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In recent years, the high cost and availability of energy sources have boosted the

implementation of strategies to obtain different types of renewable energy.

Among them, methane contained in biogas from anaerobic digestion has

gained special relevance, since it also permits the management of a big

amount of organic waste and the capture and long-term storage of carbon.

However, methane from biogas presents some problems as energy source: 1) it

is a gas, so its storage is costly and complex, 2) it is not pure, being carbon

dioxide themain by-product of anaerobic digestion (30%–50%), 3) it is explosive

with oxygen under some conditions and 4) it has a high global warming

potential (27–30 times that of carbon dioxide). Consequently, the

conversion of biogas to methanol is as an attractive way to overcome these

problems. This process implies the conversion of both methane and carbon

dioxide into methanol in one oxidation and one reduction reaction,

respectively. In this dual system, the use of effective and selective catalysts

for both reactions is a critical issue. In this regard, nanomaterials embedded in

metal organic frameworks have been recently tested for both reactions, with

very satisfactory results when compared to traditional materials. In this review

paper, the recent configurations of catalysts including nanoparticles as active

catalysts and metal organic frameworks as support materials are reviewed and

discussed. The main challenges for the future development of this technology

are also highlighted, that is, its cost in environmental and economic terms for its

development at commercial scale.

KEYWORDS

biogas, metal organic framework, methanol, nanoparticles, carbon dioxide, carbon
storage, energy storage

OPEN ACCESS

EDITED BY

Dr. Surender Kumar,
Advanced Materials and Processes
Research Institute (CSIR), India

REVIEWED BY

Dr. Swati Dubey,
Samrat Ashok Technological Institute,
India
Viplov Chauhan,
Jawahar Navodaya Vidyalaya,
Aurangabad, India
Archana Charanpahari,India
Divyaratan Kumar,
Linköping University, Sweden

*CORRESPONDENCE

Antoni Sánchez,
antoni.sanchez@uab.cat

SPECIALTY SECTION

This article was submitted to
Nanotechnology for Energy
Applications,
a section of the journal
Frontiers in Nanotechnology

RECEIVED 05 August 2022
ACCEPTED 26 September 2022
PUBLISHED 11 October 2022

CITATION

Sánchez A (2022), Biogas improvement
as renewable energy through
conversion into methanol: A
perspective of new catalysts based on
nanomaterials and metal
organic frameworks.
Front. Nanotechnol. 4:1012384.
doi: 10.3389/fnano.2022.1012384

COPYRIGHT

© 2022 Sánchez. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Nanotechnology frontiersin.org01

TYPE Review
PUBLISHED 11 October 2022
DOI 10.3389/fnano.2022.1012384

https://www.frontiersin.org/articles/10.3389/fnano.2022.1012384/full
https://www.frontiersin.org/articles/10.3389/fnano.2022.1012384/full
https://www.frontiersin.org/articles/10.3389/fnano.2022.1012384/full
https://www.frontiersin.org/articles/10.3389/fnano.2022.1012384/full
https://www.frontiersin.org/articles/10.3389/fnano.2022.1012384/full
https://www.frontiersin.org/articles/10.3389/fnano.2022.1012384/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fnano.2022.1012384&domain=pdf&date_stamp=2022-10-11
mailto:antoni.sanchez@uab.cat
https://doi.org/10.3389/fnano.2022.1012384
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://doi.org/10.3389/fnano.2022.1012384


Introduction

In last years, the recent increase in the cost and scarcity of

traditional energy sources has boosted the interest in renewable

energy sources. Among them, anaerobic digestion of organic

waste has gained especially interest among researchers, public

administrations, and private companies (Lora Granado et al.,

2017). The main advantages of anaerobic digestion are the

worldwide availability of organic wastes and the low

environmental impact of this technology when compared with

other management strategies such as landfill (Mondello et al.,

2017) and even composting, especially in energy terms (Colón

et al., 2012).

