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Magnetron sputter deposition of metal targets over liquids allows producing colloidal
solutions of small metal nanoparticles (NPs) without any additional reducing or stabilizing
reagents. Despite that this synthetic approach is known for almost 15 years, the detailed
mechanism of NP formation is still unclear. Detailed investigations must be carried out to
better understand the growth mechanism and, ultimately, control the properties of the
NPs. Here, the combination of the gold (Au) target and castor oil, a highly available green
solvent, was chosen as a model system to investigate how different experimental
parameters affect the growth of NPs. The effect of deposition time, applied sputter
power, working gas pressure, and type of sputter plasma (direct current magnetron
sputtering (DC-MS) vs. high-power impulse magnetron sputtering (HiPIMS)) on properties
of Au NPs has been studied by UV-vis spectroscopy and transmission electron
microscopy (TEM), and further supported by quantum-chemistry calculations and
mass-spectrometry analysis. The mechanism of the Au NP formation includes the
production of primary NPs and their subsequent aggregative growth limited by
diffusion in the viscous castor oil medium. Final Au NPs have a narrow size distribution
and a medium diameter of 2.4–3.2 nm when produced in DC-MS mode. The NP size can
be increased up to 5.2 ± 0.8 nm by depositing in HiPIMS mode which, therefore, mimics
energy and time-consuming post synthesis annealing.
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INTRODUCTION

The synthesis of nanomaterials has been intensely studied during the last few decades (Liz-Marzán,
2020). Thousands of experimental protocols have been reported for the production of colloidal
dispersions of nanoparticles (NPs) and supercrystals having different sizes, shapes, and compositions
(Boles et al., 2016; García-Lojo et al., 2019). These dispersions can be used for fabricating new
materials with properties that are not available in traditional bulk component systems (Talapin et al.,
2010; Kovalenko et al., 2015; Kagan et al., 2016). Typical recipe for the synthesis of metal NPs
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includes reduction of the precursor (usually the metal salt) in
certain solvent in the presence of capping molecules. The
resulting colloidal solution contains metal NPs and other
reaction products as well as the excess of the reducing
reagents, so that the post-synthetic purification of NPs
might be required for certain applications (Sebastian et al.,
2014). In this respect, physical vapor deposition (PVD) onto
liquid substrates is an alternative green approach allowing
obtaining pure colloidal dispersions of metallic NPs
containing only two components: the NP-forming atoms
and the low-vapor pressure liquid that acts as a dispersion
medium preventing fast agglomeration of NPs because of the
high viscosity or/and the presence of stabilizing functional
groups (Wender et al., 2013; Torimoto et al., 2016; Nguyen and
Yonezawa, 2018). Although magnetron sputtering onto liquids
is studied since 1996 with the work of Wagener et al. who
produced silver NPs in silicone oil (Wagener et al., 1996), the
mechanism of NP formation is not yet fully understood,
although more than 100 papers dedicated to depositions on
different liquids have been published. There are still open
questions such as where does the nucleation process take
place—on the liquid surface or in the bulk solution, what is
the particle growth mechanism, why are the secondary growth
processes more typical for certain NPs and host liquids, and
how does the liquid affect the properties of the final NPs?
These questions need to be answered to control better the NPs
production and scale up the synthetic procedure for real-life
applications. The way to go is to collect more quantitative
information about NP synthesized via magnetron sputtering
onto liquids under a wide range of controlled experimental
conditions and analyze which factor(s) affect(s) the particle
properties. The difficulty of today is also to compare the results
obtained by different research groups due to the variety of
sputter devices used and due to the absence of the full set of
experimental conditions in the published papers (like
deposition rates) which are mandatory information to
reproduce completely NPs synthesis in different vacuum
chambers or small sputter devices.

