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Bayesian neural networks (BNNs) combine the generalizability of deep neural

networks (DNNs) with a rigorous quantification of predictive uncertainty, which

mitigates overfitting andmakes them valuable for high-reliability or safety-critical

applications. However, the probabilistic nature of BNNs makes them more

computationally intensive on digital hardware and so far, less directly

amenable to acceleration by analog in-memory computing as compared to

DNNs. This work exploits a novel spintronic bit cell that efficiently and compactly

implementsGaussian-distributed BNN values. Specifically, the bit cell combines a

tunable stochastic magnetic tunnel junction (MTJ) encoding the trained standard

deviation and a multi-bit domain-wall MTJ device independently encoding the

trained mean. The two devices can be integrated within the same array, enabling

highly efficient, fully analog, probabilistic matrix-vector multiplications. We use

micromagnetics simulations as the basis of a system-level model of the

spintronic BNN accelerator, demonstrating that our design yields accurate,

well-calibrated uncertainty estimates for both classification and regression

problems and matches software BNN performance. This result paves the way

to spintronic in-memory computing systems implementing trusted neural

networks at a modest energy budget.
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1 Introduction

The powerful ability of deep neural networks (DNNs) to generalize has driven their

wide proliferation in the last decade to many applications. However, particularly in

applications where the cost of a wrong prediction is high, there is a strong desire for

algorithms that can reliably quantify the confidence in their predictions (Jiang et al.,

2018). Bayesian neural networks (BNNs) can provide the generalizability of DNNs, while
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also enabling rigorous uncertainty estimates by encoding their

parameters as probability distributions learned through Bayes’

theorem such that predictions sample trained distributions

(MacKay, 1992). Probabilistic weights can also be viewed as

an efficient form of model ensembling, reducing overfitting

(Jospin et al., 2022). In spite of this, the probabilistic nature

of BNNsmakes them slower andmore power-intensive to deploy

in conventional hardware, due to the large number of random

number generation operations required (Cai et al., 2018a). Some

proposals to increase the energy efficiency of digital BNNs via

pipelining have been made (Cai et al., 2018b), but ultimately

these approaches hit an efficiency wall due to the serial nature of

random number generation. In contrast, emerging memory

devices pose an attractive set of possible options for true

random number generators (TRNGs) at a less than 1 pJ/bit

energy footprint (Carboni and Ielmini, 2019).

In recent years, in-memory computing has also emerged to

enable orders-of-magnitude more efficient processing of data-

intensive DNN algorithms. These systems alleviate the

memory wall problem in conventional architectures, while

also leveraging the efficiency and parallelism of analog

computation (Sebastian et al., 2020; Xiao et al., 2020). A

variety of computational memory devices have been

proposed as artificial synapses for DNNs: resistive random

access memories (ReRAM) (Li et al., 2018; Yao et al., 2020),

phase change memories (Barbera et al., 2018; Joshi et al.,

2020), electrochemical memories (Gkoupidenis et al., 2015;

Lin et al., 2016; Li et al., 2021; Kireev et al., 2022), designer

ionic/electronic thin films (Robinson et al., 2022), magnetic

memories (Jung et al., 2022), and others. However, these

synaptic devices cannot directly implement BNN weights,

which are not static but are sampled from trained

probability distributions.

Spintronic devices possess properties that make them

promising for data storage, in-memory computing for DNNs,

and probabilistic computing. Spintronic devices typically use the

magnetic tunnel junction (MTJ) as the building block (Ikeda

et al., 2010) and have demonstrated high energy efficiency,

scalability, and endurance (Xue et al., 2018; Grollier et al.,

2020; Raymenants et al., 2021). Magnetic spin textures such as

domain walls (Akinola et al., 2019; Siddiqui et al., 2020; Leonard

et al., 2021; Brigner et al., 2022) and skyrmions (Jadaun et al.,

2020; Song et al., 2020) can implement complex, tunable

behaviors that can realize higher-order neurons and synapses.

Spintronic devices also have unique intrinsic stochastic

properties (Sengupta et al., 2016; Srinivasan et al., 2016; Liu

et al., 2021). Recently, stochasticity in MTJs has been

experimentally demonstrated to produce conductance noise

due to thermal fluctuations in magnetization experienced by

the free ferromagnetic layer. Importantly, the distribution of

conductance noise is dictated by the magnetic energy landscape,

which can be manipulated using a variety of methods including

magnetic field (Hayakawa et al., 2021), spin transfer torque

(Borders et al., 2019), spin orbit torque (Ostwal and

Appenzeller, 2019), and voltage-controlled magnetic

anisotropy (VCMA) (Cai et al., 2019; Safranski et al., 2021).

As a result, the tunable random bitstream readout of stochastic

MTJs can be used to implement Boltzmann machines for

probabilistic computing (Kaiser et al., 2022). While proposals

for spin-based BNNs have been made (Yang et al., 2020; Lu et al.,

2022), they relied upon either streaming generated RNGs from

the periphery into each array or using digital circuitry to fully

compose the weight used in the sampling step. These decisions

majorly reduce the efficiency of a hardware spintronic BNN

design by increasing the energy cost of the basic sampling

operation. Lastly, ReRAM devices have also been used to

implement probabilistic weights (Lin et al., 2019; Malhotra

et al., 2020; Dalgaty et al., 2021), but required many devices

per weight since the weight’s mean and standard deviation

cannot be independently encoded at the device level.

