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With the tremendous progress of Internet of Things (IoT) and artificial intelligence (AI)
technologies, the demand for flexible and stretchable electronic systems is rapidly
increasing. As the vital component of a system, existing computing units are usually
rigid and brittle, which are incompatible with flexible and stretchable electronics. Emerging
memristive devices with flexibility and stretchability as well as direct processing-in-memory
ability are promising candidates to perform data computing in flexible and stretchable
electronics. To execute the in-memory computing paradigm including digital and analogue
computing, the array configuration of memristive devices is usually required. Herein, the
recent progress on flexible and stretchable memristive arrays for in-memory computing is
reviewed. The common materials used for flexible memristive arrays, including inorganic,
organic and two-dimensional (2D) materials, will be highlighted, and effective strategies
used for stretchable memristive arrays, including material innovation and structural design,
will be discussed in detail. The current challenges and future perspectives of the in-memory
computing utilizing flexible and stretchable memristive arrays are presented. These efforts
aim to accelerate the development of flexible and stretchable memristive arrays for data
computing in advanced intelligent systems, such as electronic skin, soft robotics, and
wearable devices.

Keywords: memristor, in-memory computing, flexible and stretchable electronics, flexible memristive array,
stretchable memristive array

INTRODUCTION

The emergence of the Internet of Things (IoT) and artificial intelligence (AI) technology has
promoted the rapid development of flexible and stretchable intelligent systems, such as electronic
skin (e-skin) (Yang et al., 2019; Wang et al., 2020b), soft robotics (Wang et al., 2018b; Park et al.,
2020b), and wearable devices (Liu et al., 2020). In the ideal scenarios, these systems should be able to
undergo complex deformations in response to external stimuli, such as bending, twisting, and
shearing (Wang et al., 2020c; Wang et al., 2021b; Raeis-Hosseini and Rho, 2021). Each component in
the system is expected to be highly flexible and even stretchable to accommodate external mechanical
strains. However, as a basic component of the intelligent system, existing computing units based on
complementary metal-oxide-semiconductor (CMOS) technology are usually rigid and brittle, which
are difficult to be integrated into flexible and stretchable systems (Gao et al., 2019).

Recently, emerging memristive devices provide a promising approach to achieve flexible and
stretchable computing units, due to their simple structure (Ielmini, 2016; Li et al., 2020; Liu et al.,
2012;Wang et al., 2020f), low energy consumption (Carlos et al., 2021; van de Burgt et al., 2018), high
operating speed (Ren et al., 2020; Xu et al., 2019; Zhang et al., 2019b), and easy fabrication process
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FIGURE 1 | In-memory computing using memristive array. (A) Schematic of the memristive array. The inset shows the memristive units with on and off states. b-c)
Schematic of in-memory digital computing with memristive array, such as (B) the NOR operation, and (C) the parallel full adder. (D) The implementation of in-memory
analogue computing with memristive array. (E) The schematic of solving linear formula with memristive crossbar arrays.
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that is compatible with flexible and stretchable electronics (Wang
et al., 2021a) (Figure 1A). Memristive devices are two-terminal
electrical resistance switches whose resistance state can be tuned
by the history of applied stimuli. The tuned resistance state can be
configured to store data information for non-volatile memory,
which has been intensively investigated for many years (Carlos
et al., 2021; Yuan et al., 2021). In recent years, memristive devices
are increasingly explored to execute data computing due to the
direct processing-in-memory ability (Meng et al., 2021; Zhang
et al., 2021; Zhou et al., 2021). The in-memory computing
characteristics of memristive devices could break the
bottleneck of traditional von Neumann computing
architecture, resulting in high computational efficiency (Li
et al., 2019; Xia and Yang, 2019).