In this work we present new data on the formation of small,
stable Au NPs in a castor oil. This vegetable oil is an unexpensive,
highly available, nontoxic, green solvent that mainly consists of
triglyceride of ricinoleic acid (∼87%, see composition in
Supplementary Figure 1) (Patel et al., 2016). Here, we discuss
the systematic study of Au NP formation within a broad range of
sputtering conditions. The effect of sputter time, applied power,
argon pressure (from 0.07 to 2 Pa), and the type of sputtering
plasma (Direct Current-Magnetron Sputtering (DC-MS) vs. High
Power Impulse Magnetron Sputtering (HiPIMS)) on the behavior
of colloidal solutions of Au NPs in castor oil has been studied by
UV-vis spectroscopy during several months. The size and shape
of the obtained NPs were characterized by TEM and the stability
of colloidal solutions of AuNPs in castor oil was discussed in light
of quantum-chemistry calculations and mass-spectrometry
analysis. We believe that this massive new set of experimental
data will open the way for the development of universal
reproducible protocols of metal NP dispersions by magnetron
sputter depositions onto liquids.

MATERIALS AND METHODS

Materials
Castor oil (CAS number 8001-79-4) was purchased from Alfa
Aesar and used as received. Gold target (99.99%; 5.08 cm (2”) in
diameter; 1.59 mm (0.0625”) in thickness; elastomer bonded to
copper backing plate) was purchased from Kurt J. Lesker
Company Ltd. and used as received.

Preparation of Colloidal Solutions of Au NPs
The sputtering procedure was similar to the previously reported
in detail by our group (Sergievskaya et al., 2021). The schematic
image of the vacuum chamber can be found in Supplementary
Figure 2. The main deposition chamber, i.e., where sputtering
takes place, was permanently pumped down to the pressure of
10–6 Pa. In a typical experiment, 4.0 g of castor oil placed into a
cylindrical plastic beaker (3 cm in height; 2.8 cm in diameter)
were degassed inside the load-lock chamber until the pressure of
10–5 Pa was reached. After this, the sample was transferred into
the deposition chamber. The argon pressure was precisely
controlled by a throttle valve placed in front of the
turbomolecular pump. The working distance between the
target and liquid surfaces was equal to 20 cm. Depositions
lasted 10 min for all cases except when studying the effect of
the sputter time. The magnetron was cooled by water line, hence
allowing stable deposition conditions. Depositions in DC-MS
regime were done with commercial power supply (Advanced
Energy MDX 500), while for HiPIMS experiments a prototype
constructed in MATERIA NOVA R&D center (Britun et al.,
2018)) was used. In this case magnetron sputtering was carried
out at an argon pressure of 0.7 Pa, at a time-averaged sputter
power of 80W (current 92 mA; voltage 867 V), and with the
following pulse parameters (pulse repetition frequency 800 Hz,
pulse duration 20 µs; peak target current density 0.3 A/cm2).
Typical current and voltage waveforms can be found in Britun
et al. (2018).

All the samples were photographed after venting the load-lock
chamber and immediately stirred at the magnetic stirrer for
5 min. A detailed set of experimental conditions for each
deposition can be found in Supplementary Table 1 in the
Supplementary material. The concentration of deposited gold
atoms in colloidal solutions was estimated based on gold flux
measurement (experimental procedure and obtained values can
be found in the Supplementary material in Supplementary
Table 2 and in Supplementary Figure 3).

Characterization Methods
Colloidal dispersion of Au NPs obtained via magnetron
sputtering of gold target onto castor oil was regularly
characterized by means of UV-vis spectroscopy with Agilent
Cary 5000 UV-vis-NIR spectrometer. The shape, size, and size
distributions of particles were determined by transmission
electron microscopy (TEM) with Philips CM200 microscope.
The castor oil composition before and after exposure to the
argon-based plasma was analyzed by Positive-ion Matrix
assisted LASER Desorption/Ionization-Mass Spectrometry
(MALDI-MS) with Waters QToF Premier mass spectrometer.
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Additional information about characterization methods can be
found in the Supplementary material.

Density Functional Theory Calculations
To better understand the chemical interactions between the
castor oil components and Au NPs, quantum-chemical
calculations were carried out at the density functional theory
(DFT) and density functional tight-binding (DFTB) levels in two
steps, as done in our previous paper (Sergievskaya et al., 2021). A
detailed protocol leading to the interaction energy values is placed
in the Supplementary material.