In this work, we introduce a novel array design for efficient

probabilistic matrix-vector multiplication (MVM) sample steps

with the inference operation fully supported by in-situ analog

spintronic device electrical operation. We target BNNs that are

trained using the variational inference method to represent each

weight as a normal distribution with a trained mean (μ) and

standard deviation (σ). The BNNs are deployed on a spintronic

system where each weight is encoded by a domain-wall memory

with multi-bit precision in μ, and a stochastic spintronic memory

that independently encodes σ with multi-bit precision. The

devices are directly integrated in the same array, and are used

together in a probabilistic MVM. The accuracy and quality of

uncertainty predictions from the proposed hardware are

evaluated using realistic in-memory computing simulations,

based on stochastic device properties obtained from

micromagnetic simulations. We show that the proposed

spintronic implementations of BNNs give accurate, well-

calibrated uncertainty estimates for complex classification and

regression problems that match software BNN implementations,

and are superior to comparable DNNs. These BNN predictions

require 10–100× less energy than conventional hardware by

efficiently combining the RNG and MVM operations in the

analog domain.

2 Artificial synapses for encoding
probability distributions

2.1 Bayes-magnetic tunnel junction noise
encoder

To encode a BNN’s weight probability distributions, our fully

spintronic Bayesian artificial synapse compactly integrates a

tunable noise source with a programmable artificial synapse

that encodes the mean component of the weight. The tuning

range of the conductance noise should ideally cover a large range

Frontiers in Nanotechnology frontiersin.org02

Liu et al. 10.3389/fnano.2022.1021943

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2022.1021943


in order to encode both wide (highly noisy) and narrow (nearly

deterministic) weight probability distributions. The proposed

Bayes-MTJ utilizes the physical stochasticity and voltage

controllability of magnetic materials to realize this

functionality, and further uses magneto-ionics to ensure that

the encoded noise properties are non-volatile.

The Bayes-MTJ structure is shown in Figure 1A, and based

on a cylindrical in-plane MTJ. Both of the in-plane axes (i.e., the

x-y plane) are easy axes for the free layer’s magnetization, and

thus thermal fluctuations can readily cause random changes in

the free layer’s in-plane magnetization. These fluctuations

generate noise in the conductance across the MTJ, and this

noise fully spans the range between the maximum

conductance state (free and reference layers parallel) and the

minimum conductance state (free and reference layers anti-

parallel). Experiments validating this effect in cylindrical in-

plane magnetic systems have been shown previously

(Debashis et al., 2016). Since the noise always spans the full

conductance range of the device, the magnitude of conductance

noise can be controlled by modulating the MTJ’s tunnel

magnetoresistance (TMR) ratio via the voltage-controlled

magnetic anisotropy (VCMA) effect. Modulation of the TMR

ratio using an applied voltage across the oxide layer has has been

demonstrated previously, both experimentally and theoretically

(Shiota et al., 2011; Li et al., 2014; Zhang et al., 2020; Krizakova

et al., 2021).

An externally applied voltage is not an efficient

implementation of tunable noise because each device

encodes a unique probability distribution and thus would

require an independent VCMA voltage during an inference

operation. However, there are at least two ways that non-

volatile encoding of the noise magnitude can be accomplished.

Firstly, a ferroelectric or multiferroic layer can be introduced

to the stack to induce a polarization field at the interface,

implementing an effective electric field that can be modulated

to an appropriate state using applied voltage (Chen et al., 2019;

Fang et al., 2019; Wang et al., 2021). Another option is to

introduce an ion-conductive layer to reversibly modulate the

oxidation state of the free layer. Ion migration is induced using

an electric field, resulting in non-volatile changes in magnetic

properties such as the magnetic anisotropy (Bauer et al., 2015;

Baldrati et al., 2017; Tan et al., 2019; Xue et al., 2019) and

magnetoresistance (Wei et al., 2019; Nichterwitz et al., 2020;

Long et al., 2021). Oxidation of the free layer has been shown

to reduce the TMR of MTJ stacks (Joo et al., 2012). In this

paper, these effects will be approximated using an effective

FIGURE 1
(A) Structure of the Bayes-MTJ. Thermal fluctuations cause random changes in the in-plane magnetization of the free layer that manifest as
noise in the tunnel magnetoresistance, (B) Simulated noise in the Bayes-MTJ conductance. The applied voltage modulates the TMR and the
magnitude of the noise via the VCMA effect. (C) Structure of a notched DW-MTJ synapse. Bottom shows the distribution of DW position over 25 ns
after being initialized in each of 16 notches.
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built-in voltage Vbi across the MgO tunnel barrier that is set

during programming.

The Bayes-MTJ can be represented by a macrospin Landau-

Lifshitz-Gilbert (LLG) model described as follows (Shiota et al.,

2011):

z �m

zt
� −γμ0 �m × �Heff + α �m ×

z �m

zt
− βPJSTT �m × �m × �mr( ) (1)

where �m and �mp are the magnetization unit vector of the free and

reference layers respectively, γ is the Gilbert gyromagnetic ratio,

α is the damping parameter, P is the spin polarization, and JSTT is

applied spin transfer torque current density. β = γZ/2etFMs,

where Z is the reduced Planck constant, e is electron charge,

tF is the thickness of the free layer, and Ms is saturation

magnetization. Additionally, a random vector representing

thermal fluctuations at finite temperature is added to each

time step into the effective field term, similar to the

implementation in MuMax3 (Vansteenkiste et al., 2014):

�Htherm � �η

�������
2μ0αkBT
MsγVΔt

√
(2)

where �η is a random vector from a standard normal distribution

updated every time step, μ0 is vacuum permeability, kB is the

Boltzmann constant, T is the absolute temperature, V is the cell

volume, and Δt is the simulation time step. Relevant simulation

values for an in-plane anisotropy CoFeB/MgO/CoFeB system are

presented in Table 1.

