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Photocatalytic CO2 reduction is a promising method to mitigate the greenhouse effect and
energy shortage problem. Development of effective photocatalysts is vital in achieving high
photocatalytic activity. Herein, the S-scheme heterojunctions composed by BiOBr and
g-C3N4 with or without S doping are thoroughly investigated for CO2 reduction by density
functional theory (DFT) calculation. Work function and charge density difference
demonstrate the existence of a built-in electric field in the system, which contributes to
the separation of photogenerated electron-hole pairs. Enhanced strength of a built-in
electric field is revealed by analysis of Bader charge and electric field intensity. The results
indicate that S doping can tailor the electronic structures and thus improve the
photocatalytic activity. According to the change in absorption coefficient, system
doping can also endow the heterojunction with increased visible light absorption. The
in-depth investigation indicates that the superior CO2 reduction activity is ascribed to low
rate-determining energy. And both of the heterojunctions are inclined to generate CH3OH
rather than CH4. Furthermore, S doping can further reduce the energy from 1.23 to
0.44 eV, indicating S doping is predicted to be an efficient photocatalyst for reducing CO2

into CH3OH. Therefore, this paper provides a theoretical basis for designing appropriate
catalysts through element doping and heterojunction construction.

Keywords: graphitic carbon nitride, density functional theory, CO2 reduction, photocatalytic, nonmetal doping,
heterojunctions

INTRODUCTION

With the development of society, the greenhouse effect has posed a great threat to human life due to
excessive CO2 emission. Numerous solutions have been explored, including electrochemical Liu et al.
(2016), Albo et al. (2017), thermochemical Erb and Zarzycki (2016), Gong et al. (2016), and
photochemical methods (Deng et al., 2020; Deng et al., 2021; Gogoi et al., 2021; Meng et al., 2021;
Zhang et al., 2021b). Among them, photocatalytic methods are promising due to the sustainability of
solar light (Chen et al., 2020; Liu et al., 2020; Xu et al., 2020b; Zhen et al., 2020; Liu et al., 2021a; Wei
et al., 2021a; Zhang et al., 2021c). Specifically, photocatalytic CO2 reduction can convert CO2 into
usable hydrocarbon fuels (Huo et al., 2021; Kang et al., 2021; Ke et al., 2021; Yang et al., 2021; Yang
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et al., 2021b; Zhang et al., 2021d). Even though photocatalysis
shows great advantages, its application in CO2 reduction is still
greatly limited because of the chemical inertness of CO2 and low
visible-light utilization. Therefore, exploration of effective
photocatalysts is necessary. In the past few years, various
photocatalysts have been explored for photocatalytic CO2

reduction such as metals (Dong et al., 2020), metal sulfides
(Suzuki et al., 2018; Ge et al., 2019; Wang et al., 2020; Xu
et al., 2020a), metal oxides (Wang et al., 2020; Chen et al.,
2021; Wang et al., 2021), and nonmetals (He et al., 2020; Fei
et al., 2021). Despite the great progress, low visible-light
absorption and poor catalytic activity are still common
problems faced by these photocatalysts. Therefore,
modification, especially element doping and heterojunction
construction, have been widely implemented to improve the
photocatalytic activity (Truc et al., 2019; Ren et al., 2020; Lian
et al., 2021; Liu et al., 2021b). Through element doping and
heterojunction construction, the electronic structure and
recombination of photogenerated electron-hole pairs can be
effectively regulated and inhibited.