RESULTS AND DISCUSSION

Reproducibility of the Synthesis and
Stability of the Products
Formation of Au NPs after magnetron sputtering of gold target
onto castor oil was first observed with the naked eye. As can be
seen in Figure 1A, a jellyfish-like brownish cloud of particles was
formed under the oil surface. The size and color intensity of this
cloud is proportional to the amount of gold deposited during the
experiment. Transparent colloidal dispersions were obtained
after stirring the samples. The color of the solutions changed
from brown to red with storage time. As depicted in the UV-vis
spectra in Figure 1B no surface plasmon resonance (SPR) band
was observed 15 min after sputter deposition. However, the

formation of well-developed SPR band with maximum at
505 nm started 1 day after stirring the sample. The absorbance
reached its maximum located at 505 nm 3 weeks after the
synthesis (see Figure 1C). An increase in absorbance might be
explained by secondary growth processes taking place in the
solution after sputter deposition is over. Such a behavior of Au
NPs has been mentioned by other research groups performing
magnetron sputtering onto ionic liquids (Vanecht et al., 2011,
2012; Hamm et al., 2014), PEEL (Shishino et al., 2011), PEGs
(Slepička et al., 2015), and oleic acid (Nguyen et al., 2020).

To check the reproducibility of sputter experiments, several
depositions were made on different days but under similar
experimental conditions. At first, the samples look similar with
the naked (see Supplementary Figure 5A) but to analyze the
reproducibility in a more rigorous way the UV-vis spectra of two
samples 3.1 and 3.2 were recorded 15min after venting the vacuum
chamber and stirring and compared. The two absorbance curves are
superimposed (Supplementary Figure 5B). On the same graph, we
also verified the UV-vis spectra of the solutions recorded 24 h after
stirring. The curves have the same shape but sample 3.1 has an
absorbance at 505 nm 3.8% higher than the one of sample 3.2.
However, this is not a significative variation for colloidal systems
with secondary growth processes. Nevertheless, even though there is
a marginal variation in the UV-vis spectra after sputtering, all the
experiments were performed under time-controlled conditions.
TEM characterization was done after all the samples reached the
maximum absorbance.

FIGURE 1 | A typical sample produced by magnetron sputtering of gold onto castor oil. (A) Photographs of the sample just after venting the vacuum chamber
(experimental conditions: Ar pressure–0.07 Pa, applied power–80 W (488 V, 162 mA), sputter time–5 min). (B) UV-vis spectra of the solution obtained after stirring the
sample (time marks indicate the time after finishing sputtering). (C) Increase in absorbance at the maximum of SPR of Au NPs (505 nm) with time.
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Dispersions of Au NPs obtained via magnetron sputtering
onto castor oil have a good colloidal stability. 25 depositions were
made and no decrease in the absorbance at maximum SPR band
or precipitation was noticed during at least one year for 23 of
them, the energetic position of SPR stayed also constant during
this period. Heating of the samples to 100 C for 2 h does not cause
any significant changes in UV-vis spectra (Supplementary
Figure 6) and does not provoke aggregation.

MALDI-mass spectrometry analyses of castor oil before and
after plasma treatment have been done. As presented in
Supplementary Figure 7, beside a slight oxidation, there is no
significant modification of the chemical composition of the
substrate (the host liquid) during the deposition with the DC-
MS procedure. According to the results of quantum-chemical
calculations performed at the DFT and DFTB levels, the chemical
interactions between the triglyceride of ricinoleic acid, i.e., the
main castor oil component, and the surfaces of Au NPs are

favorable. As a matter of fact, the interaction energy between the
model molecule, 1/3 part of triglyceride of ricinoleic acid, and the
Au 111) surface is negative (−0.14 eV) (see Supplementary
Figure 4). In our previous work, the interaction energy
between the same model module molecule and the Ag 111)
surface was positive, and colloidal solutions of Ag NPs in
castor oil produced by magnetron sputtering were indeed not
stable (Sergievskaya et al., 2021). These new data imply that castor
oil is a good capping agent for Au NPs.

All the data reported above prove that magnetron sputter
deposition of a gold target onto castor oil allows producing stable
colloidal solutions of Au NPs.