The VCMA effect modulates the anisotropy field as well as

the resistance when a voltage is applied. The anisotropy field is

modeled with the following:

ẑHk � 2Ki

tfreeMsμ0
− 2κsVbi

μ0Mstoxtfree
(3)

where Ki is the anisotropy energy, tfree and tox are the thickness of

the free layer and oxide layer respectively, κs is the VCMA

coefficient, and Vbi is the built-in voltage. The resistance of

the MTJ can be expressed as:

R � Rp

1 + Vbi
Vh

( )2

+ TMR

1 + Vbi
Vh

( )2

+ 1
2 TMR 1 + sin θ cos ϕ( ) (4)

where Rp is resistance when the magnetizations of free and

reference layers are parallel, Vh is the voltage at which the

TMR ratio is halved, and θ and ϕ are the polar coordinates

for the unit vector magnetization of the free layer.

In Figure 1B, the conductance of the Bayes-MTJ device is

sampled for 100 ns at a VCMA voltage of 0, 0.5, and 1 V. In each

case, the conductance varies randomly and continuously between

the fully parallel and fully anti-parallel states of the

MTJ. Increasing the VCMA voltage decreases the TMR ratio,

which narrows the range of allowed output conductance and thus

reduces the magnitude of conductance noise. This device acts as a

tunable noise source that is used by the cell design in Section 2.3

to encode the standard deviation of a probability distribution.

2.2 Domain wall static weight encoder

To encode the static or mean value of a weight probability

distribution, we use a domain wall-magnetic tunnel junction (DW-

MTJ) artificial synapse (Leonard et al., 2021; Liu et al., 2021). This

three-terminal device has previously been shown to have extremely

low read and write noise, an important feature for the precise

TABLE 1 Physical parameters used in themacrospin LLG simulations of
the Bayes-MTJ.

Symbol Parameter Value

α Gilbert damping 0.01

Ms Saturation magnetization 1 × 106 A/m

Ki Anisotropy energy 0.08 J/m2

κs VCMA coefficient 75 × 10–15 J/m

P Spin polarization 0.6

tMgO MgO thickness 1.5 nm

tfree Free layer thickness 1.5 nm

d MTJ diameter 50 nm

TMR Tunnel magnetoresistance 200%

Vh Voltage where TMR is halved 0.5 V

Rp Parallel resistance 2 kΩ
T Temperature 300 K

TABLE 2 Physical parameters used in micromagnetics simulations of
the DW-MTJ.

Symbol Parameter Value

α Gilbert damping 0.02

Ms Saturation magnetization 8 × 105 A/m

Ku Perpendicular anisotropy 5 × 105 J/m3

A Exchange constant 1.3 × 10–11 J/m

DMI Dzyaloshinskii-Moriya interaction constant −0.05 J/m2

P Spin polarization 0.7

tfree Free layer thickness 1.5 nm

l Free layer length 600 nm

w Free layer width 40 nm

wn Notch width 10 nm

dn Notch depth 10 nm

sn Notch spacing 35 nm

Rp Parallel resistance 6.7 kΩ
TMR Tunnel magnetoresistance 200%

T Temperature 300 K
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encoding of static weights. The DW-MTJ device contains a

ferromagnetic rectangular wire that produces a magnetic domain

wall (DW). The wire lies underneath a tunnel barrier and a reference

magnetic layer to form anMTJ. The DW-MTJ can encode multiple

conductance states based on the DW position, which controls the

proportion of the free layer that is parallel or anti-parallel to the

reference layer. Notches are also lithographically defined along the

edges of the wire to provide linearly spaced, repeatable states and

reduce drift of the DW due to thermal fluctuations. A write

operation is performed by passing current in the direction of the

desired DWmotion, in-plane to the stack, while a read operation is

performed by measuring resistance perpendicular to the stack

(through the tunnel barrier). DW motion is mediated by spin

transfer torque (STT) and an additional spin orbit torque (SOT)

component provided by the heavy metal layer underneath the

free layer. A top-down schematic of the device is shown in

Figure 1C.

To model the more complicated physical dynamics of the

DW in the free layer, the MuMax3 micromagnetics solver is used

(Vansteenkiste et al., 2014). The finite temperature LLG equation

described previously is solved for each timestep for a multi-spin

system. The constants used for the perpendicular magnetic

anisotropy CoFeB/MgO/CoFeB system in this simulation are

shown in Table 2. To characterize the intrinsic noise of a DW-

MTJ, a DW is created at a notch within the track and the position

of the DW is sampled over 25 ns at 300 K. This is repeated for all

16 levels to characterize the variation in DW position, shown in

Figure 1C. On average, the DW-MTJ’s conductance noise is

approximately 0.335% of the full conductance range dictated by

its TMR.

FIGURE 2
(A) Probabilistic cell with one Bayes-MTJ and two DW-MTJ devices to encode a programmable Gaussian distribution. The third DW-MTJ
terminal is used only during programming. Currents on a column are integrated on a capacitor. (B) Charge on the capacitor Q vs. time due to the
Bayes-MTJ current at two values of Vbi. Each run is an independent read using a 2 ns bipolar volage pulse. (C) Distribution of the final capacitor
chargeQ (T=2ns) induced by noise in the Bayes-MTJ, at two values of Vbi with 20,000 samples each. (D) Standard deviation ofQ (T=2ns) vs. Vbi

on the Bayes-MTJ, (E) Q(T) vs. the total pulse length T at Vbi =0 V.