As a promising metal-free polymeric photocatalyst,
graphitic carbon nitride has features of good
physicochemical stability, a narrow bandgap, and
appropriate band potential (Wang et al., 2009; Li et al.,
2020a; Xia et al., 2020; Xie et al., 2020; Li et al., 2021b;
Zhang et al., 2021a). In addition, the CO2 molecule exhibits
a strong affinity to pyridine nitrogen in g-C3N4, which is
beneficial for CO2 reduction (Zhu et al., 2017).
Construction of hybrids has also proven to be effective for
g-C3N4 (Li et al., 2020b; Li et al., 2020c; Li et al., 2021a; Li et al.,
2021c; Li et al., 2020d; Mei et al., 2021; Tao et al., 2021). For
instance, Fu et al. designed a 2D/2D WO3/g-C3N4 composite,
in which atomic-level thickness of each is realized (Fu et al.,
2019). The ultrathin 2D/2D WO3/g-C3N4 is proven to be
S-scheme heterojunction, exhibiting high redox capacity and
improved photocatalytic activity. In addition, element doping
can also have a great influence on the properties of g-C3N4

through tailoring the electronic structures (Chen et al., 2021).
Tian et al. fabricated P-doped g-C3N4 by mixing melamine and
diammonium hydrogenphosphate (Tian et al., 2020). It was
found that the light absorption is redshifted with the increase
of doping concentration which is due to the electronic
redistribution by P ion doping. It can be deduced that
appropriate element doping and heterojunction building is
fruitful in regulating the electronic structures and improving
the photocatalytic performance.

Among available photocatalysts, BiOBr is deemed to be a
prominent candidate for constructing a heterojunction with
g-C3N4. It has appropriate bandgap and layered structure
where one (Bi2O2) slab is surrounded by the upper and
lower chlorine atoms. More importantly, its unique layered
structure allows the formation of 2D/2D Van der Waals
heterojunction with g-C3N4. In addition, the BiOBr/g-C3N4

hybrid has already been investigated by theoretical and
experimental research as photocatalysts (Jiang et al., 2018;
Qu et al., 2020). It has been proven that the BiOBr/g-C3N4

hybrids show superior photocatalytic activities in degradation

of dyes and organic pollutants. Even though theoretical and
numerous experimental studies have been done on the BiOBr/
g-C3N4, reports on CO2 reduction are lacking, and further
investigation is still needed to figure out the intrinsic
photocatalytic mechanism of CO2 reduction on BiOBr/
g-C3N4. In addition, previous studies indicate that element
doping such as S doping can promote the performance of
photocatalytic CO2 reduction (Raziq et al., 2018; Wang et al.,
2018; Ojha et al., 2019). It can be inferred that the
introduction of S atom into BiOBr/g-C3N4 (BiOBr/S-g-
C3N4) can improve the photocatalytic CO2 reduction
performance.

Herein, the effect of sulfur doping on the BiOBr/g-C3N4

heterojunction is investigated by exploring electronic, optical
properties, and CO2 reduction reaction. Through the
theoretical calculation, comprehensive understanding of the
CO2 reduction over BiOBr/g-C3N4 systems will be acquired.
Furthermore, electron distribution, visible light adsorption,
and CO2 reduction will also be investigated comprehensively.
It is expected that this research can provide a basis for the design
of novel CO2 reduction materials.

CALCULATION DETAILS

Vienna ab initio simulation package (VASP) was employed for
calculations (Hafner, 2008). The geometry structures were
optimized utilizing the generalized gradient approximation
(GGA) Perdew-Burke-Ernzerhof (PBE) as
exchange–correlation function (Grimme, 2006; Wu and
Cohen, 2006). The DFT-D method of Grimme was selected to
treat van der Waals interaction (Le et al., 2012). A 500 eV cutoff
energy was adopted for the plane-wave expansion. For Brillouin-
zone, a 4 × 2 × 1 Monkhorst–Pack k-point mesh was used in the
geometry optimization and other properties calculation. A
vacuum distance of 15 Å was used to eliminate periodic
interactions between adjacent images. The convergence criteria
of the geometry optimization for the energy change and
maximum force were set to be 10−5 eV and 0.01 eV/Å,
respectively.