A wide variety of semiconductor and dielectric materials
such as inorganic (Yoon et al., 2018; Jo et al., 2021; Wang et al.,
2021d), organic (van de Burgt et al., 2018; Park et al., 2020a),
two-dimensional materials (Zhang et al., 2019a; Meng et al.,
2021) and their derivatives (Gu and Lee, 2016) have been
developed to obtain flexible and stretchable memristive devices
and arrays. These devices and arrays are usually grown on
flexible and stretchable substrates such as polyethylene
terephthalate (PET) (Meng et al., 2021; Siddik et al., 2021),
polyethylene naphthalate (PEN) (Zhang et al., 2019b),
polyimide (PI) (Li et al., 2021) and polydimethylsiloxane
(PDMS) (Hung et al., 2017; Rahman et al., 2018). Typical
structural designs, such as wavy (Wang et al., 2020a) and
island (Liu et al., 2017; Kim et al., 2021b) structures, have also
been explored to endow memristive devices with mechanical
flexibility and stretchability. However, most of the reported
works on flexible and stretchable memristive devices focus on
individual device units. For real applications, the array
configuration of memristive units is typically required to
execute specific computing functionality including digital
and analogue in-memory computing (Jang et al., 2017;
Cheng et al., 2019; Wang et al., 2020e; Wang et al., 2021a)
Compared to intensively studied silicon-based counterparts,
flexible and stretchable memristive crossbar arrays used to
implement in-memory computing are still in their infancy, due
to the relatively poor device performance and uncontrollable
fabrication process (Shi et al., 2020; Gogoi et al., 2021). To
further boost the development of flexible and stretchable
memristive arrays, it is urgent to review the latest
achievements in this area.

In this mini-review, we outline the recent progress in the
actualization of in-memory computing based on flexible and
stretchable memristive arrays. Firstly, the basic principle of in-
memory computing based on the memristive array is briefly
summarized. Afterward, the latest achievements in flexible
memristive arrays including inorganic, organic and two-
dimensional (2D) materials, and stretchable memristive arrays
including material innovation and structural design are
discussed. Furthermore, the critical challenges of flexible and
stretchable memristive arrays for in-memory computing are
identified, and future prospects are provided. We hope this
mini-review would shed some light on the development of
future flexible and stretchable intelligent systems.

COMPUTING PRINCIPLES OF IN-MEMORY
COMPUTING

Benefitting from the unique processing-in-memory
characteristics, memristive devices can be configured into
specific arrays to implement Boolean logic and vector–matrix
multiplication (VMM) operations, corresponding to in-memory
digital computing and in-memory analogue computing,
respectively. In the following section, the basic principles of
in-memory digital and analogue computing using memristive
arrays will be elaborated.

The memristive array can be used to implement basic digital
logic operations, such as AND, OR, NOT, and NAND, by
employing appropriate disposition (Hu et al., 2019; Jang et al.,
2017; Sun et al., 2018). The resistance state of the memristive
device participates in the computing process as a logic variable,
and its on-state and off-state are defined as 0 and 1,
respectively. Figure 1B shows a typical NOR
implementation by using three memristive devices. Firstly,
the output memristive device (M3) is initialized to a low
resistance state (LRS, logic 1), and then the voltage V0 is
applied to the input memristors M1 and M2. When devices
M1 and M2 with the initial state of high resistance state (HRS,
logic 0), the voltage across the deviceM3 is not enough to reach
its reset voltage, thus the device M3 remains in the LRS (logic
1). For other input memristor states, applying voltage V will
cause the output memristor voltage to reach its reset voltage, so
the device M3 changes to HRS (logic 0). Based on basic logic
operations, the memristive array has been used to implement
full adders (Huang et al., 2016; Hu et al., 2019; Zhang et al.,
2021), showing great potential in energy-efficient electronics.
Recently, Zhang et al. reported 2D conjugated PBDTT-
BQTPA-based memristive devices to demonstrate all 16
Boolean logic operations and parallel 1-bit full adder circuit
(Zhang et al., 2021). As shown in Figure 1C, the developed
parallel 1-bit full adder circuit can be demonstrated with a 4 ×
3 memristive crossbar array.