Anaerobic digestion is a natural process that results in the

production of biogas that can be a useful source of renewable

energy. The production of methane from biogas has been

reviewed from the point of view of operational strategies

(Komilis et al., 2017) and the use of additives to increase

the amount of biogas and its content in methane (Barrena

et al., 2022). Methane, being the major component of natural

gas, is a useful renewable source of energy when it comes from

biogas. However, methane, to be used, presents several

challenges: 1) being a gas, its storage requires high

volumes, 2) it is not pure, being carbon dioxide the main

by-product of anaerobic digestion (30%–50%), with other

tracer gases like nitrogen or hydrogen, which are not a

problem for biogas uses, being the most dangerous and

undesirable hydrogen sulphide (Yuan Chen et al., 2015;

Wang et al., 2019; Vu et al., 2022) 3) it is explosive and

flammable with oxygen under some specific conditions, which

are relatively low concentrations of methane (within 9%–

15%), although other factors such as the geometry of

pipelines is crucial (Kundu et al., 2016) and 4) it has a high

global warming potential (27–30 times of that of carbon

dioxide, approximately) (USEPA, 2022). Another point

important to mention is that the contents of biogas and the

relative percentage of its main gases (methane and carbon

dioxide) can change as a result of the waste composition

(Herout et al., 2011), the conditions of anaerobic digestion

(Sołowski, 2022) and the use of some additives (Cerrillo et al.,

2021). All these factors must be carefully considered when

methane and carbon dioxide are intended to be transformed

into methanol.

To overcome these problems, several strategies have been

proposed, but the only one that can give a positive solution to all

these challenges in the full conversion of biogas (including

methane and carbon dioxide) into methanol (Figure 1).

Methanol is liquid at ambient conditions, easy to transport

and use as source of energy and a starting chemical for the

synthesis of other more complex organic materials (Zhang et al.,

2019; Pawelczyk et al., 2022).

However, the conversion of the main compounds of biogas

into methanol is not straightforward. On one hand, it implies the

oxidation of methane to methanol, an exothermic oxidation

reaction that needs very selective catalysts to avoid the

formation of typical undesirable by-products from the

combustion of methane: carbon dioxide and carbon monoxide

(Zacaria and Kamarudin, 2016). One the other hand, the

conversion of carbon dioxide to methanol is a hydrogen

consuming reduction that needs effective catalysts that

provide mild conditions in terms of temperature and pressure

to be profitable in terms of economic cost and environmental

FIGURE 1
General perspective of the possible uses of biogas from anaerobic digestion including direct combustion, upgrading to natural gas, and
conversion to methanol.
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impact, although the reaction is thermodynamically favourable

(Zain and Mohamed, 2018). Finally, biogas is not pure, as it

contains some compounds that could harm the catalyst,

especially hydrogen sulphide (Wang et al., 2019).

The main objective of this paper is to give a general

perspective of the overall conversion of biogas to methanol.

Methanol can be used as a source of renewable energy that

can be easily stored, transported and used, which gives it

important advantages when compared to biogas. However,

there are several shortcomings and challenges that hampers

the implementation of this conversion, especially at full

scale. This paper compiles the main advances and

challenges in the development of new catalysts based on

nanoparticles (NP) immobilized in metal organic

frameworks (MOF) to improve the conversion of biogas

to methanol.

Chemical reactions

Oxidation of methane to methanol

Conversion of methane into methanol can be achieved

through two different routes. The indirect route is a two-step

process: 1) partial oxidation or steam reforming of methane to

syngas (CO + H2) and 2) catalytic conversion of syngas to

methanol. It is known that the steam reforming step is an

endothermic reaction (ΔH298K
0 = +206.2 kJ·mol−1), therefore,

this process is extremely energy demanding. To overcome this

problem, the direct route based on the conversion of methane to

methanol at low temperature has been recently explored (Xie

et al., 2018).

Partial oxidation of methane is an energy-saving process

that converts methane to partially oxidized compounds such

as methanol, formic acid or formaldehyde. This route is

thermodynamically favorable and uses oxygen as oxidant

(Eq. 1). Although oxygen is the oxidant used in practically

all the cases, water vapor at high temperature and pressure has

been also explored (Khirsariya and Mewada, 2013).