In the process of constructing heterojunction, the lattice match
is the key point. It is necessary to choose two components with
similar cell parameters. Herein, a 1 × √3 single layered g-C3N4 is
placed at the top of a 2 × 3 single-layered BiOBr for constructing
2D/2D BiOBr/g-C3N4 heterojunction. The 2D/2D BiOBr/S-g-
C3N4 heterojunction is built by stacking a 1 × √3 S-g-C3N4

monolayer above a 2 × 3 BiOBr monolayer.
For CO2 reduction, the reaction processes of each step were

evaluated by calculating their Gibbs free energy change (ΔG)
(Han and Sohn, 2005; Yan et al., 2016), which is expressed by the
following equation:

ΔG � ΔH − TΔS + ZPE (1)

In this formula, ΔH denotes the energy difference of each
reaction step gained from DFT calculation. T represents the
temperature at 298.15 K ΔS and ZPE are the change of
entropy and zero-point energy, respectively.
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RESULTS AND DISCUSSION

Geometric Structures
Prior to the investigation of heterojunctions, the geometric structures
of monolayered g-C3N4, S-doped g-C3N4 (S-g-C3N4) and BiOBr
along the (001) facet were first studied. As shown in Figure 1, the
optimized lattice parameters are a � b � 7.13 Å for monolayered
g-C3N4; the parameters are a � b � 3.95 Å for monolayered BiOBr.
These results agree well with the experimental and theoretical results
(Zhao and Dai, 2014; Bai et al., 2016; Zhu et al., 2018). According to
previous research, S atom is more inclined to substitute pyridine
nitrogen on g-C3N4 (Wang et al., 2018; Ghashghaee et al., 2020).
Therefore, the doped g-C3N4 is constructed by replacing the 2-fold
coordinated N atom with S atom (Figure 1B). The calculated lattice

constants are a� b � 7.15 Å. Compared with the pristine g-C3N4, the
S−C bonds in S-doped g-C3N4 are slightly longer than the
corresponding N−C bonds because of the larger atomic radius of
S atom than that of N atom. Figures 2A,B are the top and side view
of optimized BiOBr/g-C3N4 heterojunction; Figures 2C,D depict the
top and side view of optimized BiOBr/S-g-C3N4 heterojunction. The
equilibrium distance between g-C3N4 and BiOBr in BiOBr/g-C3N4 is
2.66 Å, while it is 2.64 Å in BiOBr/S-g-C3N4. The equilibrium
distance of these two heterojunctions exhibits the feature of van
der Waals (vdW) heterojunction, indicating that a vdW interaction
is established between (S-doped) g-C3N4 and BiOBr. Moreover, it
can be seen clearly that the g-C3N4 in both heterojunctions changes
from a planar structure to a curved structure, indicating there is an
interaction between g-C3N4 and BiOBr.

In addition, the thermodynamic stability of BiOBr/(S-doped)
g-C3N4 heterojunctions is evaluated by calculating the formation
energy based on the following equations:

EF � EH − EA − EB (2)

where EH is the total energy of BiOBr/g-C3N4 or BiOBr/S-g-
C3N4 heterojunction, EA represents total energy of pure or
S-doped g-C3N4, and EB represents the total energy of BiOBr.
A more negative value of binding energy suggests a more stable
structure. The calculated formation energies of BiOBr/g-C3N4

FIGURE 1 | Optimized geometric structures of monolayered g-C3N4, S-g-C3N4, and BiOBr. The C, N, S, Bi, O, and Br atoms are represented by the grey, blue,
yellow, purple, orange, and brown balls, respectively.

FIGURE 2 | Optimized geometric structures of BiOBr/g-C3N4 and
BiOBr/S-g-C3N4 heterojunctions. (A) and (C) are the top view; (B) and (D) are
the side view.

FIGURE 3 | The calculated work functions of BiOBr, g-C3N4, and S-g-
C3N4. The red and black dotted lines signify the Fermi level and vacuum
energy level, respectively.
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and BiOBr/S-g-C3N4 are −0.52 and −0.63 eV, respectively,
demonstrating that both the constructed heterojunctions are stable.