Frontiers in Nanotechnology frontiersin.org05

Liu et al. 10.3389/fnano.2022.1021943

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2022.1021943


2.3 Probabilistic in-memory matrix-vector
multiplication

We propose a novel cell design shown in Figure 2A to combine

the Bayes-MTJ tunable noise source with a DW-MTJ static weight,

collectively encoding the trained weight probability distributions in

BNNs. The cell uses the difference in conductance of twoDW-MTJs

to represent both positive and negative weight means. All three

devices are connected on one end to the same metal column so that

their output currents add. The fabrication challenges of

simultaneously integrating both types of devices are important to

note. Since the proposed cell centers around the use of the in-plane

magnetization Bayes-MTJ, one solution is to use in-plane

magnetization DW-MTJ devices (Currivan-Incorvia et al., 2016)

to enable monolithic integration of both devices on the same

material stack. However, when scaling and energy efficiency is a

concern, out-of-plane magnetic systems are typically desired for the

DW-MTJ device. This is because in-plane domain walls are

generally wider and more sensitive to track roughness (Catalan

et al., 2012), limiting scaling in contrast to out-of-plane systems. In

this case, heterogenous integration of two different magnetic

material stacks is necessary. One solution is for different stacks

to be grown in different areas of the wafer for integration during the

growth phase (Chavent et al., 2020). Another possibility is to use flip

chip integration, allowing devices to be fabricated on two different

magnetic substrates before being bonded together for final

integration (Lau, 2016).

To realize independent control of the weight means by the

DW-MTJs and the weight standard deviations by the Bayes-

MTJ, the time-averaged conductance of the Bayes-MTJ must

be canceled out so that the device contributes only zero-

centered random noise. To accomplish this, a bipolar

volage pulse is applied to the Bayes-MTJ device consisting

of two pulses of equal duration and amplitude but opposite

polarity. The resulting bipolar current is integrated over the

full duration on a capacitor at the bottom of a column, using a

current conveyor (CC) circuit. The CC acts as a current buffer

with large output resistance while maintaining a virtual

ground on the column (Marinella et al., 2018). The time-

averaged conductance of the Bayes MTJ contributes equal but

opposite currents during the two halves of the pulse, and gets

canceled out in the final capacitor charge so that only the noise

contribution remains. An important advantage of this

approach is that the cancellation does not depend on the

value of the time-averaged conductance, so that device-to-

device MTJ variations can be tolerated.

Figure 2B shows the accumulated charge from the output of a

Bayes-MTJ alone during a read pulse with length tread = 2 ns, for

five independent pulses. The dashed black line depicts the output

of a deterministic resistor with Rp = 2 kΩ. Each run with a Bayes-

MTJ is an independent sample from the encoded weight

probability distribution. There is a clear difference in the

noise distribution at different applied voltage, where the final

accumulated charge has a much tighter distribution around 0C

when 2 V is applied due to the reduced TMR. Figure 2C shows

the distribution of the charge noise after 2 ns for two effectiveVbi,

with 20,000 samples each. The distribution is not Gaussian, but

can effectively approximate BNNs trained with normally

distributed weights, as shown in the next section.

The integrated charge Q from a Bayes-MTJ can then be

converted to an effective conductance noise via δGBMTJ =Q/Vread

tread, where Vread is the read voltage (note that Q scales linearly

with Vread so δGBMTJ is independent of Vread). The dependence of

the conductance noise standard deviation on built-in voltage is

shown in Figure 2D, for tread = 2 ns. The range of modulation

between maximum and minimum noise standard deviation is

38.9:1. Figure 2E shows how the noise standard deviation

depends on the pulse length at 0 V built-in voltage. A 2 ns

sample time is chosen to maximize the cycle-to-cycle

fluctuations in capacitor charge. A longer integration time

averages out the effective conductance noise.

The two DW-MTJs are driven by unipolar pulses of the

same amplitude and total duration as the bipolar pulse: one

positive and one negative, so that their currents are subtracted.

Currents frommultiple cells of this type can be summed on the

same column, and the same read pulses can be broadcast to a

row of cells. This implements a fully analog, in-memory MVM

where every matrix element is sampled simultaneously from

an independent probability distribution. The amplitude of the

three pulses applied to each row is proportional to the

corresponding element of the input vector. The

integrated charge can be read out as a capacitor

voltage that represents the final probabilistic matrix-vector

product.

3 Uncertainty quantification with the
Bayes-magnetic tunnel junction

3.1 Bayesian neural networks

ABayesian neural network uses probabilistic weights tomake

predictions with a quantified uncertainty. Though there are other

ways to quantify uncertainty, a BNN produces well-calibrated

uncertainties by learning the weight probability distributions

using Bayes’ theorem (MacKay, 1992):

P Θ|D( ) � P D|Θ( )P Θ( )
P D( ) (5)

P(Θ|D) is known as the posterior distribution of the model’s

weights Θ after it has been exposed to the training data D. After

training, the distributions are fixed.When evaluated on new data,

multiple predictions are made using different samples of the

posterior weight distribution, and the statistics of these

predictions is used to quantify the uncertainty. In this work,

BNNs are trained in software, then their effectiveness on unseen
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data is evaluated using simulations of the proposed spintronic

hardware.