2CH4+O2→ 2CH3OH ΔG0
298K � −223 kJmol−1 (1)

Regarding this direct route, different works have been

published regarding its main drawback: overoxidation of

methane to carbon monoxide and/or carbon dioxide. The

main strategies involve the use of selective catalysts such as

different types of zeolites working at low temperature

resulting in moderate conversions (Tomkins et al., 2017) and

the activation of methane in a liquid phase using H2O and H2O2

as oxidants (Hammond et al., 2012; Sushkevich et al., 2017).

However, as explained later, selected NP and MOF offer a

promising alternative for the direct route to convert methane

into methanol, with high selectivity.

Reduction of carbon dioxide to methanol

Carbon capture and utilisation has the objective to transform

carbon dioxide into useful products such as chemical feedstock

and renewable fuels (Saeidi et al., 2021). Specifically, this paper

focuses on the catalytic hydrogenation of carbon dioxide, since it

is considered as the most used and simplest process (Li and

Tsang, 2018). Several chemical products can be obtained from

carbon dioxide hydrogenation, being methanol the most

common. In the past decades, several routes have been

proposed and industrially exploited for the synthesis of

methanol using heterogeneous catalysts such as Cu, Cr, and

Zn oxides, which typically need high pressure and low

temperature (Ertl et al., 2008), Currently, the Cu/ZnO/Al2O3

catalyst is the most used material for the conversion of carbon

dioxide to methanol.

The hydrogenation of carbon dioxide to methanol consists of

two main competing reactions. The first is the methanol

synthesis from carbon dioxide and hydrogen (Eq. 2):

CO2+3H2 → CH3OH +H2O ΔH0
298K � −49.5 kJmol−1 (2)

The second reaction is the reverse water-gas shift reaction

that produces carbon monoxide (Eq. 3):

CO2+H2 → CO +H2O ΔH0
298K � −41.2 kJmol−1 (3)

Furthermore, catalytic hydrogenation of carbon dioxide to

methanol can also occur indirectly from carbon monoxide

formed through the previous reaction (Eq. 4).

CO + 2H2 → CH3OH ΔH0
298K � −90.6 kJmol−1 (4)

As observed, the increase of pressure and the decrease of

temperature will shift the reaction towards the products.

Among the different options of catalyst, copper is

economically favourable. For the methanol synthesis through

the hydrogenation of carbon monoxide and carbon dioxide,

special emphasis on copper metal acting as the active phase

and zinc oxide as the active promoter has been reported (Álvarez

et al., 2017). This catalyst reduces the pressure up to 50–100 bar,

while methanol selectivity is around 50%. In fact, bimetallic

catalysts permit a change in the adsorption properties of

metal surfaces, leading to an improved catalytic yield (Li and

Tsang, 2018). Other examples of catalysts such as Pd-Zn and Pd-

Ga (Collins et al., 2012) or Cu-Ni and Ga-Ni (Studt et al., 2014)

have been proposed. Among them, Pd-Zn based catalysts can act

as an unusually high kinetic barrier for Eq. 2 under low pressure

conditions (20 bar). Another important issue in this conversion

is the catalytic yield. To obtain acceptable values, several types of

supports are used to increase the adsorption capacity of the active

surfaces and to increase the surface area. Regarding supports,

capping agents are probably the most used (Javed et al., 2020)

with abundant examples of zeolite, activated carbon and alumina

(Choi et al., 2009; Alonso et al., 2017; Carrasco-García, 2022).
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At the same time, carbon dioxide presents two points that

make its conversion into methanol less favourable than that

of methane: 1) it has a much lower global warming

potential, 2) biogas contents more methane than carbon

dioxide and 3) chemically, its conversion presents less

favourable conditions and needs hydrogen. Therefore, a

rigorous sustainable assessment (environmental and

economic) should be performed to consider the entire

conversion of biogas into methanol or the sole conversion

of methane.