Work Function
As an important criterion to judge charge transfer, the work
function is equivalent to the gap between Fermi level and vacuum
level. It is expressed by the following formula:

Φ � Evac − EF (3)

where Evac and EF represent vacuum level and Fermi level,
respectively. The work functions of g-C3N4, S-doped g-C3N4,

and BiOBr are obtained and shown in Figure 3. The calculated Φ
of g-C3N4 is 4.62 eV, consistent with the previous results
(Mahmood et al., 2020). After the introduction of S atom, the
work function is reduced to 3.96 eV. This is mainly due to the fact
that S atoms own more valence electrons than N atoms, which
can raise the Fermi level. In addition, it is found that the Fermi
level of BiOBr (6.40 eV) is lower than those of g-C3N4 and S-g-
C3N4. Therefore, it can be deduced that the electrons will flow
from the pure and S-doped g-C3N4 to the BiOBr until reaching
the uniform Fermi level.

Charge Density Difference
To intuitively reflect the charge transfer and separation between
different constituents, the charge density difference is calculated by:

Δρ � ρ(BiOBr/(S-doped) − g-C3N4)
− ρ((S − doped)-g-C3N4) − ρ(BiOBr) (4)

where ρ[BiOBr/(S-doped)-g-C3N4], ρ[(S-doped)-g-C3N4], and
ρ(BiOBr) are the charge densities of S-doped or pure BiOBr/
g-C3N4 hybrids, S-doped or pure g-C3N4, and BiOBr,
respectively. Figure 4 depicts the charge density difference
of hybrid systems along Z axis. The charge depiction and
accumulation are marked by blue and yellow regions,
respectively. It is obvious that the surface of S-doped and
pure g-C3N4 are mainly covered by the blue region, while the
BiOBr surface is dominant by the yellow region. Therefore, the
electrons transfer from S-doped and pure g-C3N4 to BiOBr in
the heterojunctions, which agrees well with the analysis of
aforementioned work function. Particularly, the blue and
yellow coverage areas in the S-doped hybrids are broader
than those in the pure hybrids, indicating that S doping
brings about a stronger interface interaction. In addition,
the Bader charge is calculated to quantitatively investigate
the charge transfer. It is found that there are 0.08 electrons
transferring from g-C3N4 to BiOBr. As for the S doping
counterpart, the number of charge transfers from S-doped
g-C3N4 to BiOBr increases to 0.15 e. This further confirms that
the introduction of S atom to the hybrid can have a great effect
on increasing interfacial electron transfer.

FIGURE 4 | The top and side view of charge density difference in (A) BiOBr/g-C3N4 and (B) BiOBr/S-g-C3N4. The blue and yellow areas represent charge
consumption and accumulation, respectively. The isosurface value was 0.3 e·nm−3.
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Strength of Built-in Electric Field
Electron transfer results in uneven charge distribution at the
interface, thus forming a polarized electric field at the hybrid’s
interface. As an important physical quality, the electric field has a
great correlation with band bending and separation of photogenic
electrons and holes. The strength of the built-in field can be
evaluated by the following equation:

E � P
εSd

(5)

Herein, P is the dipole moment; ε is the dielectric constant
which is equal to 8.85 × 10−12 Fm−1; S represents the surface area
of heterojunctions; and d represents the interfacial distance of
heterojunctions. The calculated E value for doped and non-doped
hybrid is 2.56 × 109 and 0.64 × 109 Vm−1, respectively. Obviously,
the electric field intensity of S-doped heterogeneous junction is
greatly improved. This improvement is mainly attributed to the
magnitude of p value, which is related to the number of electron
transfers at the interface. Following the above analysis of charge
transfer, the BiOBr/S-g-C3N4 exhibits more electron transfer at
the interface, thus leading to a larger dipole moment and stronger
electric field intensity.