The core of in-memory analogue computing is using
memristive array to implement the VMM operation based
on the Ohm’s law and Kirchhoff’s current law (Ielmini and
Wong, 2018). The computing principle is shown in Figure 1D.
When a voltage vector is applied to the row line of the array,
the current vector obtained on the column line is the product
of the voltage vector and the conductance matrix of the
memristive array. Thus, the VMM operation is successfully
realized in a single operation cycle, in which each current value
collected from one column represents one multiplication
operation. It means multiple multiplication operations can
be simultaneously achieved via multiple columns, indicating a
highly parallel computing in memristive array. The in-memory
analogue computing has been widely used for various
applications such as linear system(Zidan et al., 2018),
eigenvector solvers(Pedretti et al., 2021), and image
processing (Li et al., 2018). For instance, the solution of
eigenvectors (x) is actually an algebraic operation of VMM,
which can be solved by power iteration (Pedretti et al., 2021).
The parameters in a given matrix can be mapped to the
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conductance of each device in the memristive network, the
solution process can be performed by applying xn to top
electrode lines and obtaining the currents iteratively.
Analogy with the principle of obtaining eigenvectors, the
memristive crossbar array can also be used to solve linear
formulas that are essential to computing. As shown in

Figure 1E, the precise solution of a linear formula A·x � b
is obtained by continuously updating the initial value x using
the error correction term z (Le Gallo et al., 2018). The error
correction term z is determined by the computing residual (r �
b-A·x) and the matrix A. By employing the Krylov-subspace
approach, the term z can be achieved by solving equation A·z �

FIGURE 2 | Flexible inorganic and organic memristive arrays. (A) Schematic illustration of the 1D-1R memristive crossbar array (Yoon et al., 2018). (B) Current-
voltage (I–V) characteristics of the 1D-1R memristive device under flat and bent states (Yoon et al., 2018). (C) The schematic of a 3D flexible memristive crossbar array
with the Pt/HfAlOx/TaN stack structure (Wang et al., 2021c). (D) Flexible memristive array rolled on a cylinder with a radius of curvature of 1.3 mm (Kook et al., 2020). e-f)
The implementation of (E) NOT gate and (F) NOR within the 1S1M memristive array (Jang et al., 2018a). (G) The schematic of the flexible memristive array with an
Al/ClCuPc/ITO/PET structure configuration (Zhou et al., 2021) (H)-(I) The schematic and I–V switching behaviors of nitrocellulose-based memristive devices before and
after dipping in deionized water (Lee et al., 2020). (J) The flexible nitrocellulose-based memristive devices exhibited stable performance under the bending state (Lee
et al., 2020). (A, B). Reproduced with permission. Copyright 2018, Wiley-VCH. (C). Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0
International License. (D). Reproduced with permission. Copyright 2020,Wiley-VCH. (E, F). Reproduced with permission. Copyright 2018,Wiley-VCH. (G). Reproduced
with permission. Copyright 2021, Wiley-VCH. (H, J). Reproduced with permission. Copyright 2020, Wiley-VCH.
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r, where the matrix A is mapped to the conductance of
memristive arrays. Consequently, the problem of the linear
formula solution is converted to the analogue VMM
computing in memristive arrays.

FLEXIBLE MEMRISTIVE ARRAYS FOR
IN-MEMORY COMPUTING

With the development of materials and fabrication process, a
variety of materials including inorganics, organics and 2D
materials have been developed to obtain flexible memristive
arrays for in-memory computing. The following section will
discuss the recent progress of flexible memristive arrays and
identify the critical challenges in the actualization of data
computing.