During the training phase, computing the right-hand side of

this equation is computationally expensive. Furthermore, the

posterior distribution for a weight can be an arbitrarily

complex distribution that is difficult to implement in analog

hardware. For these reasons, we approximate Bayes’ theorem

using variational inference (VI) (Blei et al., 2017). VI is used to

constrain the distribution for each weight to be a Gaussian

distribution N (μ, σ), parameterized by a mean μ and a

standard deviation σ, as shown in Figure 3A. These parameters

can be efficiently trained using the backpropagation algorithm

(Blundell et al., 2015). We use the Tensorflow Probability

framework and the Flipout method (Wen et al., 2018) to

implement BNN training with VI. Our proposed hardware is

compatible with Gaussian-distributed weights trained using any

method. As a baseline, the trained BNNs are compared to iso-

topology deep neural networks (DNNs) with deterministic

weights. DNNs were trained using Tensorflow Keras. Details on

the specific trained networks are given in Sections 3.3, 3.4.

3.2 Mapping Bayesian neural networks to
Bayes-magnetic tunnel junction arrays

For each probabilistic weight in the trained BNNs, the mean

μ is mapped to the difference in conductance (GDW+ −GDW-) of a

DW-MTJ device pair. The standard deviation σ is encoded in the

effective conductance noise of the Bayes-MTJ tunable noise

source, defined in Section 2.3. The simulated Bayes-MTJ noise

distribution in Figure 2C does not exactly follow a Gaussian

distribution. The Bayes-MTJ noise distribution is zero-

symmetric, strictly bounded, and has the same shape

regardless of Vbi, which controls the width of the distribution.

To compactly model this distribution for large arrays, the

following analytical distribution is used, up to a normalization

constant:

P x( ) � π

2
A sin

π

2
x + 1( )( ) + 1 − A

B
���
2π

√ exp − x

B
( )2( ) (6)

where A = 0.9298 and B = 0.0367 are fitting parameters, and x is a

random variable in the range (−1, +1). For a desired value of σ, a

random value x is sampled from this distribution and is

converted to a conductance fluctuation by:

δGBMTJ x( ) � 61.06 μ S ×
σ

μmax

( ) × 2.379x (7)

where 61.06 µS is the maximum Bayes-MTJ effective

conductance noise at Vbi = 0V (using Vread = 0.1 V, tread =

2 ns, and Rp = 2 kΩ). The constant 2.379 accounts for the

difference in the standard deviation between P(x) and the

standard normal N (0, 1). The σ value is normalized by μmax,

the largest absolute value of μ for the layer, which is mapped to

FIGURE 3
(A) Schematic of a Bayesian neural network where each weight follows a Gaussian distribution N (μ, σ), (B) Analytical fit to the BayesMTJ noise
distribution from LLG simulations, and Gaussian distribution with the same standard deviation, (C) Distribution of σ values for each layer of a Fashion
MNIST BNN, mapped to Bayes-MTJ conductance noise. The first layer’s weights are implemented without activating the Bayes-MTJ.
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the parallel resistance of the DW-MTJ in Table 2. The value of

Rp,DW was tuned to fit the BNN’s σ values inside the available

conductance noise range.

Figure 3B shows the simulated Bayes-MTJ noise distribution

at a voltage of 0.5 V alongside its analytical distribution (blue)

and a Gaussian distribution with the same standard deviation

(red). Figure 3C shows the distribution of σ, expressed in terms of

the target Bayes-MTJ conductance standard deviation, for a five-

layer Fashion MNIST BNN to be described in Section 3.3.1. The

range between the green dashed lines represents the σ values that

can be encoded by the Bayes-MTJ having Vbi between 0 V and

5V, which will be the range used through the rest of the paper

unless otherwise stated. Excluding the first layer, the vast

majority (99.5%) of the σ values in the BNN can be encoded

by the Bayes-MTJ, with outliers clipped to the nearest value

inside the range. The first layer’s σ values are almost entirely zero,

so it is implemented by a standard array where no read pulses are

delivered to the Bayes-MTJ rows.

For the spintronic hardware simulations of BNNs in the

following sections, we extend the CrossSim modeling framework

(Xiao et al., 2022) for analog accelerators to model in-memory

computations with tunable stochastic elements. The Bayes-MTJ

is modeled using the analytical distribution above. The μ values

were linearly quantized to be compatible with 4 bits of precision

in each DW-MTJ conductance (16 notches), and the σ values

were nonlinearly quantized to support 4 bits of precision in the

VCMA voltage.

3.3 Quantifying classification uncertainty

For classification problems, a DNN typically has a softmax

output layer, which can be interpreted as a vector of probabilities
�p for every class. The information entropy of this vector

measures the amount of uncertainty in a given prediction:

H( �p) � −∑ipi logpi, where i indexes the class.

The uncertainty of a BNN is based on sampling N

predictions, each yielding a probability vector �p. The overall

prediction and confidence are based on the expectation value of

the probability vector formed from theN samples:E[ �p]. Multiple

sampling of the probabilistic weights also allows the predicted

uncertainty for a given input to be decomposed into an aleatoric

and epistemic uncertainty (Smith and Gal, 2018):

Htotal � Haleatoric +Hepistemic (8)
where

Htotal � H E �p[ ]( ), Haleatoric � E H �p( )[ ] (9)

Aleatoric uncertainty Haleatoric originates from randomness or

ambiguity inherent in the data, and the epistemic uncertainty

Hepistemic originates from the model’s lack of knowledge

(Hüllermeier and Waegeman, 2021). Aleatoric uncertainty

tends to be high when the input data is noisy, while epistemic

uncertainty tends to be high if the input is out of distribution,

i.e., has properties that are distinct from the training data.