Optical Absorption
To explore the influence of doping and heterojunction
construction on light absorption, the absorption coefficient
α(ω) is calculated according to equation:

α(ω) � �
2

√
ω [ ��������������

ε1(ω)2 + ε2(ω)2
√

− ε1(ω) ] 1/2 (6)

where ε1 and ε2 denote the real and imaginary parts of dielectric
function, respectively. ω is the optical frequency which
determines the dielectric functions. Figure 5 describes the
calculated absorption spectra of g-C3N4, S-g-C3N4, BiOBr/
g-C3N4, and BiOBr/S-g-C3N4. In the visible light range
(1.5–3.1 eV), the light absorption intensity is ordered by

BiOBr/S-g-C3N4 > BiOBr/g-C3N4 > S-g-C3N4 > g-C3N4. There
are obvious red shift and enhanced light absorption intensity for
S-g-C3N4, BiOBr/g-C3N4 relative to pure g-C3N4. Moreover, the
strongest visible light absorption occurs in BiOBr/S-g-C3N4

heterojunction which further verifies the positive effect of
element doping and heterojunction constructing on optical
property. Therefore, both the S doping and heterojunction
construction of g-C3N4 with BiOBr can improve the visible
light absorption.

Photocatalytic Mechanism
Based on the aforesaid results, it is found that the S atom can
elevate the Fermi level of g-C3N4, thus enhancing the strength of
the built-in electric field of BiOBr/g-C3N4 heterojunction. To
further explore the reasons for photocatalytic activity
enhancement, the photocatalytic mechanism is interpreted
comprehensively (Figure 6). According to the analysis of work
function, before contact, the g-C3N4 possesses a higher Fermi
level than the BiOBr. Upon contact, the electrons will transfer
from g-C3N4 to the BiOBr until Fermi level is equalized. The
electron flow leads to a built-in electric field pointing to BiOBr
and band bending of each component. Upon light illumination,
the electrons on the valance band (VB) are excited to the
conduction band (CB), leaving the photogenerated holes in the
VB. Under the effect of internal electric field and band bending,
the holes in the g-C3N4 VB will combine with the electrons in the
BiOBr CB at the interface. The electrons with strong reduction
ability are reserved in the g-C3N4 CB for CO2 reduction; holes
with superior oxidation capacity in the BiOBr VB survive for
oxidation reactions such as pollutant degradation. Therefore,
BiOBr/g-C3N4 heterojunction follows the S-scheme
photocatalytic mechanism. After the introduction of S atom,
the doped heterojunction still follows the S-scheme
photocatalytic mechanism. And the main difference between
the S-doped and undoped one is their interface interaction.

Specifically, the S atom enlarges the Fermi level difference
between BiOBr and g-C3N4 by 0.12 eV, which induces more
interfacial electron transfer. Consequently, an increased
interfacial field (2.56 × 10−9 V/m) is established. In general,
the elevated Fermi level of S-doped heterojunction generates a
stronger interfacial field, which provides a stronger force for the
recombination of electrons and holes than the non-doped
counterpart. Additionally, it also leads to more effective
separation of electrons and holes. To sum up, the introduction
of S atom can promote the photocatalytic activity by facilitating
charge separation.

CO2 Reduction
The above analysis indicates that the S atom doping can regulate
electric fields and increase light absorption. In this regard, the
heterojunction with S doping is expected to be a preferable
photocatalyst for CO2 reduction. Through the investigation of
the reaction mechanisms, as well as identification of active sites
and reduction products of BiOBr/g-C3N4 with or without S
doping for CO2 reduction, we will have a profound
understanding of CO2 reduction reaction.

FIGURE 5 | Optical absorption coefficients of single layered g-C3N4,
single layered S-g-C3N4, BiOBr/g-C3N4, and BiOBr/S-g-C3N4 heterojunction.
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As the initial step for CO2 reduction, the absorption of CO2

attaches importance to the further reduction processes. It is critical to
find the active sites for CO2 molecules. According to the
photocatalytic mechanism of the BiOBr/(S-doped)g-C3N4

heterojunction, the photogenerated electrons for CO2 reduction
are mainly on the surface of g-C3N4. Thus, the CO2 reaction
process proceeds on the (S-doped) g-C3N4 side of BiOBr/g-C3N4.
As shown in Figure 7, various possible adsorption sites on the
g-C3N4 side of BiOBr/g-C3N4 are considered by comparing their
adsorption energy. For convenience, different kinds of C and N