Flexible Inorganic Memristive Arrays
The most straightforward approach to obtain flexible memristive
arrays is directly depositing inorganic materials onto flexible
substrates via thin-film fabrication processes, such as
evaporation and sputtering. Until now, a large number of
inorganic materials, such as AlOx (Lee et al., 2017; Jang et al.,
2018b), SiOx (Yoon et al., 2018), WOx (Lin et al., 2018), and
HfAlOx (Wang et al., 2020d; Wang et al., 2021c), have been
fabricated as flexible resistive switching dielectrics by using this
approach. For instance, J. Yoon et al. reported a 8 × 8 flexible
SiOx-based one diode–one resistor (1D-1R) memristive crossbar
array on a plastic substrate by employing physical vapor
deposition (PVD) technology (Yoon et al., 2018). The
schematic of the SiOx-based 1D-1R array is shown in
Figure 2A. The fabricated 1D-1R devices exhibited robust
electrical characteristics under the bending state with a radius
of 8 mm, indicating an excellent mechanical flexibility
(Figure 2B).

Most inorganic materials require high-temperature
processes to guarantee the nucleation of particles and the
quality of grown thin film. However, the extensively used
flexible substrates only show low temperature tolerance
(Wang et al., 2021c; Wang et al., 2021d), which limits the
choice of inorganic materials. Hence, it is vital to develop low-
temperature manufactural processes to prepare flexible
memristive arrays for in-memory computing. Recently,
Zhang’s group reported a series of studies on the use of
low-temperature atomic layer deposition (ALD) technology
to fabricate flexible memristive devices (Wang et al., 2021c;
Wang et al., 2019; Wang et al., 2020d). This approach not only
provides an atomically dense resistive switching layer with a
precise control of thickness, but also is compatible with flexible
fabrication process. Based on this method, a three dimensional
(3D) flexible memristive crossbar array with the platinum (Pt)/
HfAlOx/tantalum mononitride (TaN) stack structure was
fabricated on a PET substrate at 130°C (Figure 2C) (Wang
et al., 2021c). Typical forms of synaptic plasticity, such as long-
term potentiation (LTP), long-term depression (LTD), and
paired pulse facilitation (PPF), have been successfully
demonstrated in the electronic synapses. In addition, the

memristive devices in the flexible 3D array could also
maintain reliable LTP and LTD behaviors under the
bending state with the bending radius of 10 mm. These
developed flexible memristive arrays offer a promising way
to implement the wearable in-memory computing system.

Flexible Organic Memristive Arrays
Organic materials often show better flexibility than inorganic
materials, which are potential candidates for fabricating flexible
memristive devices and arrays. Common organic materials, such
as albumin (Chen et al., 2015), collagen (Zeng et al., 2019), silk
fibroin (Kook et al., 2020; Wang et al., 2016a), polyethyleneimine
(PEI) (Yang et al., 2020) and poly(1,3,5-trivinyl-1,3,5-
trimethylcyclotrisiloxane) (pV3D3) (Jang et al., 2019; Jang
J. et al., 2018a), have demonstrated their promising application
in flexible memristive devices and arrays. By employing wafer-
scale ultraviolet photolithography technology, a silk fibroin-based
memristive array was successfully fabricated on a parylene-C film
with robust flexibility (Kook et al., 2020). The fabricated
memristive crossbar array shows robust flexibility (bendable to
a radius of 1.3 mm) and reliable electrical performance
(Figure 2D). With the utilization of initiated chemical vapor
deposition (iCVD) approach, Jang et al. demonstrated a flexible
memristive crossbar array with a copper (Cu)/pV3D3/aluminum
(Al) structure for in-memory logic computing (Jang et al., 2018a).
Each memristive unit in the array is connected to one selector to
construct the one-selector–one-memristor (1S1M) architecture
to alleviate the leakage current of the array. Typical logic
operations such as NOT and NOR, were successfully
implemented in the flexible pV3D3-based memristive crossbar
array (Figures 2E,F).