Effect of Sputter Time
Under fixed sputter conditions the gold flux is constant so that
an increase in sputter time leads to an increase in the number
of gold atoms deposited onto the liquid surface. The size and

FIGURE 2 | Effect of sputter time: samples were obtained at a fixed argon pressure of 0.07 Pa and an applied power of 80 W. (A) and (B) UV-vis spectra of
dispersions of Au NPs in castor oil recorded 15 min and 4 weeks later after deposition, respectively. (C)Changes in absorbance at the maximum of SPR band of Au NPs.
(D–F) TEM images and (G–I) size distributions of Au NPs obtained at sputter time of 5, 7, and 10 min, respectively.
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the color intensity of the Au NPs cloud under the castor oil
surface significantly increases with sputter time
(Supplementary Figure 8). As seen in Figures 2A,B, the
absorbance of colloidal solutions obtained after stirring of
the samples increases linearly with sputter time. The fact
that this dependence stays linear 4 weeks after sample
preparation means that the aging of Au NPs goes
synchronically. Different research groups have already
shown that sputter time does not affect the size of metal
NPs but increases their concentration inside the host liquid
solution (Torimoto et al., 2006; Suzuki et al., 2009; Shishino
et al., 2010; Tsuda et al., 2010; Hatakeyama et al., 2011;
Slepička et al., 2015; Sumi et al., 2015; Lee et al., 2018;
Sergievskaya et al., 2021). According to TEM images (see
Figures 2D–F), obtained Au NPs have spherical shape and
narrow size distribution (Figures 2G–I); the mean diameter of
Au NPs in castor oil is independent of sputter time or gold
concentration.

Effect of Sputter Power
An increase in sputter power leads to an increase in gold
deposition flux (see Supplementary Figure 3A). The size of
the NP cloud under the oil surface increased with sputter
power as well as the color intensity of obtained colloidal
dispersions (Supplementary Figure 9). One can see a linear
increase in absorbance of the colloidal solutions when
changing the sputter power from 20 to 80W, i.e., for power
densities equal to 1 and 4W/cm2 (Figures 3A,B). The dependence
of absorbance at 505 nm (the maximum of SPR band of Au NPs)
vs power stays linear both 15 min and 1 month after sample
preparation (Figure 3C). The size of the obtained NPs does not
depend on sputter power and is approximately 2.6–3.2 nm (see
Figures 3D–I). The fact that discharge current or power, or more
straightforwardly, the deposition flux, does not affect the size of
metal NPs obtained via sputtering onto liquids has been noticed
before by us (Sergievskaya et al., 2021) and other research groups
(Hatakeyama et al., 2011; Sumi et al., 2015; Qadir et al., 2019).

FIGURE 3 | Effect of applied power: samples were obtained at a fixed argon pressure of 0.07 Pa and a sputter time of 10 min. (A) and (B) UV-vis spectra of
dispersions of Au NPs in castor oil recorded 15 min and 4 weeks after deposition, respectively. (C) Changes in absorbance at the maximum of SPR band of Au NPs.
(D–F) TEM images and (G–I) size distributions of Au NPs obtained at sputter power of 20, 60, and 80 W, respectively.
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Therefore, it can be reasonably assumed that the variation of the
sputter power does not provoke any significant alteration of the
nucleation and growth conditions of the gold NPs, in our
experimental conditions. However, some scientists reported an
increase in the NP size with discharge voltage (Suzuki et al., 2009;
Wender et al., 2010, 2011; Sugioka et al., 2015). This behavior
might be explained by the heating of the host liquid by plasma-
born species and sputtered metal atoms and the IR radiations
emitted by the target during the deposition (Orozco-Montes et al.,
2021). For example, it has been recently shown that the
temperature of 4 ml of glycerol was increased by 17°C during
20 min platinum deposition with 12 cm of working distance
(100W; 5W/cm2) and by 40°C with 5 cm of working distance
at the same DC power density (Orozco-Montes et al., 2021). An
increase in liquid temperature leads to a decrease in both the
viscosity and surface tension of the host liquid, so that the sputter
atoms more easily penetrate under the liquid surface and the
number of collisions between freshly solvated sputtered atoms
and primary clusters formed under the liquid surface increases.
As a result, NPs of larger size might form.