atoms are labeled as C1, C2, C3, N1, and N2, respectively. It is found
that the C2 and N2 atoms exhibit more negative adsorption energy
than the rest, indicating higher affinity to CO2. In addition, after the
structure optimization, the CO2 molecule adsorbed on the C2 site
inclines to move over the N2 atom, indicating that the N2 position is
the most favorable site for CO2 adsorption. Thus, the two
coordination N atoms are selected to be the active sites for the
initial CO2 adsorption, in agreement with the previous studies (Zhu
et al., 2017). For the BiOBr/S-g-C3N4, the C2, N2, and S positions are
selected as potential active sites. The calculated absorption energy for
C2, N2, and S are −0.10, −0.17, and −0.14 eV, respectively. After S
doping, judging from absorption energy, the two coordination N
atoms still preserve the strongest affinity for CO2 molecules. Thus,
theN2 atom in the BiOBr/S-g-C3N4 is also treated as the initial active
site. In general, both the pure and S-doped BiOBr/g-C3N4 exhibit
strong CO2 adsorption capacity, which is beneficial for the
subsequent reduction reaction.

After the CO2 adsorption, the following reduction processes
can proceed by a hydrogenation step on the C or O atom. All the
possible intermediates and reaction paths are listed in Figure 8.
The most favorable reaction pathways of CO2 reduction to
CH3OH or CH4 are obtained by comparing their free energy
of each step. For the pure BiOBr/g-C3N4, the scheme and the
most stable structure of the optimal path for CO2 reduction are
depicted in Figure 9. The first step of the reaction is the
hydrogenation of CO2 into COOH* with a free energy of
1.23 eV. In terms of the whole barrier diagram, this step is
deemed to be the rate-limiting step with the highest energy

FIGURE 6 | (A) and (B) are the charge transfer mechanism in BiOBr/g-C3N4 before and after contact, while (C) and (D) are the charge transfer mechanism in BiOBr/
S-g-C3N4 before and after contact.

FIGURE 7 | The adsorption energy of CO2 at different adsorption sites in
BiOBr/g-C3N4.
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barrier, which is due to the inertness of CO2molecules, and similar
results have been found in other studies (Zhi et al., 2019). After the
generation of COOH*, the following step is related to the

acquisition of CO and HCOOH by a dehydroxylation or
hydrogenation step of COOH*, respectively. The respective free
energy for CO and HCOOH formation is calculated to be −0.51
and −1.12 eV, indicating that both processes are exothermic and
spontaneous. Moreover, the more negative ΔG of HCOOH
generation manifests that the formation of HCCOH is more
competitive relative to that of CO. The desorption ability of the
two intermediates is further investigated to evaluate whether they
are intermediates or final products. The calculated adsorption
energy for HCOOH and CO are −0.78 and −0.14 eV, respectively.
The interaction between HCOOH and catalyst is strong due to the
more negative adsorption energy, indicating that the HCOOH is
more likely to be intermediate for the next reduction. By contrast,
the CO inclines to desorb from the catalyst surface. Therefore, we
focus the subsequent reaction on the hydrogenation and
dehydration of HCOOH. The calculated ΔG from HCOOH to
HCO* is 0.64 eV, suggesting an endothermic process. During the
process of HCO* protonation, the reaction free energy of H2CO
and CHOH* differs considerably. The energy barrier for H2CO
formation is −0.22 eV, while that for CHOH* is 1.93 eV, which is
apparently a non-spontaneous process. Thus, the H2CO
intermediate is more favorable for the next reaction. After
comparing the free energy in generating H3CO* (1.23 eV) and
CH2OH* (0.05 eV), the CH2OH* is selected for the latter reaction.
It is worth noting that the two products, CH3OH and CH4, share
the same reaction path before the formation of CH2OH*. After
that, the product of CH3OH is obtained through a hydrogenation
at the C of CH2OH*; while the CH4 is generated by experiencing
the CH2OH*, CH2*, CH3*, and CH4 reaction path. Moreover, the
rate-determining step for CH4 and CH3OH generation on the
pure and S-doped heterojuncions is the same, to explore the
reaction selectivity, the free energy of each reaction step is
further compared. It is obvious that the protonation of CH2OH
to CH3OH is a spontaneous exothermic process with a free energy
of −0.51 eV, while the highest energy barrier of CH2OH to CH4 is
0.98 eV. Thus, compared with CH4, CH3OH is more liable to be
the final product. On the whole, among the three reduction
products, i.e. CO, CH3OH, and CH4, the BiOBr/g-C3N4