Although organic materials often show excellent
flexibility, the chemical stability of most organic materials
is usually poor. The inferior chemical stability hinders the
practical application of flexible organic memristive devices
and arrays, e.g. medical equipment typically need to
withstand a high temperature of 121°C during steam
sterilization (Kuribara et al., 2012). In addition, the
implementation of large-scale memristive arrays leads to
inevitable heat dissipation, which further affects the
reliability and stability of organic materials. Among
various organic materials, copper phthalocyanines have
been intensively explored due to their reliable chemical
and thermal stability (Choi et al., 2008; Lv et al., 2019;
Wang et al., 2016b; Wang et al., 2017; Zhou et al., 2021).
Recently, as shown in Figures 2G,J. Zhou et al. reported a
highly chemically and thermally stable flexible memristive
array by using monochloro copper phthalocyanine (ClCuPc)
materials (Zhou et al., 2021). Benefitting from the intrinsic
high thermal stability of CuPc and the further improvement
of air stability caused by chlorination, the fabricated
memristive device could exhibit reliable resistive switching
behavior at 300°C. Typical synaptic behaviors, such as PPF,
paired-pulse depression (PPD), and spike-rate-dependent
plasticity (SRDP), have been implemented in ClCuPc-
based memristive devices. Furthermore, a 7 × 7 memristive
crossbar array was constructed based on the ClCuPc
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memristive synapses, which was used to implement in-
memory computing for game Tetris.

Apart from weak thermal stability, most organic materials are
vulnerable to moisture, making organic-based memristive devices
and arrays hard to maintain stable performance in a humid
environment (Lee et al., 2020; Yuan et al., 2021). For instance,
commonly reported organic memristive devices based on
chitosan (Hosseini and Lee, 2015), pectin (Xu et al., 2019),
perovskite materials (Hwang and Lee, 2017), and glucose
(Park et al., 2018) usually exhibit poor water-resistance, and
even water soluble. Hence, it is necessary to develop water-
resistance organic flexible memristive devices and arrays for
harsh environments (Lee et al., 2015). Lee et al. recently
reported a flexible nitrocellulose-based memristive array with
high water-resistance and mechanical flexibility (Lee et al., 2020).
The fabricated memristive devices could exhibit reliable electrical
switching behaviors after submersion in phosphate-buffered
saline solution, artificial perspiration, and deionized water

(Figures 2H,I). Moreover, the flexible memristive devices
showed stable operations under the bending state with a
radius of 10 mm (Figure 2J).

Flexible Two-Dimensional Material
Memristive Arrays
In addition to inorganic and organic materials, 2D materials
have recently received extensive attention due to their unique
structural characteristics, good mechanical flexibility, and
excellent electrical properties (Kim et al., 2021a; Meng
et al., 2021). Plenty of 2D materials such as graphene (Sun
et al., 2017), transition metal dichalcogenides (TMD) (Feng
et al., 2019; Zhao et al., 2018) and boron nitride (BN) (Ge et al.,
2021; Qian et al., 2017; Siddiqui et al., 2017) have been well
studied for flexible memristive arrays. For example, Wang et al.
reported a flexible memristive array with the graphene/
MoS2–xOx/graphene structure, which has good mechanical