Integration of both reactions

Figure 2 explains a proposal for the integrated conversion of

biogas to methanol, including all the required steps. Although the

core of Figure 2 is the conversion of biogas into methanol using

NP and MOF and will be discussed in the next point, two other

pretreatment steps should be highlighted.

The first one is not represented and Figure 2 and may be

optional, but it is critical for the next catalytic steps. A

problem often not considered is the presence of water

vapour in biogas. Although not being a product of

anaerobic digestion of organic waste, biogas can be easily

water-saturated (Petersson and WellinGer, 2018). The

removal of water from the biogas stream can be easily

achieved by cooling, compression, absorption or

adsorption. This removal is critical because of several

reasons: water may condensate in gas pipelines and cause

corrosion, it causes damage to the catalysts and supports, it

participates in some secondary reactions, thus altering

kinetics and possible equilibria, and it hampers some

biogas upgrading strategies (Duran et al., 2018).

Removal of biogas contaminants

The second important pretreatment is the removal of

hydrogen sulphide from biogas. Hydrogen sulphide is

inherently produced in the anaerobic digestion of organic

waste (Vu et al., 2022) and it is a problematic impurity that

can inhibit methanogenesis and cause equipment corrosion.

Regarding the catalytic conversion of biogas to methanol,

hydrogen sulphide and, in general, sulphur compounds, are

one of the main chemicals provoking the poisoning of

heterogeneous catalysts (Wachter et al., 2021). Traditionally,

the use of iron-based formulations have been used for the

total and partial removal of hydrogen sulphide in biogas

(Magnone et al., 2018; Persson et al., 2021). However,

emerging strategies using other approaches have been recently

published. They are summarized in Table 1, where adsorption

and biological treatments are predominant. It also worthwhile to

mention that studies from various groups are focused on other

detrimental gases found in biogas such as siloxanes (Yang and

Corsolini, 2019; Piechota, 2021).

In general, all these strategies presented need to be carefully

considered, as the effect of hydrogen sulphide on sophisticated

high-cost catalyst based on NPs and MOF can limit the

implementation of the entire process (Figure 2).

New catalysts: Nanoparticles and
metal-organic frameworks

Traditional catalysts

Zeolite, in its different configurations, has been the

traditional catalyst used in the conversion of methane and

FIGURE 2
Proposal for the integrated conversion of biogas to methanol, including biogas purification and sequential conversion of methane (oxidation)
and carbon dioxide (reduction) to methanol.
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carbon dioxide to methanol. In 1997, Kudo and Ono investigated

the catalytic activity of ZSM-5 as the first zeolites used for the

partial oxidation of methane (Kudo and Ono, 1997). The

maximum selectivity for methanol was not more than 10%

and the major product of the catalysis was carbon dioxide

with a selectivity of more than 80% at 0.01 bar methane

partial pressure and 600°C–700°C after 1 h. Afterwards, over

the last decade, copper-exchanged zeolites are the ones that have

been more extensively studied (Zhu et al., 2020; Yu et al., 2021).

In this case, and although better results have been obtained in

terms of conversion and selectivity (more than 90% in both

parameters), a major issue is the use of high temperatures up to

600°C (Michalkiewicz, 2004).

Methane to methanol

It is important to mention that, in this reaction, the use of

nanomaterials has been widely reported without using MOF as

support material. In this sense, zeolite and graphene have been

the most widely used supports, apart from MOF (Lewis et al.,

2019; Wang et al., 2022). With these supports, some excellent

results in terms of conversion and selectivity have been obtained,

although graphene and graphene oxide are the most promising

ones (Impeng et al., 2014; Impeng et al., 2015; Shan et al., 2017;

Sahoo et al., 2018; Yuan et al., 2018; Chang et al., 2020;

Sirijaraensre and Limtrakul, 2022).