heterojunction showed stronger selectivity to CO and CH3OH
than CH4.

FIGURE 8 | The possible reaction paths and intermediates of CO2 reduction by hydrogenation of C and O. The red part is the optimal reaction path on the BiOBr/
g-C3N4 and BiOBr/S-g-C3N4.

FIGURE 9 | (A) Optimized structure of reaction intermediates and (B)
free energy diagram on the optimal path of CO2 reduction on BiOBr/g-C3N4.
The blue and red dotted lines indicate optimal and infeasible reaction paths,
respectively. The white spheres represent H atoms.
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Figure 10 shows the favorable free energy scheme and the most
favorable adsorption geometries of the optimal path for CO2

reduction on BiOBr/S-g-C3N4. It is found that the reaction
pathways for CO2 reduction to CO, CH3OH, and CH4 on
S-doped hybrid are the same as those on the undoped
counterpart but the reaction energy of each step is quite
different. The respective optimal reaction path for the CO and
CH3OH formation on the doped system still proceeds
sequentially in the following order: CO2, COOH*, CO; CO2,
COOH*, HCOOH, HCO*, H2CO, CH2OH*, and CH3OH.
However, the formation of CH4 is obtained according to CO2,
COOH*, HCOOH, HCO*, H2CO, CH2OH*, CH2*, CH3*, and
CH4. For CO generation, each step of the reaction is endothermic
with a rate-determining energy of 0.46 eV. It is clear that the rate-
determining step for CH3OH formation on doped hybrid is the
last step, namely, conversion of CH2OH* into CH3OH. Unlike it,
the highest energy barrier for CH3OH on pure hybrid occurs at
the first step. And the BiOBr/S-g-C3N4 possesses lower rate-
determining energy (0.44 eV) than the undoped hybrid (1.24 eV).
Thus, S-doped hybrid is more conductive to the CH3OH
formation. Moreover, in the process of CO, CH3OH, and CH4

generation, the energy barrier of the rate-determining step of CO

and CH4 is larger than that of CH3OH. Therefore, the BiOBr/S-g-
C3N4 also inclines to reduce CO2 into CH3OH rather than CO
and CH4.

CONCLUSION

In this work, DFT calculations are adopted to investigate the
geometric structure, electronic properties, and CO2 reduction
mechanism of pristine and S-dopedBiOBr/g-C3N4. The charge
density difference demonstrates the existence of a built-in
electric field pointing to BiOBr, and the formation of
S-schemeheterojunction is validated. Bader charge analysis
indicates that more electrons transfer in the doped hybrids
compared with the pristine one. Integrated with the calculation
of the strength of thebuilt-infield, it can be inferred that S doping
can enhance the interfacial electric field intensity. The improved
electronic interaction is on account of the elevation of the Fermi
level by S doping. Also, the computed optical absorption coefficient
indicates improved visible-light absorption after S doping and
construction of heterojunction. Through the investigation of CO2

reduction, it is found that both the pure and S-doped hybrids prefer
to reduce CO2 to CH3OH rather than CH4. Moreover, compared
with the pure heterojunction, the BiOBr/S-g-C3N4 exhibits a more
superior CO2 reduction activity towards CH3OH due to the lower
limiting energy. Therefore, the heterojunctions construction and
nonmetal doping can lower CO2 reduction energy barrier, whichwill
ultimately improve the photocatalytic activity. This work will
provide a theoretical basis for the design of g-C3N4-based
photocatalysts.
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