Effect of Argon Pressure
An increase in pressure leads to a significant decrease in gold flux
(see Supplementary Figure 3B) but also in the kinetic energy of
the sputtered atoms reaching the liquid surface because of
increased gas phase scattering. It was seen with the naked eye
that the area of deposited material drastically decreased with
pressure at a fixed sputter time of 10 min (Supplementary
Figure 10A). Consequently, the color of the colloidal solution
obtained after stirring the sample produced at 2 Pa was almost
yellow. No strong SPR resonance band was observed in UV-vis
spectra of initial or aged solutions in this condition
(2 Pa–Figure 4A); however, the SPR peak appeared with time
for samples prepared at a pressure of 0.07 and 0.7 Pa (Figure 4B).
The UV-vis spectrum of 2 Pa sample did not change significantly
even one month after the preparation of the solution; the increase
in absorbance at 505 nm was about 5% (Figure 4C). The size of
NPs was measured by TEM 10 months after the sputtering
procedure; it was found that the mean diameter of the final
Au NPs does not depend on gas pressure (see Figures 4D–I). The
effect of argon pressure on metal NP size obtained by sputtering

FIGURE 4 | | Effect of argon pressure. Samples were obtained at a fixed applied power of 80 W and a sputter time of 10 min. (A) and (B) UV-vis spectra of
dispersions of Au NPs in castor oil recorded 15min and 4weeks after deposition, respectively (C)Changes in absorbance at themaximumof SPR band of Au NPs. (D–F)
TEM images and (G–I) size distributions of Au NPs obtained at argon pressure of 0.07, 0.7, and 2 Pa, respectively.
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onto liquids has been already studied in three works (Wagener
et al., 1996; Orozco-Montes et al., 2021; Sergievskaya et al., 2021),
showing in all the cases that the size of NPs increased with argon
pressure. The fact that NPs produced in this work was in a range
of 2.4–2.7 nm might be explained by the difference in
concentrations of the deposited gold atoms. A large number of
small gold clusters form initially at a pressure of 0.07 Pa and their
size increased because of the collisions during the storage time, as
can be seen by UV-vis spectroscopy (Figures 4A–C). In contrast,
at 0.7 and 2 Pa pressure, since the total concentration of deposited
gold is lower at a higher pressure, a smaller number of larger
particles form. These particles will collide less frequently in a
viscous oil medium.

The sample obtained at a pressure of 2 Pa allows us to compare
Au NPs obtained in the frame of this work with the results
provided in Wender et al. (2010) (see the list of experimental
parameters in Supplementary Table 3). In both the cases, Au
NPs have a spherical shape with a mean diameter of 2.4 ± 0.9 nm
(this work) vs. 3.8 ± 1.1 nm (Wender et al., 2010). The larger size
of Au NPs produced by Wender might be explained by the fact
that the deposition rate was higher so that more primary gold
clusters were formed in smaller volume of castor oil and led to the
formation of larger NPs. The difference in the deposition
conditions might also lead to different liquid heating rates.
Indeed, the modeling of the metal flux reaching the liquid
surface with the SIMTRA Monte Carlo-based simulation
package (Van Aeken et al., 2008; Depla and Leroy, 2012) has
shown that obtained energy flux is dramatically increased in case
of work (Wender et al., 2010). Considering that the thickness of
the oil layer was 3 times less in case ofWender’s research, it might
be assumed that in that case the liquid substrate was heated much
more efficiently than in case of the present work after the same
treatment duration of 10 min. Decreasing in viscosity with the
increase in oil temperature made diffusion faster, hence
promoting collisions inside the liquid and allowing the
formation of larger Au NPs. According to Wender et al.
(2011), solutions of Au NPs in castor oil were stable about
8 months while our samples demonstrated a similar UV-vis
spectrum for 14 months after the solutions reached the
maximum of absorption.