The hypothesis on which these results rely is the fact that these

supports can mimic methane monooxygenases, which is also the

case of MOF. Methane monooxygenases from methanotrophic

bacteria convert methane to methanol under ambient conditions

due to their ability to control the transport of oxygen andmethane to

the active site. In fact, hydrophobic cavities in methane

monooxygenases act as an access gate to oxygen and methane in

their way to the active site via a hydrophobic passage. Then, the

activation of the oxygen in the metal centre of the monooxygenase

proteins leads to the formation of an oxidative intermediate being

able to perform the cleavage of the strong C-H bonds of methane

(Sirajuddin and Rosenzweig, 2015). When these enzymes rearrange

their conformation, cavities dissociate from each other resulting in

the blockage of the hydrophobic passage and consequently

restricting back diffusion and overoxidation of methanol while

simultaneously opening separated hydrophilic pores for methanol

to be released. This biological system has an extraordinary high

selectivity to methanol and permit the control of mass transfer to

and from the active sites. Therefore, it can be concluded that the

presence of a hydrophobic cavity in the proximity of catalytic sites

could lead to a higher affinity towards methane than methanol

(Ikbal et al., 2019).

In Table 2, a summary of some representative studies recently

reported with the combined use of NP and MOF for the conversion

of methane into methanol is presented. Table 2 is not an exhaustive

compilation of the totality of papers published on this topic, since

each month new materials appear. However, it is useful for the

reader to have a general perspective about the main materials used

and their main challenges for a full implementation:

1) There is a wide diversity of materials used, both for NP and

MOF. In the case of NP, it is important to note that noble

metals can be substituted by low-cost metals such as Cu and

Fe, an important issue when comparing with traditional

catalysts. In the case of MOF, these are complex structures,

which requires laborious synthesis protocols and a rigorous

MOF characterization to have reproducible and reliable

materials (Rogge et al., 2021).

2) Apart from the products coming from the overoxidation of

methane, other side products can be obtained, such as ethanol

or acid acetic (Xia et al., 2022), Obviously, the formation of

these compounds decreases the selectivity towards methanol;

however, they can also be considered products of interest.

3) Reactions conditions are variable, but generally in the mild

range: temperature ranges between 50°C and 200°C and there

TABLE 1 Compilation of some recent strategies for the removal of hydrogen sulphide from biogas.

References Strategy H2S removal

Su and Hong (2020) Photocatalytic UV module with TiO2 coated light-expanded clay ≥99%

Gasquet et al. (2021) Sewage sludge ash with activated carbon 10%–50%

Okonkwo et al. (2020) Sterically hindered amine adsorbents ≥99%

Bahraminia et al. (2020) Ion-exchanged nanostructured zeolite for fueling solid oxide fuel cells ≥90%

Thanakunpaisit et al. (2017) Laterite materials as adsorbent ≥90%

Díaz et al. (2010) Pure oxygen, air and nitrate as oxidant reactives directly supplied to the biodigester ≥99%

Das et al. (2022) Simultaneous removal of H2S and NH3 in hollow fibre membrane bioreactors ≥99%

López et al. (2016) Aerobic biotrickling filter through a multi-step oxidation mechanism ≥90% (at very high concentrations of 2000–10000 ppmv)

Andreides et al. (2021) Microaerobic sequencing batch reactor ≥90%

Montebelo et al. (2022) Aerobic and anoxic biotrickling filters ≥90% (depending on the loading)

Kumar Gupta et al. (2022) Metal-organic framework-derived NaMnxOy hexagonal microsheets Practically 100% at high concentrations
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are some works performed at atmospheric pressure. The

maximum pressure is around 20 bar. This presumes an

important economic issue, with some research focused on

it. For instance, Hall and Bollini (2020) performed the

reaction using tri-iron nodes in a MOF material at low

temperatures (between 100°C–200°C) and even sub-

ambient pressures. Room temperature has been also

successfully checked with the help of photocatalysis (An

et al., 2022).

4) MOF can catalyst the reaction without NP, which is an

unexpected result that needs further research (Imyen et al.,

2020). Apart from the obvious role of MOF as a support of NP

to anchor the active site and to permit the diffusion of

reactants and products, the conclusion is that a control

with only MOF is necessary. However, no information

about the mechanisms of this effect of MOF has been

found in literature.