Epistemic uncertainty is particularly useful in enabling the

neural network to make safe extrapolations to out-of-

distribution data (Kendall and Gal, 2017). Thus, the BNN

offers two potential advantages over the DNN baseline: 1)

better calibrated uncertainty estimates, and 2) meaningful

decomposition of uncertainty.

The loss function used for variational inference is a sum of

the prediction’s categorical cross entropy and the Kullback-

Leibler (KL) divergence of each posterior distribution with the

prior, aggregated over all the weights. The KL divergence term is

responsible for approximating Bayes’ theorem (Blundell et al.,

2015), while for the DNN baseline only the categorical cross

entropy loss is used.

3.3.1 Fashion MNIST experiments
A DNN and a BNN were trained on the Fashion MNIST

dataset (Xiao et al., 2017) with ten classes, both using the LeNet-5

architecture (Lecun et al., 1998), but with sigmoids replaced by

Rectified Linear Unit (ReLU) activations and average pooling

replaced by max pooling. The DNN has 61.7 K parameters and

the BNN has 123.2 K parameters, since each weight has two

parameters (μ and σ). The bias weights in the BNN are left

deterministic so that they can be implemented digitally within

the accelerator. The same optimizer (Adam), number of epochs

(20), and learning rate (10–3) are used for both models. Figure 3C

shows the distribution of trained σ values in the BNN for each

layer.

First, both networks were evaluated on the Fashion MNIST

test set (10,000 images) and the EMNIST-Letters test set

(10,000 images) of handwritten letters (Cohen et al., 2017),

representing out-of-distribution data where the network

should predict high uncertainty. The BNN was evaluated both

in software and simulated on the spintronic hardware, and was

sampled 100 times unless otherwise specified. Figures 4A,B show

that all cases predict low uncertainty on Fashion MNIST and

higher uncertainty on EMNIST-Letters. However, the DNN still

has a prominent peak at low uncertainty for letters, whereas the

BNN has a much higher uncertainty overall, as expected.

To more quantitatively assess the quality of these uncertainty

estimates, a calibration curve (Guo et al., 2017) is used, shown in

Figure 4C. For each network, the Fashion MNIST test set is split

into bins based on the confidence of the prediction. If the

uncertainty is well calibrated, the confidence should match the

accuracy of the images in the bin: e.g., for images where the

network has 50% confidence, it should ideally be correct 50% of

the time. Figure 4C shows that the BNN is better calibrated than

the DNN, which is over-confident, and that the spintronic BNN

closely implements the software BNN despite the limited noise

range, limited noise precision, and the difference in distribution
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shape. An overall metric for the quality of the uncertain estimate

is the expected calibration error (Guo et al., 2017):

ECE � ∑M
m

Nm

Ntest
|acc �xm( ) − conf �xm( )| (10)

where �xm is the set of images in themth confidence bin,Nm is the

number of images in this bin, and Ntest = 10, 000 is the size of the

test set. The accuracy and ECE for the three cases are shown in

Table 3.

We further probe the differences between the BNN and DNN

by experimenting with images that are linear superpositions of

Fashion MNIST clothing items and EMNIST letters. This is

parameterized by the letter fraction, where 0% is a Fashion

MNIST image and 100% is a letter image, as shown in

Figure 5A. Figure 5B shows the ECE vs. letter fraction, where

1,000 random clothing-letter pairs were generated for each letter

fraction from 0% to 90%, separated by 10% intervals. The label

for each image is the original Fashion MNIST label. The ECE is

less meaningful at very high letter fractions where the image is

very weakly related to its label. The BNNs, including the

spintronic implementation, have lower ECE at all values of

the letter fraction, indicating better calibrated uncertainties.

Figure 5C shows how the spintronic hardware’s ECE changes

as the noise On/Off ratio of the Bayes-MTJ is decreased below

what can be achieved with Vbi = 5 V (Figure 2D). A ratio larger

than 10 can accurately capture the small σ values in the network.

Finally, Figures 5D,E compare the decomposed uncertainty

components of the DNN and spintronic BNN, respectively. The

DNN baseline is deterministic, so it cannot predict a non-zero

epistemic uncertainty. For both models, the aleatoric uncertainty

peaks at an intermediate letter fraction, though this is more

evident in the BNN. This is hypothesized to be due to the fact that

images with near-equal mixtures of letters and clothing items

have the greatest number of overlapping spatial features and thus

FIGURE 4
Distribution of predicted uncertainty (kernel density estimation) by the software DNN, software BNN, and BNN simulated on spintronic
hardware, on (A) the Fashion MNIST test set, and (B) the EMNIST-Letters test set. Both the DNN and BNN were trained on Fashion MNIST.
Uncertainties are in units of information entropy. (C)Uncertainty calibration curve of the three cases on the FashionMNIST test set. Note that most of
the predictions lie in the highest confidence bands.

TABLE 3 Accuracy and expected calibration error of trained networks.

Metric DNN (software) BNN (software) BNN (spintronic)

Accuracy (Fashion MNIST) 90.09% 90.15% 89.70%

ECE (Fashion MNIST) 3.28% 1.56% 1.35%

ECE (50% Letter fraction) 34.35% 9.18% 10.66%

Accuracy (CIFAR-100) 67.98% 67.57% 67.24%

ECE (CIFAR-100) 15.38% 2.20% 2.89%

ECE (50% SVHN fraction) 31.40% 11.01% 13.35%
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appear more noisy. Meanwhile, the BNN’s predicted epistemic

uncertainty increases nearly monotonically with letter fraction,

whichmatches the fact that a higher letter fractionmeans that the

image is farther away from the training distribution. The

epistemic uncertainty is important for increasing the BNN’s

uncertainty for images with large letter fraction where the

original Fashion MNIST label is harder to predict.

