relying on a stream of
individual values, each of which has some noise associated, the
reservoir readout mode could rely on 15 such streams. Assuming
the noise on each electrode is somewhat independent, averaging
these channels could have significantly reduced noise.

CONCLUSION

Neuromorphic nanowire networks such as the ASN represent a
burgeoning class of material architectures whose dynamical

FIGURE 4 | UV-Vis spectra of silver thin films before and after iodization
under ambient (λ max � 433 nm) and heated to 30°C (λ max � 424 nm). The
presence of surface plasmon resonance in the blank silver samples suggests
the thin films are discontinuous small islands of metal formed during the
sputtering process.

FIGURE 5 | XPS spectra of the iodine 3d5/2 and 3d3/2 core levels in
silver-based ASN devices exposed to (sample, red) and not exposed to
(control, black) iodization procedures. The two peaks at 620 and 631 eV
correspond to the expected I− bands for I3/d7.
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FIGURE 6 |Representative normalized Lissajous plots of all 16 electrodes measured simultaneously using a 7 Hz triangle waveform swept from –1 to +1 V over the
course of 23 s with the grounded electrode (top left) and input signal (top right) recorded. Different colors correspond to different emergent dynamics spatially
distributed throughout the network. The first sweep can be seen in all plots as indicated by the black arrow. The network demonstrated a spatially diverse system with
reproducible, non-linear behavior distributed throughout the networks.

FIGURE 7 | (Left) Performance of the spoken digit classification task using AgI nanowire networks for in-materio RC to tap the temporal sequence of spoken digit
MFCCs at N different points and regressing to identify the digit spoken. Mean accuracy and standard deviation clearly shows that the “Reservoir” readout method
avoided overfitting and improved task performance as compared to using the “Input Only” mode (Right). The input signal amplitude (voltage) was observed to have
minimal. impact on accuracy, indicating the potential for maintaining task performance under low-power operation of AgI ASNs.
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nature makes them uniquely suited to serve as physical substrates
for hardware-based, in-materio computing. While the ever-
increasing demands for computational capacity and
complexity continue to challenge even the most advanced
computing architectures, dynamical in-memory compute
platforms such as the ASN may provide an alternative
solution that is scalable, energy-efficient, adaptive, and capable
of processing complex, time-varying data without the need for
pre-programming or remote intervention. Expanding the catalog
of memristive materials amenable to production of ASN-based
devices, and thereby the diversity of network dynamics available
for task performance, further increases their potential utility as a
platform technology for next-generation computing applications.
The new AgI-based ASN devices reported here served as a
dynamic, memristive reservoir for the nonlinear
transformation of temporal data and demonstrated the
capacity to reliably classify spoken digits with high accuracy
across a wide range of input voltages. Combined with the
relative ease and low cost of the fabrication process, these AgI
nanowire networks represent both a new material system that is
ripe for future study and an opportunity to further develop the
concept of in-materio computing toward real-world applications.
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