5) Mechanisms are not often clear, but the hypothesis of

hydrophobic cavities are suggested in some studies.

In summary, catalysts based on NP and MOF seem to be

a very promising option when compared to traditional ones

in terms of conversion and selectivity. However, all the

studies consulted are carried out at lab scale, with some

milligrams of MOF (Table 2). It is mandatory to scale-up the

synthesis of MOF. Another important point that is not often

considered is the long-term operation of these novel

catalysts and their reuse, two critical points that also

needs further research.

Carbon dioxide to methanol

In this case, the number of studies is more limited. It is

evident that, thermodynamically, this reaction is not

favourable unless high pressures of hydrogen are used.

Moreover, in kinetic terms, the possibilities of other

secondary reactions is highly-dependent on the conditions

used. In Table 3, some works reported for the conversion of

carbon dioxide into methanol with the combined use of NP

and MOF are presented. Again, the main conclusions that can

be extracted from Table 3 are:

1) In general, the number of works published is much lower than

those related to conversion to methane to methanol, which

implies that the diversity of materials used for both NP and

MOF synthesis in relatively scarce. Among them, Pt, Cu, and

TiO2 are the main NP used, whereas most of the MOF are

based on Zr.

2) There are some important variations of the catalyst process.

For instance, not all the studies are carried out in gas phase,

having aqueous solution and dissolved products a relative

presence. Moreover, photocatalytic processes (visible light)

are practically the half of the recent studies.

3) Efficiency is typically high but selectivity presents a feature

that is worthy to mention. In some works, selectivity does not

reach values higher than 90%, but the cause is that other

products of interest apart from methanol are also the

objectives of the study. This is the case of formic acid,

formaldehyde, ethanol, and methane, among others in less

proportion.

4) Contrarily to the conversion of methane to methanol, there

are scarce references on the mechanisms of these reactions,

especially in the case of gas-phase conditions. For instance,

Duma et al. (2022) reports the results using copper-zinc

bimetallic catalysts supported on a Zirconium-based MOF,

where using advanced techniques they revealed the

presence of copper active sites after impregnation and

thermal activation. In general, research is clearly focused

on having highly active sites to destabilize the molecules of

carbon dioxide and hydrogen, where Ni, Co, Ru, Rh, and

Pd are the most used materials (Cheng et al., 2021). To my

knowledge, the most complete mechanism to date for the

conversion of carbon dioxide to methanol/ethanol

TABLE 2 Methane to methanol processes using nanoparticles and MOF.

References Nanoparticle and metal-organic
framework

Conversion/selectivity (%)

Osadchii et al. (2018) Fe atoms in Al-based MOF Both very high (>90%)

Ren et al. (2021) Cu oxides clusters in UiO-bpy channels Both very high (>90%)

Xia el al. (2022) Pt and polyoxometalate in UiO-67 MOF High (>90%)/low (17%)

Yang el al. (2019) Ir in Cu-BTC MOF Both very high (>90%)

Xu et al. (2021) Au-Pd nanoparticles in ZIF-8, Zn (2-methylimidazole) Both high (>80%)

Baek et al. (2018) Cu in MOF-808 using different ligands Both high (>90%) depending on the ligand

Ikuno et al. (2017) Cu-Oxo dimers in NU-1000 MOF High (>90%)/medium (47%)

Hall and Bollini (2020) Fe2+ active sites in MIL-100 MOF Both very high (>90%)

Imyen et al. (2020) No NP, simultaneous MOF and zeolites (Fe-ZSM-5@ZIF-8) Both very high (>90%)

Frontiers in Nanotechnology frontiersin.org06

Sánchez 10.3389/fnano.2022.1012384

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2022.1012384


mixtures is presented by An et al. (2019) using Cu NP on a

zirconium-based MOF. In this case, a complete mechanism

is presented: the catalytic cycle is likely to proceed via

bimetallic oxidative addition to activate hydrogen followed

by hydrogenating carbon dioxide to methanol, and then

coupling of methanol and formyl species to form

C2 oxygenates. In other different conditions, MOF can

be employed for the electrochemical reduction of carbon

dioxide to methanol, where redox electrocatalysts is used

to lower the kinetic barriers and give the higher reaction

efficiency. In this case, MOF are hybrid materials that are

made up of three components: a metallic component, pore

space and the organic linker, which are the sites attributed

to the catalytic activity of the MOF (Fayez Nasir et al.,

2018).