3.3.2 CIFAR-100 experiments
To demonstrate the feasibility of the spintronic BNN

accelerator on a more complex problem and a larger-scale

algorithm, deep residual networks (ResNets) (He et al., 2016)

were trained on the CIFAR-100 image classification dataset with

100 classes (Krizhevsky and Hinton, 2009). The ResNet topology

in Figure 6A was used to train both a DNN and a BNN having

1.25 and 2.50 M parameters, respectively. To improve accuracy,

both networks were trained with data augmentation (random

horizontal flips, random horizontal shifts ≤10%, and random

vertical shifts ≤10%) applied to the training images. Both

networks were trained for 100 epochs with the same

optimizer (Adam) and learning rates. Figure 6B shows the

distribution of σ values in the BNN for each layer. To

facilitate mapping to the Bayes-MTJ, a maximum value

constraint was imposed on σ during training.

The spintronic hardware implementation of the BNN used

the same assumptions as for Fashion MNIST, except that we

represent μ values with 8 bits of precision using bit slicing (Xiao

et al., 2020): each μ value uses two pairs of DW-MTJ devices with

16 notches per device. One pair encodes the higher 4 bits and is

integrated with the Bayes-MTJ that encodes the 4-bit σ value. The

other pair encodes the lower 4 bits in a separate array where the

Bayes-MTJ rows are left unused. The Bayes-MTJ is not used for

the first convolution layer where most of the σ values are near

zero. To improve energy efficiency, the batch normalization

operation is folded into the convolution μ and σ values (Jacob

et al., 2018).

FIGURE 5
(A) Continuous transformation from Fashion MNIST to EMNIST-Letters images by varying the letter fraction, (B) ECE vs. letter fraction for the
software DNN, software BNN, and spintronic implementation of the BNN, (C) Dependence of the ECE on the Bayes-MTJ noise On/Off ratio
(δGBMTJ,max/δGBMTJ,min). The maximum value of Vbi needed to achieve the On/Off ratio is labeled. (D) Uncertainty vs. letter fraction predicted by the
DNN, (E)Uncertainty vs. letter fraction predicted by the BNN, decomposed into aleatoric and epistemic uncertainty components. Uncertainties
are in units of information entropy and the shaded regions contain the middle 50% of 100 FMNIST-to-Letters transformations tested.
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The ECEs of the trained ResNets on the CIFAR-100 test set

(Table 3) are larger than for Fashion MNIST due to the greater

complexity of the task: correct predictions with high

confidence were less dominant in CIFAR-100. The BNN

reduces the ECE by 7×, at a cost of just 0.41% in top-1

accuracy. Figure 6C shows the calibration curves. The

spintronic implementation of the BNN tends to be more

confident than the software BNN. We hypothesize that this

is because the analog accelerator resamples the Bayes-MTJ

noise on every probabilistic MVM, and thus each instance of

weight re-use in a convolution layer independently resamples

the posterior weight distributions. Averaged across the

ResNet, a given weight is re-sampled 51× per image in the

analog accelerator. By contrast, the software (TensorFlow

Proability) implementation only resamples weights once per

batch of 32 images to reduce RNG overheads. The much more

frequent resampling allows for greater cancellation of the

noise in the subsequent layer, reducing the overall variance

in the network’s predictions and leading to greater confidence.

Figure 6D shows that by varying the weighting factor on the

KL divergence loss term relative to categorical cross entropy,

BNNs can be trained at different points along the trade-off

between accuracy and ECE. The ECE does not directly track

this hyperparameter but rather has a minimum; the BNN is over-

confident to the left of the minimum and under-confident to the

right. The ECE minimum lies further to the right for the

spintronic implementation. This is because the analog

hardware is slightly more confident, so it tends to be well-

calibrated where the software BNN is slightly under-confident.

As with Fashion MNIST, uncertainties far away from the

training set were evaluated by continuously blending CIFAR-100

images with a different dataset: the Street View House Numbers

(SVHN) dataset (Netzer et al., 2011), which uses 32 × 32 RGB

images similar to CIFAR-100. The ECE vs SVHN fraction is

FIGURE 6
(A) ResNet topology for CIFAR-100 image classification, used for both the DNN and BNN. An asterisk denotes a stride of two. Convolutions
other than layers 6, 9, and 12 are followed by batch normalization. (B)Distribution of trained σ values for each layer of the ResNet, mapped to Bayes-
MTJ conductance noise. (C)Comparison of uncertainty calibration curves for the ResNet DNN, BNN, and BNN simulated on spintronic hardware, for
the CIFAR-100 test set. (D) Accuracy and ECE on the CIFAR-100 test set for various BNNs trained with different weighting factors on the KL
divergence term of the loss function. Each network is evaluated both in software and simulated on the spintronic accelerator. (E) ECE vs SVHN
fraction for CIFAR-100 images continuously mixed with SVHN images. Results in (C,E) used a BNN with a KL divergence weighting factor of 0.2 and
100 samples per prediction. Results in (D) are based on 25 samples per prediction.
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shown in Figure 6E. The ResNet BNN and its spintronic

hardware implementation produce significantly better-

calibrated uncertainties on out-of-distribution data than a

conventional classification ResNet.