FIGURE 3 | Flexible two-dimensional material memristive arrays. (A) The schematic of graphene/MoS2–xOx/graphene-based device (Wang et al., 2018a). (B) The
performance of the fabricated memristive device after 1,200 bending cycles at a radius of curvature of 1 cm (Wang et al., 2018a). (C) The schematic of BN-based
memristive device (Meng et al., 2021). (D) The realization of in-memory digital computing with BN-based memristiors (Meng et al., 2021). (E) The schematic of a
memristive crossbar array with a structure of Ag/h-BN/graphene/h-BN/Au (Sun et al., 2019). (F) The fabricated self-selective 12 × 12 memristive array (Sun et al.,
2019). (A, B). Reproduced with permission. Copyright 2018, Springer Nature. (C, D). Reproduced with permission. Copyright 2021, Royal Society of Chemistry. (E, F).
Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International License. (A, B). Reproduced with permission. Copyright 2018, Springer
Nature. (C, D). Reproduced with permission. Copyright 2021, Royal Society of Chemistry. (E, F). Reproduced under the terms of the CC-BY Creative Commons
Attribution 4.0 International License.
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property and fabulous thermal stability (Figure 3A) (Wang
et al., 2018a). The fabricated memristive device could exhibit
reliable electrical performance after 1,200 bending cycles at a
radius of curvature of 1 cm (Figure 3B). Recently, a flexible
BN-based memristive array for in-memory computing was
developed (Figure 3C) (Meng et al., 2021). The fabricated
flexible BN-based memristive devices realized both in-memory
digital and analogue computing, breaking the limitation
caused by the difference in information form between
digital data and analog data. The flexible memristive devices
could implement FALSE,material implication (IMP) and
NAND operations for in-memory digital computing
(Figure 3D). In addition, the flexible memristive devices
could also be used to realize the synaptic plasticity such as
PPF, LTP/LTD and spike-timing-dependent plasticity (STDP)
for in-memory analogue computing. Sneak current in the array
is one of the primary issues limiting the high-density
integration of memristive crossbar arrays. To solve this
issue, Sun et al. developed a flexible self-selective
memristive device based on a van der Waals heterostructure
with the hexagonal boron nitride (h-BN)/graphene/h-BN
structure (Figure 3E) (Sun et al., 2019). The middle
graphene layer enables the volatile and non-volatile resistive
behaviors in the same device, resulting in the self-selective
effect. Based on the self-selective devices, a 12 × 12 memristive

crossbar array was built, showing a promising application on
future data storage in wearable artificial intelligence
(Figure 3F).

STRETCHABLEMEMRISTIVE ARRAYS FOR
IN-MEMORY COMPUTING

Apart from flexibility, the memristive array needs to be
stretchable in scenarios such as e-skin and wearable devices.
Developing stretchable electronics is highly contingent on the
materials innovation and structural design.

Materials Innovation for Stretchable
Memristive Arrays
Developing novel materials with ideal electrical and mechanical
properties is an effective way to obtain stretchable memristive
arrays. Recently, a stretchable SrTiO3−x-based memristive
crossbar array was successfully fabricated on a PDMS
substrate via thin film deposition process (Rahman et al.,
2018). In addition, a stretchable Ag2S thin film-based
memristive array has also been developed (Figure 4A) (Jo
et al., 2021). The solution-processed Ag2S film demonstrated
excellent mechanical properties and could withstand a strain of

FIGURE 4 | Stretchable memristive array with materials innovation for in-memory computing. (A) The schematic of the PI/Ag/Ag2S/Al/PI-structured stretchable
memristive array (Jo et al., 2021). (B) The wearable healthcare-monitoring device integrated with Ag2S-based stretchable memristive devices (Jo et al., 2021). (C) The
implementation of the MIG logic with the memristive device (Lu et al., 2021). (D) The stretchable memristive crossbar array with a resistive switching layer of composite
material (TPU: Ag NPs) under stretching strain (Yang et al., 2018). (E) Synaptic potentiation and depression characteristics under stretching strain (Yang et al.,
2018). (A, B). Reproduced with permission. Copyright 2021, Wiley-VCH. (C). Reproduced with permission. Copyright 2021, Wiley-VCH. (D, E). Reproduced with
permission. Copyright 2018, Royal Society of Chemistry.
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14.9%. Based on the stretchable memristive devices, a wearable
self-powered healthcare-monitoring system was successfully
constructed (Figure 4B).

In contrast to inorganic materials, organic materials have
inherent advantages in terms of lighter weight and better
stretchability, thus they are more appropriate for realizing
stretchable electronics (Fu et al., 2019; Yuan et al., 2021).