Effect of Plasma Type: DC-MS vs. HiPIMS
Changing the power supply from DC-MS to HiPIMS allows us to
deposit metal ions instead of metal neutrals. During DC-MS
deposition, the film-forming species, i.e., metal neutrals, have
kinetic energy typically in the range of several eV (Depla, 2013),
but in the case of HiPIMS discharges, metal ions have kinetic
energy of several tens of eV (Sarakinos et al., 2010). Such species
might cause the heating up of the top liquid layer and penetrate
deeper in the bulk solution, and hence affect the properties of NPs
(Sergievskaya et al., 2021). HiPIMS power supplies were used only
twice for sputtering onto liquids: during the deposition of Cr-Mn-
Fe-Co-Ni alloy onto BMIM-TFSI ionic liquid (Garzón-Manjón
et al., 2018) and by us for depositing silver onto castor oil
(Sergievskaya et al., 2021). In both cases, the size of particles
obtained with HiPIMS plasmas was larger than with DC-
MS ones.

The photographs of the samples produced with DC-MS and
HIPIMS power supplies can be found in Supplementary
Figure 11A. One can see with the naked eye that the size of the
NP cloud is smaller in case of the HiPIMS mode. This might be
explained by the lower gold flux (see Supplementary Table 2). All
colloidal solutions obtained after stirring of the HiPIMS samples
were transparent and had brownish color (Supplementary
Figure 11B). No strong SPR band appeared in the UV-vis
spectra of HiPIMS samples even after one-month storage time
(Figures 5A,B). Even though in case of the HiPIMS regime the
concentration of gold in the solution was almost twice lower than in
theDC-MS regime, the size of final goldNPswas larger: 5.2± 0.8 nm
(HiPIMS) vs. 2.4 ± 0.9 nm (DC-MS), Figures 5C–F. This increase in
NP size might be explained once again by the heating up of the host
liquid by the HiPIMS plasma as discussed previously in Sergievskaya
et al. (2021). Thus, the number of collisions between forming
primary gold clusters increases and larger NPs are expected to
form. Because the high-kinetic energy ions present in HiPIMS
plasma might affect the host liquid components, the
characterization of castor oil before and after exposure to the

FIGURE 5 | Effect of plasma type: samples were obtained at a fixed
argon pressure of 0.7 Pa and a sputter time of 10 min. (A) and (B) UV-vis
spectra of dispersions of Au NPs in castor oil recorded 15 min and 6 weeks
after deposition, respectively. (C, D) TEM images and (E, F) size
distributions of Au NPs obtained with DC-MS and HiPIMS power supplies,
respectively.
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plasma was done by MALDI-mass spectrometry. Owing to a more
aggressive treatment, some changes in oil structure were observed
(Supplementary Figure 7). Even if an additional detailed future
research is needed to explain the mechanism of oil degradation
process, it is more probably due to successive oxidation reactions
that could correspond to the 16mass units difference observed in the
mass spectrum. The here-provided data show once again that 1-step
deposition with HiPIMS power supply might be used as an
alternative to the 2-step process when primed metal NPs
produced in the DC-MS regime were annealed with the aim of
increasing their size (Meischein et al., 2019; Chauvin et al., 2020).

Mechanism of Nanoparticle Formation
The growth of metal NPs produced by reduction of metal ions in
solution is muchmore studied than the formation of NPs during the
magnetron sputtering process due to the absence of in situ
observations inside the vacuum chamber. For the wet-chemistry
synthesis, the kinetic curves representing the growth of metal NPs
have a sigmoidal shape with an induction period corresponding to
the nucleation step (Watzky and Finke, 1997; Finney and Finke,
2008). According toworks reported in Ref. (Watzky and Finke, 1997,