3.4 Quantifying regression uncertainty

The proposed spintronic BNN accelerator can also be used to

efficiently quantify uncertainty with regression models, where a

continuous quantity is predicted rather than a discrete class. We

use the Auto MPG dataset (Quinlan, 1993), where the task is to

predict an automobile’s fuel efficiency given eight other attributes

of the car which can be continuous (e.g., horsepower, weight) or

discrete (e.g., model year, number of cylinders). The dataset of

398 cars is divided into 255 training, 64 validation, and 78 test

examples. A simple BNN is trained for 500 epochs using VI with

three dense layers that have 128, 32, and 1 output, respectively.

Unlike the classification case, a negative log-likelihood loss

function is used that assumes a normal distribution for the

fuel efficiency y:

L ypred, ytrue, σ0( ) � −log 1
σ0

���
2π

√ exp − ytrue − ypred( )2
σ20

( )[ ]
(11)

where ypred is the predicted fuel efficiency, ytrue is the true

efficiency, and σ0 is a hyperparameter that is used to calibrate

the estimated uncertainty of the model. For this network

topology, which produces point predictions, the corresponding

DNN does not provide any uncertainty estimate because the

output has no probabilistic interpretation.

The model’s predictive uncertainty is obtained by defining

confidence intervals (CIs) that contain some percentage of the

1000 BNN point predictions for each input. Figure 7A shows the

mean prediction and 90% CIs for the examples in the test set,

where blue indicates that the true fuel efficiency lies within the

90% CI. For a model that produces well-calibrated uncertainties,

a CI containing α% of the predictions should contain the true

output for α% of the test inputs. Figure 7B shows that the BNN

gives well-calibrated uncertainties across the full range of CIs

(values of α), and the spintronic hardware closely matches the

ideal software results.

3.5 Energy efficiency

Compared to conventional digital implementations of BNNs,

the proposed MTJ-based probabilistic MVM engine saves

considerable energy by performing multi-bit RNG and

multiply-accumulate (MAC) operations using low-voltage

magnetic devices in the analog domain. Furthermore, the

proposed hardware can be more efficient than previously

proposed MTJ-based accelerators (Lu et al., 2022; Yang et al.,

2020b) by integrating the two functions within the same array,

without the need for intermediate digital processing to compute a

probabilistic MVM.

Figure 8A shows how the energy consumption per

probabilistic MAC operation scales for the proposed

spintronic accelerator. Circuit energies were computed based

on a 40 nm transistor process, assuming 8-bit precision for the

analog-to-digital converter (ADC) and shared digital-to-analog

converter (DAC). To reduce the current consumption of the CC,

MTJs with higher resistance than listed in Tables 1, 2 are assumed

(Bayes-MTJ Rp = 10 kΩ, DW-MTJ Rp = 56 kΩ). We also consider

the efficiency of a system that uses the highest MTJ resistances

demonstrated in the literature (Doevenspeck et al., 2020) (Bayes-

MTJ Rp = 1 MΩ, DW-MTJ Rp = 5.6 MΩ). Since the CC, ADC, or

DAC dominate the energy, higher efficiency can be obtained in

large arrays where these costs can be amortized over moreMACs.

FIGURE 7
(A) Spintronic BNN regression results on the AutoMPG test set, comparing the predicted to true efficiency. Error bars show the 90% confidence
interval obtained from sampling 100 BNN predictions. Blue indicates points where the true values lies inside the 90% confidence interval. (B)
Calibration curve for the software and spintronic implementation of the regression BNN on the Auto MPG test set.
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Meanwhile, the cost of true RNG in state-of-the-art CMOS

circuits is about 1.6 pJ/bit (Bae et al., 2017), or 6.4 pJ to

generate a 4-bit random value that matches the assumed

programming precision of the Bayes-MTJ. Multiplication of 4-

bit values incurs an additional ~0.05 pJ/MAC (Horowitz, 2014).

The spintronic accelerator can yield more than 100× energy

improvement at large array sizes.

An energy cost associated with BNNs, whether implemented in

digital software or a spintronic accelerator, is the cost of randomly

sampling the prediction multiple times. Resampling the noisy

weights is needed to produce well-calibrated uncertainties, and

also improves accuracy by ensembling the predictions of multiple

weight samples. Figures 8B,C show how the accuracy and ECE on

Fashion MNIST and CIFAR-100 depend on the number of samples

for the spintronic BNN. The number of samples needed for

convergence of accuracy and ECE depends on the task, and this

number is the overhead factor of a BNN prediction over a DNN

prediction on the same analog hardware.

4 Conclusion

Our results confirm that a Bayes-MTJ noise encoder

(programmable standard deviation σ) and a pair of DW-

MTJ devices constructing a spintronic synapse

(programmable mean μ) can collectively encode expressive

probability distributions with sufficient quality for real BNN

operations. The two types of devices can be co-integrated

within a compact nanofabric, paving the way to one-shot

probabilistic matrix-vector multiplications in the analog

domain. The proposed hardware can be 10 − 100× more

efficient than performing the same computation using

conventional RNGs, and can be made even more so with

more resistive MTJ devices. We simulated classification and

regression Bayesian neural networks whose trained

probabilistic weights are encoded using the novel spintronic

technology. Despite device non-idealities (non-Gaussian noise

distribution, limited range and precision in representing σ and

μ), the spintronic BNN implementation produces well-

calibrated and decomposable uncertainty estimates on

CIFAR-100, Fashion MNIST, and perturbed versions of

these datasets. The spintronic hardware yields high-fidelity

accuracy and ECE metrics that are nearly identical or superior

to those produced by a software BNN. To demonstrate

feasibility on more complex tasks and to relax device

programming precision and range requirements, future

work will investigate closer co-design of the algorithm and

device by integrating device properties into the VI training of

the BNN.
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