Organic-based stretchable memristive devices such as PDMS/
carbon nanotubes (CNTs)/maltoheptaose-block-polyisoprene
(MH-b-PI)/Al (Hung et al., 2017) and Cu@GaIn/PDMS/Cu@
GaIn (Lu et al., 2021) have been extensively studied. For instance,
Lu et al. successfully demonstrated stretchable and twistable
PDMS-based memristive devices for in-memory digital
computing (Lu et al., 2021) (Figure 4C). On the basis of

FIGURE 5 | Stretchable memristive array with structural design for in-memory computing. (A) Schematic of the in-memory computing system integrated with
memristive crossbar array via the island-structure strategy (Kim et al., 2021b). (B) Schematic of the memristive crossbar array with a discrete structure (Wang et al.,
2021b). (C) Schematic of the HfO2-based memristive array constructed on the PDMS substrate with a wavy structure (Wang et al., 2020a). (D) The resistive switching
behavior of the HfO2-based memristor under the strain of 0–20% (Wang et al., 2020a). (E) Schematic of the wearable human-machine interfaces integrated with a
IZO nanomembrane-based memristive array (Sim et al., 2019). (F) The diagram of the serpentine-structured memristor (Sim et al., 2019). (A). Reproduced with
permission. Copyright 2021,Wiley-VCH. (B). Reproduced with permission. Copyright 2021,Wiley-VCH. (C, D). Reproduced with permission. Copyright 2020, IEEE. (E,
F). Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International License.
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majority-inverter graph (MIG) logic, the fabricated stretchable
memristive devices realized a one-bit full adder for digital
computing.

Despite great progress has been made in organic materials,
stretchable organic-based devices cannot offer reliable resistive
switching properties. In the light of this, researchers attempt to
exlpore novel materials that have both the good electrical
characteristic of inorganic substances and the excellent
stretchability of organic substances (Yang et al., 2018; Yi et al.,
2019). Recently, by employing Ag nanoparticle-doped
thermoplastic polyurethanes (TPU: Ag NPs) as the resistance
switching material, Yang et al. demonstrated a stretchable
memristive crossbar array constructed on a PDMS substrate
for in-memory computing (Yang et al., 2018). The stretchable
memory cell of the fabricated array implemented synaptic
plasticity under stretching strain (Figures 4D,E).

Structural Design for Stretchable
Memristive Arrays
Besides material innovation, designing a specific structure to
withstand applied strain is another powerful approach for
stretchable memristive arrays. Over the years, researchers have
developed various effective structures, such as wave, island and
serpentine-shaped, to enhance the stretchability of the system. Using
an island-structure strategy, a stretchable in-memory computing
system was developed by embedding rigid TiO2-based memristive
units into soft interconnects (Kim et al., 2021b) (Figure 5A).
Benefitting from this structure, the fabricated in-memory
computing system could exhibit reliable electrical performance
under a strain of 25%. The TiO2-based memristive array in the
system was used to implement artificial neural network for learning
and inferencing. A stretchable HfO2-based memristive array with
excellent damage endurance has also been demonstrated by using
the island structure (Wang et al., 2021b). Moreover, eachmemristive
unit in the stretchable array is also consisted of many discrete HfO2-
based sub-units (Figure 5B). This discrete structure enables the
stretchable memristive device to have a large stretchability of 40%
strain and good mechanical damage endurance.

Apart from the island-structure, the wavy-structure has also been
developed to design stretchable memristive devices. Based on this
strategy, stretchable HfO2-based memristive devices were recently
developed by directly laminating the Cu/HfO2/Au/PI film onto a pre-
stretching PDMS substrate (Wang et al., 2020a). After releasing the
pre-stretching substrate, wavy-structured memristive devices were
formed (Figure 5C). The structure could significantly improve the
stretchability of HfO2-based memristive devices, exhibiting reliable
switching characteristics up to 20% strain (Figure 5D).