2018; Finney and Finke, 2008; Sergievskaya et al., 2015), an
autocatalytic growth step follows the nucleation process which
leads to the formation of primary metal NPs. Secondary growth
processes such as aggregation, coalescence, or Ostwald ripening
might also take place in the solution (Finney et al., 2012; Thanh et al.,
2014; Wang et al., 2014). In contrast to the classical colloidal
synthesis, the concentration of metal in the solution is not
constant in the case of sputtering onto liquid processes; it
increases with sputtering time. Moreover, in case of sputtering
onto still host liquid (without stirring), the obtained solutions are
not homogeneous (see Figure 1A). Because of the rather high kinetic
energy of the gold atoms (which depends on the working
conditions), these species might reach the liquid subsurface
and the nucleation and growth processes would then occur in
the bulk solution. Small primary gold clusters with size less than
2 nm form during this time. There is no induction period on the
typical kinetic curve shown in Figure 1C since the sample
characterization was done after venting of the vacuum
chamber. In view of the absence of a strong SPR band in the
UV-vis spectra of colloidal solutions of AuNPs obtained after the
sample stirring, we believe that the concentration of small gold
clusters (<2 nm) stays high. We cannot exclude the presence of
small amount of Au atoms stabilized by castor oil in the mixture.
As the peak absorption of the SPR band increases with time (see
Figure 6), one can see that, during the first week, the
concentration of larger Au NPs is growing faster in case of
more concentrated solutions. This process gets significantly
slower with time. These findings lead to the hypothesis that
the growth process is limited by the diffusion of the primary
clusters in the castor oil (Figure 7). The clusters and atoms
remaining after the nucleation processes aggregate and form
larger Au NPs. Moreover, this aggregation process might have an
autocatalytic nature (Finney et al., 2012; Wang et al., 2014).
Finally, we stress that the growth of Au NPs after the end of the
magnetron sputter deposition process has already been
considered in previous works in the frame of aggregative
models (Shishino et al., 2011; Vanecht et al., 2011, 2012;
Hamm et al., 2014; Slepička et al., 2015).

To estimate the growth process rate, we plotted graphs in the
coordinates ln (a/(1-a)) vs. t, where a is At/Amax (normalized
absorbance) and t is the time after the end of the deposition
process. The observed rate constants, kobs, were determined from

FIGURE 6 | The evolution of the absorbance at the maximum of SPR
band (505 nm) as a function of time. (A) Effect of sputter time, (B) effect of
sputter power, and (C) effect of argon pressure.

FIGURE 7 | Scheme of the formation of Au NPs after magnetron
sputtering of gold target onto castor oil.
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the slope of the curves (see Supplementary Figure 12) as it was
done before in other works (Esumi et al., 2000; Harada and Inada,
2009; Mohamed et al., 2011). Such an approach describes only
approximately 50% of the kinetic curves (Watzky and Finke,
2018) from Figure 6, i.e., the part of aggregative growth of Au
NPs. As expected for an aggregation process in such a viscous
medium such as castor oil (0.650 Pas (Patel et al., 2016)), kobs are
in the range of (1–10)·10–7 s−1 (see Supplementary Table 1) and
slightly increase with gold concentration (Supplementary
Figure 13). The values of kobs estimated in less viscous
aqueous solutions are usually much higher (approximately
10–3 s−1 or more (Esumi et al., 2000)) due to fast diffusion of
reactive species and high concentrations of reducing reagents.
However, in the case of sputtering onto the liquid procedure,
there are no reducers; thus, the process rate is limited by the
diffusion and coalescence between primary particles inside the
vegetable oil. For a more precise analysis, a larger set of kinetic
data, including the nucleation period, is needed.

CONCLUSION

1Magnetron sputtering of a gold target onto low-cost, nontoxic,
vegetable castor oil allows us to obtain stable colloidal solutions of
small spherical Au NPs. It was clearly shown that a brownish
cloud forms underneath the oil surface during the deposition
process onto still liquids. Stirring of the obtained systems leads to
the formation of transparent colloidal solutions containing the
primary gold clusters with diameter less than 2 nm according to
their UV-vis spectra. The Au NPs grow with time due to
aggregation of primary clusters and sputtered atoms; the
process is limited by diffusion in the viscous oil medium. The
size of the final Au NPs does not depend on sputter time, sputter
power, or argon pressure, and the mean diameter stays in a range
of 2.4–3.2 nm for the DC-MS mode, while deposition with
HiPIMS power supply allows us to produce Au NPs with size
of 5.2 ± 0.8 nm. The HiPIMS-related data set and the comparison
with previously published work for which the plasma parameters
were different provide insight on the influence of the heating of
the host liquid during the plasma process, and the subsequent
formation of larger NPs. Our results show that magnetron sputter
deposition onto vegetable oils is an effective green technique to
produce stable colloidal solutions of small NPs. These dispersions
might be used in further (environmentally friendly plasma-based)
polymerization processes for the production of composite
polymers.
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