5) Working conditions are mild. Temperature from 80°C to

200°C are reported, whereas pressure is around 5–10 bars.

To sumup, the use ofNP andMOF for the conversion of carbon

dioxide to methanol is still in an embryonic stage of research, and

some questions about mechanisms and production of several

compounds needs to be assessed. Again, most of the studies

reported are carried out at lab scale or with small quantity of

catalyst (Table 2) and the process scale-up is an important

challenge to develop this technology. Long-term operation and

reuse should be also considered in new publications, as they are

very scarce in literature. Very recently, Lu et al. (2022) have used the

term “reusable MOF” in scientific literature. Although it is not

applied for the reactions discussed in this study, they appear as a very

flexible and low-cost material for a lot of organic reactions.

A critical issue that can be applied to both reactions is the

absence of economic data of the catalysts cost and its potential

benefits to transform biogas into methanol. This is especially

important as it hampers the implementation of this strategy at

full-scale. Recently, some preliminary works have presented

some techniques to synthetize these catalyst in a low-cost

protocol (Duan et al., 2020; Ghorbani-Choghamarani et al.,

2021; Kumari et al., 2021), but it is evident that other

essential data are still unavailable to present a preliminary

economic assessment.

Conclusion

In the current situation of energy scarcity and availability,

it is evident that biogas from the anaerobic digestion of

organic waste will have a key role in the development of

easily and locally available low-impact renewable energy

sources. Biogas can be used directly in cogeneration units,

upgraded to methane and injected in the existing natural gas

network or, taking a step forwards on that point, converted

into methanol. Using this strategy, several problems of

methane are overcome, but the need of effective and

selective catalysts for all the chemical reactions involved is

a critical issue. In this sense, nanomaterials embedded in metal

organic frameworks provide very satisfactory results. It is

evident that this field needs further research, but the results

are promising. On the things-to-do side, the main challenges

for the future development of this technology is its full-scale

implementation and a complete economic assessment, which

TABLE 3 Carbon dioxide to methanol processes using nanoparticles and MOF.

References Nanoparticle and metal-organic
framework

Conversion/selectivity (%)

Olsbye et al. (2020) Pt in UiO Zr-MOF High (>90%)/medium (around 50%)

Gutterød et al. (2020) Pt embedded in Zr-based UiO-67 MOF Both high (>90%)

Zhao et al. (2019) Cu/Zn/Al derived from layered double hydroxide/MOF composites Both high (>90%)

Han et al. (2022) Cu@ZrO2 derived from Zr-MOF Both high (>90%)

Aadil et al. (2022) Several NP in TiO2– and MOF–based nanocomposites Wide range of results

Alqarni et al. (2022) Zr-MOF metallated with Ru, Rh, Pd, and In Wide range of results

Nagababu et al. (2021) TiO2 on synthesized MOFs (Cu-BTC-MOF and Ni-BTC-MOF) Both high (>90%)

Rayder et al. (2021) Ru complex encapsulated in MOF UiO-66 Both high (>90%)

Cardoso et al. (2018) MOFs based on ZIF-8 deposited on TiO2 nanotubes High (>90%)/medium (around 50%)

Mangal et al. (2016) TiO2 in copper-based MOF Cu3BTC2 Both high (>90%)

Maina et al. (2017) TiO2 and Cu-TiO2 in zeolitic imidazolate framework (ZIF-8) Both high (>90%)

An et al. (2017) Cu/ZnOx ultrasmall NP in UiO-bpy MOFs Both high (>90%)
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considers both the catalysts cost and the benefits of the

conversion of biogas into methanol.
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