Moreover, the mechanical flexibility of the system can also be
effectively improved by configuring the system as a serpentine
structure. Based on the serpentine-shaped configuration, a
stretchable wearable device integrated with indium zinc oxide
(IZO) nanomembrane-based memristive array was developed,
where the Au electrode was made into a serpentine shape
(Figure 5E) (Sim et al., 2019). Owing to the serpentine-shaped
metal electrode (Figure 5F), the memory cell can be isolated from
the strain under mechanical contortion, so that the system could

exhibit stable electrical performance under 30% stretching strain.
These structural designs can significantly enhance the mechanical
flexibility of the rigid memristive array, providing a promising way
to extend current stretchable memristive devices and arrays.

PERSPECTIVES

In the past few years, emerging manufacturing processes, material
innovation and structural design have brought about the rapid
progress of flexible and stretchable memristive crossbar arrays,
providing opportunities for the realization of high-speed and
energy-efficient information processing in e-skins, soft robotics,
and wearable and implantable systems. Despite great progress has
been made on flexible and stretchable memristive devices in recent
years, highly reliable memristive arrays that could be used to
implement in-memory computing are still challenging. We will
briefly highlight several critical challenges in the following
paragraphs.

Device reliability Compared to the traditional silicon-based
devices, the main drawbacks of flexible and stretchable
memristive arrays are poor performance and uncontrollable
manufacturing processes. Most of the research focuses on the
manufacture of memristive device prototypes, especially
memristive devices based on organic and two-dimensional
materials, while ignoring the optimization of device performance.
The unreliability of memristive devices significantly deteriorates the
computational accuracy of in-memory computing. It is imperative to
explore new memristive devices with reliable resistive switching
behaviors and good mechanical flexibility.

Array integration The realization of flexible and stretchable in-
memory computing system relies on the configuration of the
memristive crossbar array. Similar to the case of silicon-based
memristive array, the notorious sneak current effect in the
passive array limits the large-scale integration of flexible and
stretchable memristive array. The common transistor selection
devices used to solve the sneak current in the silicon-based
memristive array do not meet the requirement of flexible and
stretchable electronics. It is urgent to develop highly flexible and
stretchable transistors or other new selection devices to enable large-
scale array integration. In addition, the large-scale memristive
crossbar array will inevitably produce parasitic resistance and
capacitance, due to the conductivity of the materials and the
parallel plate capacitor effect. These parasitic effects of the array
directly affect the accuracy and operating speed of the in-memory
computing. It is essential to optimize the architecture of the flexible
and stretchable memristive arrays to alleviate the parasitic effects.

System integration Apart from the core memristive crossbar
array, a fully flexible and stretchable in-memory computing system
requires complex peripheral circuits that control the input/output of
the array and sequential operations of the system. Although there
has been great progress on flexible chips using advanced flexible
fabrication process, the functionality and reliability of current flexible
circuits are still insufficient. Recently, a flexible hybrid integration
strategy has been proposed, which makes an attempt to combine
conventional silicon-based circuits and flexible/stretchable
components into one system. Based on this strategy, highly
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reliable and powerful silicon-based peripheral circuits could be
integrated into a flexible and stretchable system to control the
memristive crossbar array for information processing.

SUMMARY

With the popularization of information technology, data
computing in flexible and stretchable intelligent systems is
increasingly important. The implementation of in-memory
computing based on memristive arrays provides a high-speed
and energy-efficient approach to execute data computing for
flexible and stretchable systems. In this review, we
summarized the recent progress on flexible and stretchable
memristive arrays, focusing on resistive switching materials,
structure configuration, and computational implementation.
The current challenges and future prospects of flexible and
stretchable memristive arrays for in-memory computing are

further discussed. Finally, we hope that the flexible and
stretchable memristive array can efficiently implement
processing-in-memory in emerging flexible intelligent
electronics.
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